
1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 1 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Chapter 2 - Variables / Assignments

Section 2.1 - Variables (int)
Here's a variation on a common schoolchild riddle.

You used that box to remember the number of people as you proceeded through each step. Likewise,
a program uses a variable to remember values as the program executes instructions. (By the way, the
real riddle's ending question is actually "What is the bus driver's name?"— the subject usually says
"How should I know?". The riddler then says "I said, YOU are driving a bus.")

A variable represents a memory location used to store data. That location is like the "box" that you
used above. The statement int userAge; defines (also called declares) a new variable named
userAge. The compiler allocates a memory location for userAge capable of storing an integer, hence
the "int". When a statement executes that assigns a value to a variable, the processor stores the value

Participation
ActivityP 2.1.1: People on bus.

For each step, keep track of the current number of people by typing in the numPeople box (it's
editable).

Start

You are driving a bus.
The bus starts with 5 people.

Memory
??
5 numPeople
??
??

1 2 3 4 5

 Check Next

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 2 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

into the variable's memory location. Likewise, reading a variable's value reads the value from the
variable's memory location. The animation illustrates.

In the animation, the compiler allocated variable userAge to memory location 97, known as the
variables address; the choice of 97 is arbitrary, and irrelevant to the programmer (but the idea of a
memory location is important to understand). The animation shows memory locations 96-99; a real
memory will have thousands, millions, or even billions of locations.

Although not required, an integer variable is commonly assigned an initial value when defined.

mem

Participation
ActivityP 2.1.2: A variable refers to a memory location.

Construct 2.1.1: Basic integer variable definition with initial value of 0.
int variableName = 0;

import java.util.Scanner;

public class AgePrinter {
 public static void main (String [] args) {
 int userAge = 0;
 System.out.print("Enter your age: ");
 Scanner scnr = new Scanner(System.in);
 userAge = scnr.nextInt();
 System.out.println(userAge +
 " is a great age.");
 return;
 }
}

Memory

96

97

98

99

userAge

Enter your age: 23

23

23 is a great age.

Start

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 3 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

The programmer must define a variable before any statement that assigns or reads the variable, so
that the variable's memory location is known.

A variable definition is also commonly called a variable declaration. This material may use either term.

Participation
ActivityP 2.1.3: Defining integer variables.

Note: Capitalization matters, so MyNumber is not the same as myNumber.

Question Your answer

1
Define an integer variable named numPeople. Do
not initialize the variable.

2
Define an integer variable named numDogs,
initializing the variable to 0 in the definition.

3
Define an integer variable named daysCount,
initializing the variable to 365 in the definition.

4

What memory location (address) will a compiler
allocate for the variable definition:
int numHouses = 99;
If appropriate, type: Unknown

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 4 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

A common error is to read a variable that has not yet been assigned a value. If a local variable is
defined but not initialized, the variable's memory location contains some unknown value, commonly
but not always 0. A program with an uninitialized variable may thus run correctly on system that has 0
in the memory location, but then fail on a different system—a very difficult bug to fix. Programmers
thus must ensure that a program assigns a variable before reading. A good practice is to initialize a
variable in its definition whenever practical. The space allocated to a variable in memory is not infinite.
An int variable can usually only hold numbers in the range -2,147,483,648 to 2,147,483,647. That's
about ±2 billion.

Participation
ActivityP 2.1.4: Defining a variable.

Define a second integer variable avgLifespan, initialized to 70. Add a statement that prints "Average
lifespan is 70" (don't type 70 there; print the avgLifespan variable).

 28
import java.util.Scanner;

public class Age {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 int userAge = 0;
 // Define new variable here

 System.out.println("Enter your age: ");
 userAge = scnr.nextInt();

 System.out.println(userAge + " is a great age.");

 // Put new print statement here

 return;
 }
}

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 5 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Multiple variables can be defined in the same statement, as in:
int numProtons, numNeutrons, numElectrons;. This material usually avoids such style,
especially when definition initializes the variable (which may be harder to see otherwise).

Participation
ActivityP 2.1.5: int variables.

Which statement is an error?

Question Your answer

1

int dogCount; Error

No error

2

int amountOwed = -999; Error

No error

3

int numYears = 9000111000; Error

No error

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 6 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

(*mem) Instructors: Although compilers may optimize variables away or store them on the stack or in a
register, the conceptual view of a variable in memory helps understand many language aspects.

Section 2.2 - Assignments
An assignment statement like numApples = 8; stores (i.e. assigns) the right-side item's current
value (in this case, 8) into the variable on left side (numApples).

Challenge
ActivityC 2.1.1: Declaring variables.

Write one statement that declares an integer variable numHouses initialized to 25.

Run

asgn

Construct 2.2.1: Assignment statement.
variableName = expression;

import java.util.Scanner;

public class DeclaringVariables {
 public static void main (String [] args) {

 /* Your solution goes here */

 System.out.println(numHouses);

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 7 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

An expression may be a number like 80, a variable name like numApples, or a simple calculation like
numApples + 1. Simple calculations can involve standard math operators like +, -, and *, and
parentheses as in 2 * (numApples - 1). Another section describes expressions further.

All three variables are initialized, with annualMice initialized to 0. Later, the value of litterSize
* yearlyLitters (3 * 5, or 15) is assigned to annualMice, which is then printed. Next, 14 is
assigned to litterSize, and 10 to yearlyLitters, and their product (14 * 10, or 140) is
assigned to annualMice, which is printed.

Figure 2.2.1: Assigning a variable.

public class Mice {
 public static void main(String [] args) {
 int litterSize = 3; // Low end of litter size range
 int yearlyLitters = 5; // Low end of litters per year
 int annualMice = 0;

 System.out.print("One female mouse may give birth to ");
 annualMice = litterSize * yearlyLitters;
 System.out.println(annualMice + " mice,");

 litterSize = 14; // High end
 yearlyLitters = 10; // High end
 System.out.print("and up to ");
 annualMice = litterSize * yearlyLitters;
 System.out.println(annualMice + " mice, in a year.");

 return;
 }
}

One female mouse may give birth to 15 mice,
and up to 140 mice, in a year.

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 8 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Participation
ActivityP 2.2.1: Trace the variable value.

Select the correct value for x, y, and z after the following code
executes.

int x = 5;
int y = 3;
int z = 9;
x = 3;
y = 0;
z = 5;
x = 4;

x is
4 5 3

y is
0 7 3

z is
1 9 5

Start

1 2 3 4

 Check Next

Participation
ActivityP 2.2.2: Assignment statements.

Be sure to end assignment statements with a semicolon ;.

Question Your answer

1
Write an assignment statement to assign 99 to
numCars.

Assign 2300 to houseSize.

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 9 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

2
Assign 2300 to houseSize.

3
Assign the current value of numApples to numFruit.

4

The current value in houseRats is 200. Then:

numRodents = houseRats;

executes. You know 200 will be stored in
numRodents. What is the value of houseRats after
the statement executes? Valid answers: 0, 199, 200,
or unknown.

5
Assign the result of ballCount - 3 to numItems.

6

dogCount is 5. After

animalsTotal = dogCount - 3;

executes, what is the value in animalsTotal?

7

dogCount is 5. After

animalsTotal = dogCount - 3;

executes, what is the value in dogCount?

8

What is the value of numBooks after both
statements execute?

numBooks = 5;
numBooks = 3;

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 10 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

A common error among new programmers is to assume = means equals, as in mathematics. In
contrast, = means "compute the value on the right, and then assign that value into the variable on the
left." Some languages use := instead of = to reduce confusion. Programmers sometimes speak
numItems = numApples as "numItems EQUALS numApples", but this material strives to avoid such
inaccurate wording.

Another common error by beginning programmers is to write an assignment statement in reverse, as
in: numKids + numAdults = numPeople, or 9 = beansCount. Those statements won't compile. But,
writing numCats = numDogs in reverse will compile, leading to a hard-to-find bug.

Commonly, a variable appears on both the right and left side of the = operator. If numItems is initially
5, then after numItems = numItems + 1, numItems will be 6. The statement reads the value of
numItems (5), adds 1, and stores the result of 6 in numItems—overwriting whatever value was
previously in numItems.

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 11 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

(The above example relates to the popular idea that any two people on earth are connected by just
"six degrees of separation", accounting for overlapping of known-people.

P Participation
Activity

2.2.3: Assigning to a variable overwrites its previous values:
People-known example.

import java.util.Scanner;

public class PeopleKnown {
 public static void main (String [] args) {
 int yourFriends = 0;
 int totalFriends = 0;

 System.out.print("Enter the number of people you know: ");
 Scanner scnr = new Scanner(System.in);
 yourFriends = scnr.nextInt();

 totalFriends = yourFriends;
 System.out.println(" You know " + totalFriends + " people.");
 totalFriends = totalFriends * yourFriends;
 System.out.println(" Those people know " + totalFriends + " people.");
 totalFriends = totalFriends * yourFriends;
 System.out.println(" And they know " + totalFriends + " people.");

 return;
 }
}

96

97

98

99

??

??

yourFriends
totalFriends

Enter the number of people you know: 200

200You know 200 people.
Those people know 40000 people.

8000000And they know 8000000 people.

Start

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 12 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Participation
ActivityP 2.2.4: Assignment statements with same variable on both sides.

Question Your answer

1
numApples is initially 5. What is numApples after:
 numApples = numApples + 3;

2

numApples is initially 5. What is numFruit after:
 numFruit = numApples;
 numFruit = numFruit + 1;

3
Write a statement ending with - 1 that decreases
variable flyCount's value by 1.

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 13 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Participation
ActivityP 2.2.5: Variable assignments.

Give the final value of z after the statements execute.

Question Your answer

1

w = 1;
y = 2;
z = 4;

x = y + 1;
w = 2 - x;
z = w * y;

2

x = 4;
y = 0;
z = 3;

x = x - 3;
y = y + x;
z = z * y;

3

x = 6;
y = -2;

y = x + x;
w = y * x;
z = w - y;

4

w = -2;
x = -7;
y = -8;

z = x - y;
z = z * w;
z = z / w;

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 14 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Challenge
ActivityC 2.2.1: Enter the output of the variable assignments.

Start

Enter the output of the following program.

public class combinedOutput {
 public static void main (String [] args) {
 int x = 0;
 int y = 6;

 x = 9;

 System.out.print(x + " " + y);

 return;
 }
}

9 6

1 2 3 4 5 6

 Check Next

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 15 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Challenge
ActivityC 2.2.2: Assigning a value.

Write a statement that assigns 3 to hoursLeft.

Run

import java.util.Scanner;

public class AssignmentValue {
 public static void main (String [] args) {
 int hoursLeft = 0;

 /* Your solution goes here */

 System.out.print(hoursLeft);
 System.out.println(" hours left.");

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 16 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Challenge
ActivityC 2.2.3: Assigning a sum.

Write a statement that assigns numNickels + numDimes to numCoins. Ex: 5 nickels and 6 dimes results in 11 coins.

Run

public class AssigningSum {
 public static void main (String [] args) {
 int numCoins = 0;
 int numNickels = 0;
 int numDimes = 0;

 numNickels = 5;
 numDimes = 6;

 /* Your solution goes here */

 System.out.print("There are ");
 System.out.print(numCoins);
 System.out.println(" coins");

 return;
 }
}

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 17 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

(*asgn) We ask instructors to give us leeway to teach the idea of an "assignment statement," rather
than the language's actual "assignment expression," whose use we condone primarily in a simple
statement.

Section 2.3 - Identifiers

A name created by a programmer for an item like a variable or method is called an identifier. An
identifier must be a sequence of letters (a-z, A-Z, _, $) and digits (0-9) and must start with a letter.
Note that "_", called an underscore, and "$", called a dollar sign or currency symbol, are considered
to be letters. A good practice followed by many Java programmers is to not use _ or $ in programmer-
created identifiers.

Challenge
ActivityC 2.2.4: Adding a number to a variable.

Write a statement that increases numPeople by 5. If numPeople is initially 10, then numPeople becomes 15.

Run

import java.util.Scanner;

public class AssigningNumberToVariable {
 public static void main (String [] args) {
 int numPeople = 0;

 numPeople = 10;

 /* Your solution goes here */

 System.out.print("There are ");
 System.out.print(numPeople);
 System.out.println(" people.");

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 18 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

The following are valid identifiers: c, cat, Cat, n1m1, short1, and _hello. Note that cat and Cat are
different identifiers. The following are invalid identifiers: 42c (starts with a digit), hi there (has a
disallowed symbol: space), and cat! (has a disallowed symbol: !).

A reserved word is a word that is part of the language, like int, short, or double. A reserved word is
also known as a keyword. A programmer cannot use a reserved word as an identifier. Many language
editors will automatically color a program's reserved words. A list of reserved words appears at the
end of this section.

Participation
ActivityP 2.3.1: Valid identifiers.

Which are valid identifiers?

Question Your answer

1

numCars Valid

Invalid

2

num_Cars1 Valid

Invalid

3

_numCars Valid

Invalid

4

___numCars Valid

Invalid

5

num cars Valid

Invalid

3rdPlace Valid

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 19 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

6

3rdPlace Valid

Invalid

7

thirdPlace_ Valid

Invalid

8

thirdPlace! Valid

Invalid

9

tall Valid

Invalid

10

short Valid

Invalid

11

very tall Valid

Invalid

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 20 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Identifiers are case sensitive, meaning upper and lower case letters differ. So numCats and NumCats
are different.

While various (crazy-looking) identifiers may be valid, programmers follow identifier naming

conventions (style) defined by their company, team, teacher, etc. Two common conventions for
naming variables are:

Camel case: Lower camel case abuts multiple words, capitalizing each word except
the first, as in numApples or peopleOnBus.

Underscore separated: Words are lowercase and separated by an underscore, as in
num_apples or people_on_bus.

This material uses lower camel case; that style is recommend by the creators of Java in their naming
conventions document. Consistent style makes code easier to read and maintain, especially if multiple
programmers will be maintaining the code.

Programmers should follow the good practice of creating meaningful identifier names that self-
describe an item's purpose. Meaningful names make programs easier to maintain. The following are
fairly meaningful: userAge, houseSquareFeet, and numItemsOnShelves. The following are less
meaningful: age (whose age?), sqft (what's that stand for?), num (almost no info). Good practice
minimizes use of abbreviations in identifiers except for well-known ones like num in numPassengers.
Abbreviations make programs harder to read and can also lead to confusion, such as if a chiropractor
application involves number of messages and number of massages, and one is abbreviated numMsgs
(which is it?).

This material strives to follow another good practice of using two or more words per variable such as
numStudents rather than just students, to provide meaningfulness, to make variables more
recognizable when they appear in writing like in this text or in a comment, and to reduce conflicts with
reserved words or other already-defined identifiers.

While meaningful names are important, very long variable names, such as

Participation
ActivityP 2.3.2: Identifier validator.

Note: Doesn't consider library items.

Try an identifier: Validate

Awaiting your input...

http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-135099.html#367

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 21 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

averageAgeOfUclaGraduateStudent, can make subsequent statements too long and thus hard to
read. Programmers strive to find a balance.

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 22 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Participation
ActivityP 2.3.3: Meaningful identifiers.

Choose the "best" identifier for a variable with the stated purpose, given the above discussion
(including this material's variable naming convention).

Question Your answer

1

The number of students attending UCLA. num

numStdsUcla

numStudentsUcla

numberOfStudentsAttendingUcla

2

The size of an LCD monitor size

sizeLcdMonitor

s

sizeLcdMtr

3

The number of jelly beans in a jar. numberOfJellyBeansInTheJar

JellyBeansInJar

jellyBeansInJar

nmJlyBnsInJr

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 23 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Section 2.4 - Arithmetic expressions (int)
An expression is a combination of items, like variables, literals, and operators, that evaluates to a
value. An example is: 2 * (numItems + 1). If numItems is 4, then the expression evaluates to 2 * (4 + 1)
or 10. A literal is a specific value in code like 2. Expressions occur in variable definitions and in
assignment statements (among other places).

Table 2.3.1: Java reserved words / keywords.

abstract final protected

assert finally public

boolean float return

break for short

byte goto static

case if strictfp

catch implements super

char import switch

class instanceof synchronized

const int this

continue interface throw

default long throws

do native transient

double new try

else package void

enum private volatile

extends

The words "true", "false", and "null" are also reserved, used for literals.

See Wikipedia: Java keywords for a description of each reserved word.

http://en.wikipedia.org/wiki/List_of_Java_keywords

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 24 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Note that an expression can be just a literal, just a variable, or some combination of variables, literals,
and operators.

Commas are not allowed in an integer literal. So 1,333,555 is written as 1333555.

Figure 2.4.1: Example expressions in code.
int numKids = 0; // Expr: 0
numKids = 7; // Expr: 7
numPeople = numKids + numAdults; // Expr: numKids + numAdults
totOffers = jobsCA + (2 * jobsAZ); // Expr: jobsCA + (2 * jobsAZ)
xCoord = yCoord; // Expr: yCoord
xCoord = -yCoord; // Expr: -yCoord

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 25 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

An operator is a symbol for a built-in language calculation like + for addition. Arithmetic operators

built into the language are:

Participation
ActivityP 2.4.1: Expression in statements.

Question Your answer

1

Is the following an expression?
12

Yes

No

2

Is the following an expression?
int eggsInCarton

Yes

No

3

Is the following an expression?
eggsInCarton * 3

Yes

No

4

Is the following an error? An int's maximum value is
2,147,483,647.
numYears = 1,999,999,999;

Yes

No

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 26 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Modulo may be unfamiliar and is discussed further below.

Parentheses may be used, as in: ((userItems + 1) * 2) / totalItems. Brackets [] or braces { } may NOT
be used.

Expressions mostly follow standard arithmetic rules, such as order of evaluation (items in parentheses
first, etc.). One notable difference is that the language does not allow the multiplication shorthand of
abutting a number and variable, as in 5y to represent 5 times y.

Table 2.4.1: Arithmetic operators.

Arithmetic operator Description

+ addition

- subtraction

* multiplication

/ division

% modulo (remainder)

Participation
ActivityP 2.4.2: Capturing behavior with an expressions.

Does the expression correctly capture the intended behavior?

Question Your answer

1

6 plus numItems:

6 + numItems

Yes

No

2

6 times numItems:

6 x numItems

Yes

No

3

totDays divided by 12:

totDays / 12

Yes

No

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 27 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

No

4

5 times i:

5i

Yes

No

5

The negative of userVal:

-userVal

Yes

No

6

itemsA + itemsB, divided by 2:

itemsA + itemsB / 2

Yes

No

7

n factorial

n!

Yes

No

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 28 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

A good practice is to include a single space around operators for readability, as in numItems + 2,
rather than numItems+2. An exception is - used as negative, as in: xCoord = -yCoord. - used as
negative is known as unary minus.

Figure 2.4.2: Expressions examples: Leasing cost.

import java.util.Scanner;

/* Computes the total cost of leasing a car given the down payment,
 monthly rate, and number of months
*/

public class CarLeaseCost {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 int downpayment = 0;
 int paymentPerMonth = 0;
 int numMonths = 0;
 int totalCost = 0; // Computed total cost to be output

 System.out.println("Enter down payment: ");
 downpayment = scnr.nextInt();

 System.out.println("Enter monthly payment: ");
 paymentPerMonth = scnr.nextInt();

 System.out.println("Enter number of months: ");
 numMonths = scnr.nextInt();

 totalCost = downpayment + (paymentPerMonth * numMonths);

 System.out.println("Total cost: " + totalCost);

 return;
 }
}

Enter down payment:
500
Enter monthly payment:
300
Enter number of months:
60
Total cost: 18500

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 29 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

When the / operands are integers, the division operator / performs integer division, throwing away any
remainder. Examples:

24 / 10 is 2.

50 / 50 is 1.

1 / 2 is 0. 2 divides into 1 zero times; remainder of 1 is thrown away.

A common error is to forget that a fraction like (1 / 2) in an expression performs integer division, so the
expression evaluates to 0.

The modulo operator % may be unfamiliar to some readers. The modulo operator evaluates to the
remainder of the division of two integer operands. Examples:

24 % 10 is 4. Reason: 24 / 10 is 2 with remainder 4.

50 % 50 is 0. Reason: 50 / 50 is 1 with remainder 0.

1 % 2 is 1. Reason: 1 / 2 is 0 with remainder 1.

Participation
ActivityP 2.4.3: Single space around operators.

Retype each statement to follow the good practice of a single space around operators.

Question Your answer

1
housesCity = housesBlock *10;

2
x = x1+x2+2;

3
numBalls=numBalls+1;

4
numEntries = (userVal+1)*2;

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 30 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

For integer division, the second operand of / or % must never be 0, because division by 0 is
mathematically undefined. A divide-by-zero error occurs at runtime if a divisor is 0, causing a
program to terminate.

Figure 2.4.3: Division and modulo example: Minutes to hours/minutes.

import java.util.Scanner;

public class TimeConverter {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 int userMinutes = 0; // User input: Minutes
 int outHours = 0; // Output hours
 int outMinutes = 0; // Output minutes (remaining)

 System.out.println("Enter minutes: ");
 userMinutes = scnr.nextInt();

 outHours = userMinutes / 60;
 outMinutes = userMinutes % 60;

 System.out.print(userMinutes + " minutes is ");
 System.out.print(outHours + " hours and ");
 System.out.println(outMinutes + " minutes.");

 return;
 }
}

Enter minutes:
367
367 minutes is 6 hours and 7 minutes.

...

Enter minutes:
180
180 minutes is 3 hours and 0 minutes.

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 31 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Figure 2.4.4: Divide-by-zero example: Compute salary per day.

import java.util.Scanner;

public class DailySalary {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 int salaryPerYear = 0; // User input: Yearly salary
 int daysPerYear = 0; // User input: Days worked per year
 int salaryPerDay = 0; // Output: Salary per day

 System.out.println("Enter yearly salary:");
 salaryPerYear = scnr.nextInt();

 System.out.println("Enter days worked per year:");
 daysPerYear = scnr.nextInt();

 // If daysPerYear is 0, then divide-by-zero causes program termination.
 salaryPerDay = salaryPerYear / daysPerYear;

 System.out.println("Salary per day is: " + salaryPerDay);

 return;
 }
}

Enter yearly salary:
60000
Enter days worked per year:
0
Exception in thread "main" java.lang.ArithmeticException: / by zero
 at DailySalary.main(DailySalary.java:17)

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 32 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

The compiler evaluates an expression's arithmetic operators using the order of standard mathematics,
such order known in programming as precedence rules.

Participation
ActivityP 2.4.4: Integer division and modulo.

Determine the result. Type "Error" if the program would terminate due to divide-by-zero. Only
literals appear in these expressions to focus attention on the operators; most practical expressions
include variables.

Question Your answer

1
 13 / 3

2
 4 / 9

3
 (5 + 10 + 15) * (1 / 3)

4
 50 % 2

5
 51 % 2

6
 78 % 10

7
 596 % 10

8
 100 / (1 / 2)

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 33 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

A common error is to omit parentheses and assume an incorrect order of evaluation, leading to a bug.
For example, if x is 3, 5 * x + 1 might appear to evaluate as 5 * (3+1) or 20, but actually
evaluates as (5 * 3) + 1 or 16 (spacing doesn't matter). Good practice is to use parentheses to
make order of evaluation explicit, rather than relying on precedence rules, as in: y = (m * x) + b, unless
order doesn't matter as in x + y + z.

Table 2.4.2: Precedence rules for arithmetic operators.

Convention Description Explanation

()
Items within
parentheses are
evaluated first

In 2 * (A + 1), A + 1 is computed first, with the
result then multiplied by 2.

unary - - used as a negative
(unary minus) is next

In 2 * -A, -A is computed first, with the result
then multiplied by 2.

* / %
Next to be evaluated
are *, /, and %, having
equal precedence.

+ - Finally come + and -
with equal precedence.

In B = 3 + 2 * A, 2 * A is evaluated first, with
the result then added to 3, because * has higher
precedence than +. Note that spacing doesn't
matter: B = 3+2 * A would still evaluate 2 * A
first.

left-to-
right

If more than one
operator of equal
precedence could be
evaluated, evaluation
occurs left to right.

In B = A * 2 / 3, A * 2 is first evaluated, with
the result then divided by 3.

Figure 2.4.5: Post about parentheses.

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 34 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Participation
ActivityP 2.4.5: Precedence rules.

Select the expression whose parentheses enforce the compiler's evaluation order for the original
expression.

Question Your answer

1

y + 2 * z (y + 2) * z

y + (2 * z)

2

z / 2-x (z / 2) - x

z / (2 - x)

3

x * y * z (x * y) * z

x * (y * z)

4

x + y % 3 (x + y) % 3

x + (y % 3)

5

x + 1 * y / 2 ((x + 1) * y) / 2

x + ((1 * y) / 2)

x+ (1 * (y / 2))

6

x / 2 + y / 2 ((x / 2) + y) / 2

(x / 2) + (y / 2)

What is totCount after executing the following? 44

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 35 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

The above question set helps make clear why using parentheses to make order of evaluation explicit
is good practice. (It also intentionally violated spacing guidelines to help make the point).

Special operators called compound operators provide a shorthand way to update a variable, such
as userAge += 1 being shorthand for userAge = userAge + 1. Other compound operators include -=,
*=, /=, and %=.

7

What is totCount after executing the following?
numItems = 5;
totCount = 1 + (2 * numItems) * 4;

44

41

Participation
ActivityP 2.4.6: Compound operators.

If appropriate, type: Not possible

Question Your answer

1
numAtoms is initially 7. What is numAtoms after:
numAtoms += 5?

2
numAtoms is initially 7. What is numAtoms after:
numAtoms *= 2?

3
Rewrite the statement using a compound operator:
carCount = carCount / 2;

4
Rewrite the statement using a compound operator:
numItems = boxCount + 1;

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 36 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Challenge
ActivityC 2.4.1: Enter the output of the integer expressions.

Start

Enter the output of the following program.

public class combinedOutput {
 public static void main (String [] args) {
 int x = 2;
 int y = 0;

 y = 3 * (x + 8);

 System.out.print(x + " " + y);

 return;
 }
}

2 30

1 2 3 4 5

 Check Next

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 37 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Challenge
ActivityC 2.4.2: Compute an expression.

Write a statement that computes num1 plus num2, divides by 3, and assigns the result to finalResult. Ex: If num1 is 4 and num2 is 5, final
result is 3.

Run

import java.util.Scanner;

public class ComputingFinalResult {
 public static void main (String [] args) {
 int num1 = 0;
 int num2 = 0;
 int finalResult = 0;

 num1 = 4;
 num2 = 5;

 /* Your solution goes here */

 System.out.print("Final result: ");
 System.out.println(finalResult);

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 38 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Challenge
ActivityC 2.4.3: Compute change.

A cashier distributes change using the maximum number of five dollar bills, followed by one dollar bills. For example, 19 yields 3 fives and
4 ones. Write a single statement that assigns the number of one dollar bills to variable numOnes, given amountToChange. Hint: Use the %
operator.

Run

public class ComputingChange {
 public static void main (String [] args) {
 int amountToChange = 0;
 int numFives = 0;
 int numOnes = 0;

 amountToChange = 19;
 numFives = amountToChange / 5;

 /* Your solution goes here */

 System.out.print("numFives: ");
 System.out.println(numFives);
 System.out.print("numOnes: ");
 System.out.println(numOnes);

 return;
 }
}

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 39 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Section 2.5 - Floating-point numbers (double)
A variable is sometimes needed to store a floating-point number like -1.05 or 0.001. A variable defined
as type double stores a floating-point number.

A floating-point literal is a number with a fractional part, even if that fraction is 0, as in 1.0, 0.0, or

Challenge
ActivityC 2.4.4: Total cost.

A drink costs 2 dollars. A taco costs 3 dollars. Given the number of each, compute total cost and assign to totalCost. Ex: 4 drinks and 6
tacos yields totalCost of 26.

Run

Construct 2.5.1: Floating-point variable definition with initial value of 0.0.
double variableName = 0.0; // Initial value is optional but recommended.

import java.util.Scanner;

public class ComputingTotalCost {
 public static void main (String [] args) {
 int numDrinks = 0;
 int numTacos = 0;
 int totalCost = 0;

 numDrinks = 4;
 numTacos = 6;

 /* Your solution goes here */

 System.out.print("Total cost: ");
 System.out.println(totalCost);

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 40 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

99.573. Good practice is to always have a digit before the decimal point, as in 0.5, since .5 might
mistakenly be viewed as 5..

Note that reading a floating-point value from input uses nextDouble(), in contrast to using nextInt() to
read an integer.

Figure 2.5.1: Variables of type double: Travel time example.

import java.util.Scanner;

public class TravelTime {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 double milesTravel = 0.0; // User input of miles to travel
 double hoursFly = 0.0; // Travel hours if flying those miles
 double hoursDrive = 0.0; // Travel hours if driving those miles

 System.out.print("Enter a distance in miles:\n");
 milesTravel = scnr.nextDouble();

 hoursFly = milesTravel / 500.0;
 hoursDrive = milesTravel / 60.0;

 System.out.println(milesTravel + " miles would take:");
 System.out.println(hoursFly + " hours to fly,");
 System.out.println(hoursDrive + " hours to drive.");

 return;
 }
}

Enter a distance in miles:
1800
1800.0 miles would take:
3.6 hours to fly,
30.0 hours to drive.

...

Enter a distance in miles:
400.5
400.5 miles would take:
0.801 hours to fly,
6.675 hours to drive.

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 41 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Participation
ActivityP 2.5.1: Defining and assigning double variables.

All variables are of type double and already-defined unless otherwise noted.

Question Your answer

1
Define a double variable named personHeight and
initialize to 0.0.

2

Compute ballHeight divided by 2.0 and assign the
result to ballRadius. Do not use the fraction 1.0 /
2.0; instead, divide ballHeight directly by 2.0.

3

Multiply ballHeight by the fraction one half, namely
(1.0 / 2.0), and assign the result to ballRadius. Use
the parentheses around the fraction.

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 42 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Scientific notation is useful for representing floating-point numbers that are much greater than or much
less than 0, such as 6.02x10 . A floating-point literal using scientific notation is written using an e
preceding the power-of-10 exponent, as in 6.02e23 to represent 6.02x10 . The e stands for
exponent. Likewise, 0.001 is 1x10 so 0.001 can be written as 1.0e-3. For a floating-point literal,
good practice is to make the leading digit non-zero.

Participation
ActivityP 2.5.2: Floating-point literals.

Question Your answer

1

Which statement best defines and initializes the double
variable?

double currHumidity =
99%;

double currHumidity =
99.0;

double currHumidity =
99;

2

Which statement best assigns to the variable? Both variables
are of type double.

cityRainfall =
measuredRain - 5;

cityRainfall =
measuredRain - 5.0;

3

Which statement best assigns to the variable? cityRainfall is
of type double.

cityRainfall = .97;

cityRainfall = 0.97;

23
23

-3

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 43 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

In general, a floating-point variable should be used to represent a quantity that is measured, such as a
distance, temperature, volume, weight, etc., whereas an integer variable should be used to represent
a quantity that is counted, such as a number of cars, students, cities, minutes, etc. Floating-point is
also used when dealing with fractions of countable items, such as the average number of cars per
household. Note: Some programmers warn against using floating-point for money, as in 14.53
representing 14 dollars and 53 cents, because money is a countable item (reasons are discussed
further in another section). int may be used to represent cents, or to represent dollars when cents are
not included as for an annual salary (e.g., 40000 dollars, which are countable).

Participation
ActivityP 2.5.3: Scientific notation.

Question Your answer

1

Type 1.0e-4 as a floating-point literal but not using
scientific notation, with a single digit before and four
digits after the decimal point.

2

Type 7.2e-4 as a floating-point literal but not using
scientific notation, with a single digit before and five
digits after the decimal point.

3

Type 540,000,000 as a floating-point literal using
scientific notation with a single digit before and after
the decimal point.

4

Type 0.000001 as a floating-point literal using
scientific notation with a single digit before and after
the decimal point.

5

Type 623.596 as a floating-point literal using
scientific notation with a single digit before and five
digits after the decimal point.

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 44 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

A floating-point divide-by-zero occurs at runtime if a divisor is 0.0. Dividing by zero results in inf or -
inf depending on the signs of the operands.

Participation
ActivityP 2.5.4: Floating-point versus integer.

Choose the right type for a variable to represent each item.

Question Your answer

1

The number of cars in a parking lot. double

int

2

The current temperature in Celsius. double

int

3

A person's height in centimeters. double

int

4

The number of hairs on a person's head. double

int

5

The average number of kids per household. double

int

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 45 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Participation
ActivityP 2.5.5: Floating-point division.

Determine the result.

Question Your answer

1

13.0 / 3.0 4

4.333333

Positive infinity

2

0.0 / 5.0 0.0

Positive infinity

Negative infinity

3

12.0 / 0.0 12.0

Positive infinity

Negative infinity

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 46 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Challenge
ActivityC 2.5.1: Sphere volume.

Given sphereRadius and piVal, compute the volume of a sphere and assign to sphereVolume. Use (4.0 / 3.0) to perform floating-point
division, instead of (4 / 3) which performs integer division.

Volume of sphere = (4.0 / 3.0) π r

Run

3

public class SphereVolumeCalculator {
 public static void main (String [] args) {
 final double piVal = 3.14159;
 double sphereVolume = 0.0;
 double sphereRadius = 0.0;

 sphereRadius = 1.0;

 /* Your solution goes here */

 System.out.println("Sphere volume: " + sphereVolume);
 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 47 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Section 2.6 - Constant variables
A good practice is to minimize the use of literal numbers in code. One reason is to improve code
readability. newPrice = origPrice - 5 is less clear than newPrice = origPrice - priceDiscount. When a
variable represents a literal, the variable's value should not be changed in the code. If the programmer
precedes the variable definition with the keyword final, then the compiler will report an error if a later
statement tries to change that variable's value. An initialized variable whose value cannot change is
called a constant variable. A constant variable is also known as a final variable. A common
convention, or good practice, is to name constant variables using upper case letters with words
separated by underscores, to make constant variables clearly visible in code.

Challenge
ActivityC 2.5.2: Acceleration of gravity.

Compute the acceleration of gravity for a given distance from the earth's center, distCenter, assigning the result to accelGravity.
expression for the acceleration of gravity is: (G * M) / (d), where G is the gravitational constant 6.673 x 10
5.98 x 10 (in kg) and d is the distance in meters from the earth's center (stored in variable distCenter).

Run

2

24

public class GravityCalculation {
 public static void main (String [] args) {
 final double G = 6.673e-11;
 final double M = 5.98e24;
 double accelGravity = 0.0;
 double distCenter = 0.0;

 distCenter = 6.38e6;

 /* Your solution goes here */

 System.out.println("accelGravity: " + accelGravity);
 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 48 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Figure 2.6.1: Final variable example: Lightning distance.

import java.util.Scanner;

// Estimates distance of lightning based on seconds
// between lightning and thunder

public class LightningDist {
 public static void main (String[] args) {
 Scanner scnr = new Scanner(System.in);
 final double SPEED_OF_SOUND = 761.207; // Miles/hour (sea level)
 final double SECONDS_PER_HOUR = 3600.0; // Secs/hour
 double secondsBetween = 0.0;
 double timeInHours = 0.0;
 double distInMiles = 0.0;

 System.out.println("Enter seconds between");
 System.out.println("lightning strike and thunder:");
 secondsBetween = scnr.nextDouble();

 timeInHours = secondsBetween / SECONDS_PER_HOUR;
 distInMiles = SPEED_OF_SOUND * timeInHours;

 System.out.println("Lightning strike was approximately");
 System.out.println(distInMiles + " miles away.");

 return;
 }
}

Enter seconds between
lightning strike and thunder:
7
Lightning strike was approximately
1.4801247222222222 miles away.

...

Enter seconds between
lightning strike and thunder:
1
Lightning strike was approximately
0.2114463888888889 miles away.

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 49 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Participation
ActivityP 2.6.1: Constant variables.

Which of the following statements are valid definitions and uses of a constant integer variable
named STEP_SIZE?

Question Your answer

1

int STEP_SIZE = 5; True

False

2

final int STEP_SIZE = 14; True

False

3

totalStepHeight = numSteps * STEP_SIZE; True

False

4

STEP_SIZE = STEP_SIZE + 1; True

False

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 50 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Section 2.7 - Using math methods
Some programs require math operations beyond basic operations like + and *, such as computing a
square root or raising a number to a power. Thus, Java comes with a standard Math class that has
about 30 math operations available, listed later in this section. As shown below, the programmer first
imports the class at the top of a file (highlighted yellow), and then can use math operations (highlighted
orange).

Challenge
ActivityC 2.6.1: Using constants in expressions.

Assign shipCostCents with the cost of shipping a package weighing shipWeightPounds. The cost to ship a package is a flat fee of 75
cents plus 25 cents per pound. Declare and use a final int named CENTS_PER_POUND.

Run

import java.util.Scanner;

public class ShippingCalculator {
 public static void main (String [] args) {
 int shipWeightPounds = 10;
 int shipCostCents = 0;
 final int FLAT_FEE_CENTS = 75;

 /* Your solution goes here */

 System.out.print("Weight(lb): " + shipWeightPounds);
 System.out.print(", Flat fee(cents): " + FLAT_FEE_CENTS);
 System.out.print(", Cents per pound: " + CENTS_PER_POUND);
 System.out.println(", Shipping cost(cents): " + shipCostCents);

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 51 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

sqrt is a method. A method is a list of statements that can be executed by referring to the method's
name. An input value to a method appears between parentheses and is known as an argument,
such as areaSquare above. The method executes and returns a new value. In the example above,
Math.sqrt(areaSquare) returns 7.0, which is assigned to sideSquare. Invoking a method is a method

call.

Some methods have multiple arguments. For example, Math.pow(b, e) returns the value of b .

Figure 2.7.1: Using a math method from the math class.
import java.lang.Math;

...

double sideSquare = 0.0;
double areaSquare = 49.0;

sideSquare = Math.sqrt(areaSquare);

e

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 52 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Figure 2.7.2: Math method example: Mass growth.
import java.util.Scanner;
import java.lang.Math;

public class MassGrowth {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 double initMass = 0.0; // Initial mass of a substance
 double growthRate = 0.0; // Annual growth rate
 double yearsGrow = 0.0; // Years of growth
 double finalMass = 0.0; // Final mass after those years

 System.out.print("Enter initial mass: ");
 initMass = scnr.nextDouble();

 System.out.print("Enter growth rate (Ex: 0.05 is 5%/year): ");
 growthRate = scnr.nextDouble();

 System.out.print("Enter years of growth: ");
 yearsGrow = scnr.nextDouble();

 finalMass = initMass * Math.pow(1.0 + growthRate, yearsGrow);
 // Ex: Rate of 0.05 yields initMass * 1.05^yearsGrow

 System.out.print(" Final mass after ");
 System.out.print(yearsGrow);
 System.out.print(" years is: ");
 System.out.println(finalMass);

 return;
 }
}

Enter initial mass: 10000
Enter growth rate (Ex: 0.05 is 5%/year): 0.06
Enter years of growth: 20
 Final mass after 20.0 years is: 32071.35472212848

...

Enter initial mass: 10000
Enter growth rate (Ex: 0.05 is 5%/year): 0.4
Enter years of growth: 10
 Final mass after 10.0 years is: 289254.6549759998

Participation
ActivityP 2.7.1: Calculate Pythagorean theorem.

Select the three statements that calculate the value of x in the following:
x = square-root-of(y + z)

(Note: Calculate y before z for this exercise.)

2 2

2 2

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 53 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

(Note: Calculate y before z for this exercise.)

Question Your answer

1

First statement is: temp1 = Math.pow(x ,
2.0);

temp1 = Math.pow(z ,
3.0);

temp1 = Math.pow(y ,
2.0);

temp1 = Math.sqrt(y);

2

Second statement is: temp2 = Math.sqrt(x ,
2.0);

temp2 = Math.pow(z ,
2.0);

temp2 = Math.pow(z);

temp2 = x +
Math.sqrt(temp1 +
temp2);

3

Third statement is: temp2 =
Math.sqrt(temp1 +
temp2);

x = Math.pow(temp1 +
temp2, 2.0);

x = Math.sqrt(temp1)
+ temp2;

x = Math.sqrt(temp1 +
temp2);

2 2

Table 2.7.1: Some methods in the Java math class.

Function Description Function Description

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 54 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

See http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html for details.

pow Raise to power cos Cosine

sqrt Square root sin Sine

cbrt Cube root tan Tangent

exp Exponential function acos Arc cosine

log Natural logarithm asin Arc sine

log10 Common logarithm atan Arc tangent

log1p
Natural logarithm of
value plus 1 atan2

Arc tangent with two
parameters

cosh Hyperbolic cosine

abs Absolute value sinh Hyperbolic sine

ceil Round up value tanh Hyperbolic tangent

floor Round down value

round
Round to nearest
integer copySign

Copy sign from one
value to another

max Maximum of two values getExponent
Returns exponent of
floating-point value

min Minimum of two values IEEERemainder
Remainder of floating-
point division

nextAfter
Next larger (or smaller)
floating-point value

random
Generates random
value between 0.0 and
1.0

nextUp
Next larger floating-
point value

rint
Rounds floating-point
value to closest integer

toDegrees
Converts radians to
degrees scalb

Scales a value by a
factor of two

toRadians
Converts degrees to
radians signum Sign of value

ulp
Difference between
floating-point value and
next larger value

http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 55 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Participation
ActivityP 2.7.2: Variable assignments with math functions.

Determine the final value of z for the following code segments. All variables are of type double.
Answer in the form 4.0.

Question Your answer

1

y = 2.3;
z = 3.5;
z = Math.ceil(y);

2

y = 2.3;
z = 3.5;
z = Math.floor(z);

3

y = 3.7;
z = 4.5;
z = Math.pow(Math.floor(z), 2.0);

4
z = 15.75;
z = Math.sqrt(Math.ceil(z));

5
z = Math.abs(-1.8);

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 56 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Challenge
ActivityC 2.7.1: Coordinate geometry.

Determine the distance between point (x1, y1) and point (x2, y2), and assign the result to pointsDistance.
Distance = SquareRootOf((x2 - x1) + (y2 - y1))
You may declare additional variables.
Ex: For points (1.0, 2.0) and (1.0, 5.0), pointsDistance is 3.0.

Run

2 2

import java.util.Scanner;
import java.lang.Math;

public class CoordinateGeometry {
 public static void main(String [] args) {
 double x1 = 1.0;
 double y1 = 2.0;
 double x2 = 1.0;
 double y2 = 5.0;
 double pointsDistance = 0.0;

 /* Your solution goes here */

 System.out.print("Points distance: ");
 System.out.println(pointsDistance);

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 57 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Section 2.8 - Type conversions
A calculation sometimes must mix integer and floating-point numbers. For example, given that about
50.4% of human births are males, then 0.504 * numBirths calculates the number of expected
males in numBirths births. If numBirths is an int variable (int because the number of births is
countable), then the expression combines a floating-point and integer.

A type conversion is a conversion of one data type to another, such as an int to a double. The
compiler automatically performs several common conversions between int and double types, such
automatic conversion known as implicit conversion.

For an arithmetic operator like + or *, if either operand is a double, the other is
automatically converted to double, and then a floating-point operation is performed.

Challenge
ActivityC 2.7.2: Tree Height.

Simple geometry can compute the height of an object from the object's shadow length and shadow angle using the formula:
tan(angleElevation) = treeHeight / shadowLength. Given the shadow length and angle of elevation, compute the tree height.

Run

import java.lang.Math;

public class TreeHeight {
 public static void main(String [] args) {
 double treeHeight = 0.0;
 double shadowLength = 0.0;
 double angleElevation = 0.0;

 angleElevation = 0.11693706; // 0.11693706 radians = 6.7 degrees
 shadowLength = 17.5;

 /* Your solution goes here */

 System.out.print("Tree height: ");
 System.out.println(treeHeight);

 return;
 }
}

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 58 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

For assignment =, the right side type is converted to the left side type if the
conversion is possible without loss of precision.

int-to-double conversion is straightforward: 25 becomes 25.0.

double-to-int conversion may lose precision, so is not automatic.

Consider the expression 0.504 * numBirths, where numBirths is an int variable. If numBirths is
316, the compiler sees "double * int" so automatically converts 316 to 316.0, then computes 0.504 *
316.0 yielding 159.264.

Because of implicit conversion, statements like double someDoubleVar = 0; or
someDoubleVar = 5; are allowed, but discouraged. Using 0.0 or 5.0 is preferable.

Sometimes a programmers needs to explicitly convert an item's type. The following code undesirably
performs integer division rather than floating-point division.

Participation
ActivityP 2.8.1: Implicit conversions among double and int.

Type the value of the given expression, given int numItems = 5, and double itemWeight = 0.5. For
any floating-point answer, give answer to tenths, e.g., 8.0, 6.5, or 0.1.

Question Your answer

1
3.0 / 1.5

2
3.0 / 2

3
(numItems + 10) / 2

4
(numItems + 10) / 2.0

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 59 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

A common error is to accidentally perform integer division when floating-point division was intended.

A programmer can precede an expression with (type)expression to convert the expression's value to
the indicated type. For example, if myIntVar is 7, then (double)myIntVar converts int 7 to double
7.0. The following converts the numerator and denominator each to double to obtain floating-point
division (actually, converting only one would have worked).

Such explicit conversion by the programmer of one type to another is known as type casting.

Figure 2.8.1: Code that undesirably performs integer division.

import java.util.Scanner;

public class KidsPerFamilyBad {
 public static void main (String [] args) {
 int kidsInFamily1 = 3; // Should be int, not double
 int kidsInFamily2 = 4; // (know anyone with 2.3 kids?)
 int numFamilies = 2; // Should be int, not double

 double avgKidsPerFamily = 0.0; // Expect fraction, so double

 avgKidsPerFamily = (kidsInFamily1 + kidsInFamily2) / numFamilies;

 // Should be 3.5, but is 3 instead
 System.out.println("Average kids per family: " + avgKidsPerFamily);

 return;
 }
}

Average kids per family: 3.0

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 60 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

A common error is to cast the entire result of integer division, rather than the operands, thus not
obtaining the desired floating-point division. For example, (double)((5 + 10) / 2) yields 7.0
(integer division yields 7, then converted to 7.0) rather than 7.5.

A common type cast converts a double to an int. Ex: myInt = (int)myDouble. The fractional part is
truncated. Ex: 9.5 becomes 9.

Figure 2.8.2: Using type casting to obtain floating-point division.

import java.util.Scanner;

public class KidsPerFamily {
 public static void main (String [] args) {
 int kidsInFamily1 = 3; // Should be int, not double
 int kidsInFamily2 = 4; // (know anyone with 2.3 kids?)
 int numFamilies = 2; // Should be int, not double

 double avgKidsPerFamily = 0.0; // Expect fraction, so double

 avgKidsPerFamily = (double)(kidsInFamily1 + kidsInFamily2)
 / (double)numFamilies;

 System.out.println("Average kids per family: " + avgKidsPerFamily);

 return;
 }
}

Average kids per family: 3.5

Participation
ActivityP 2.8.2: Type casting.

Question Your answer

1

Which yields 2.5? (int)(10) / (int)(4)

(double)(10) / (double)
(4)

(double)(10 / 4)

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 61 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Section 2.9 - Binary
Normally, a programmer can think in terms of base ten numbers. However, a compiler must allocate
some finite quantity of bits (e.g., 32 bits) for a variable, and that quantity of bits limits the range of
numbers that the variable can represent. Thus, some background on how the quantity of bits
influences a variable's number range is helpful.

Because each memory location is composed of bits (0s and 1s), a processor stores a number using
base 2, known as a binary number.

For a number in the more familiar base 10, known as a decimal number, each digit must be 0-9 and
each digit's place is weighed by increasing powers of 10.

Challenge
ActivityC 2.8.1: Type casting: Computing average kids per family

Compute the average kids per family. Note that the integers should be type cast to doubles.

Run

import java.util.Scanner;

public class TypeCasting {
 public static void main (String [] args) {
 int numKidsA = 1;
 int numKidsB = 4;
 int numKidsC = 5;
 int numFamilies = 3;
 double avgKids = 0.0;

 /* Your solution goes here */

 System.out.print("Average kids per family: ");
 System.out.println(avgKids);

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 62 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

In base 2, each digit must be 0-1 and each digit's place is weighed by increasing powers of 2.

The compiler translates decimal numbers into binary numbers before storing the number into a
memory location. The compiler would convert the decimal number 212 to the binary number
11010100, meaning 1*128 + 1*64 + 0*32 + 1*16 + 0*8 + 1*4 + 0*2 + 0*1 = 212, and then store that
binary number in memory.

Table 2.9.1: Decimal numbers use weighed powers of 10.

Decimal number with 3 digits Representation

212
2*10 + 1*10 + 2*10 =
2*100 + 1*10 + 2*1 =
200 + 10 + 2 =
212

2 1 0

Table 2.9.2: Binary numbers use weighed powers of 2.

Binary number with 4 bits Representation

1101
1*2 + 1*2 + 0*2 + 1*2 =
1*8 + 1*4 + 0*2 + 1*1 =
8 + 4 + 0 + 1 =
13

3 2 1 0

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 63 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Participation
ActivityP 2.9.1: Understanding binary numbers.

Set each binary digit for the unsigned binary number below to 1 or 0 to obtain the decimal
equivalents of 9, then 50, then 212, then 255. Note also that 255 is the largest integer that the 8
bits can represent.

0 0 0 0 0 0 0 0 0 (decimal value)

128 64 32 16 8 4 2 1
2 2 2 2 2 2 2 27 6 5 4 3 2 1 0

Participation
ActivityP 2.9.2: Binary numbers.

Question Your answer

1
Convert the binary number 00001111 to a decimal
number.

2
Convert the binary number 10001000 to a decimal
number.

3
Convert the decimal number 17 to an 8-bit binary
number.

4
Convert the decimal number 51 to an 8-bit binary
number.

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 64 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Section 2.10 - Characters
A variable of char type can store a single character, like the letter m or the symbol %. A character

literal is surrounded with single quotes, as in 'm' or '%'.

Printing a single character variable is achieved by providing the variable name to as input
System.out.print() or System.out.println(), as in System.out.println(arrowHead);. To print
multiple character variables using a single print statement, the input should start with "" + and each
character variable should be separated by a +. For example, the second print statement in the above
example prints "--->". The "" part of the statement ensures the input to println() is a string. Otherwise,
the Java compiler will add the characters' values together and print the resulting value.

A common error is to use double quotes rather than single quotes around a character literal, as in
myChar = "x", yielding a compiler error. Similarly, a common error is to forget the quotes around a
character literal, as in myChar = x, usually yielding a compiler error.

Figure 2.10.1: Simple char example: Arrow.

public class CharArrow {
 public static void main (String [] args) {
 char arrowBody = '-';
 char arrowHead = '>';

 System.out.println(arrowHead);
 System.out.println("" + arrowBody + arrowBody + arrowBody + arrowHead);

 arrowBody = 'o';

 System.out.println("" + arrowBody + arrowBody + arrowBody + arrowHead);

 return;
 }
}

>
--->
ooo>

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 65 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Under the hood, a char variable stores a number. For example, the letter m is stored as 109. A table
showing the standard number used for common characters appears at this section's end. Though
stored as a number, the compiler knows to output a char type as the corresponding character.

Participation
ActivityP 2.10.1: char data type.

Question Your answer

1
In one statement, define a variable named userKey
of type char and initialize to the letter a.

Participation
ActivityP 2.10.2: char variables.

Modify the program to use a char variable alertSym for the ! symbols surrounding the word
WARNING, and test. Then, modify further to have the user input that symbol.

*
public class CharWarn{
 public static void main (String [] args) {
 char sepSym = '-';

 System.out.print("!WARNING!");
 System.out.print(" " + sepSym + sepSym + " ");
 System.out.print("!WARNING!");
 System.out.println("");

 return;
 }
}

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 66 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

ASCII is an early standard for encoding characters as numbers. The following table shows the ASCII
encoding as a decimal number (Dec) for common printable characters (for readers who have studied
binary numbers, the table shows the binary encoding also). Other characters such as control
characters (e.g., a "line feed" character) or extended characters (e.g., the letter "n" with a tilde above it
as used in Spanish) are not shown. Sources: Wikipedia: ASCII, http://www.asciitable.com/.

Many earlier programming languages like C or C++ use ASCII. Java uses a more recent standard
called Unicode. ASCII can represent 255 items, whereas Unicode can represent over 64,000 items;
Unicode can represent characters from many different human languages, many symbols, and more.
(For those who have studied binary: ASCII uses 8 bits, while Unicode uses 16, hence the 255 versus
64,000). Unicode's first several hundred items are the same as ASCII.The Unicode encoding for these
characters has 0s on the left to yield 16 bits.

P Participation
Activity

2.10.3: Under the hood, a
char variable stores a
number.

P Participation
Activity

2.10.4: Character encodings.

Type a character: A ASCII number: 65

Table 2.10.1: Character encodings as numbers in the ASCII standard.

nose = 'a'; nose75
76

a 97

- - - - - - - - - - - - -

Start

http://en.wikipedia.org/wiki/ASCII
http://www.asciitable.com/

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 67 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Table 2.10.1: Character encodings as numbers in the ASCII standard.

Binary Dec Char

010 0000 32 space

010 0001 33 !

010 0010 34 "

010 0011 35 #

010 0100 36 $

010 0101 37 %

010 0110 38 &

010 0111 39 '

010 1000 40 (

010 1001 41)

010 1010 42 *

010 1011 43 +

010 1100 44 ,

010 1101 45 -

010 1110 46 .

010 1111 47 /

011 0000 48 0

011 0001 49 1

011 0010 50 2

011 0011 51 3

011 0100 52 4

011 0101 53 5

011 0110 54 6

011 0111 55 7

011 1000 56 8

011 1001 57 9

011 1010 58 :

011 1011 59 ;

Binary Dec Char

100 0000 64 @

100 0001 65 A

100 0010 66 B

100 0011 67 C

100 0100 68 D

100 0101 69 E

100 0110 70 F

100 0111 71 G

100 1000 72 H

100 1001 73 I

100 1010 74 J

100 1011 75 K

100 1100 76 L

100 1101 77 M

100 1110 78 N

100 1111 79 O

101 0000 80 P

101 0001 81 Q

101 0010 82 R

101 0011 83 S

101 0100 84 T

101 0101 85 U

101 0110 86 V

101 0111 87 W

101 1000 88 X

101 1001 89 Y

101 1010 90 Z

101 1011 91 [

Binary Dec Char

110 0000 96 `

110 0001 97 a

110 0010 98 b

110 0011 99 c

110 0100 100 d

110 0101 101 e

110 0110 102 f

110 0111 103 g

110 1000 104 h

110 1001 105 i

110 1010 106 j

110 1011 107 k

110 1100 108 l

110 1101 109 m

110 1110 110 n

110 1111 111 o

111 0000 112 p

111 0001 113 q

111 0010 114 r

111 0011 115 s

111 0100 116 t

111 0101 117 u

111 0110 118 v

111 0111 119 w

111 1000 120 x

111 1001 121 y

111 1010 122 z

111 1011 123 {

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 68 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

In addition to visible characters like Z, $, or 5, the encoding includes numbers for several special
characters. Ex: A newline character is encoded as 10. Because no visible character exists for a
newline, the language uses an escape sequence. An escape sequence is a two-character sequence
starting with \ that represents a special character. Ex: '\n' represents a newline character. Escape
sequences also enable representing characters like ', ", or \. Ex: myChar = '\'' assigns myChar with a
single-quote character. myChar = '\\' assigns myChar with \ (just '\' would yield a compiler error, since
\' is the escape sequence for ', and then a closing ' is missing).

011 1011 59 ;

011 1100 60 <

011 1101 61 =

011 1110 62 >

011 1111 63 ?

101 1011 91 [

101 1100 92 \

101 1101 93]

101 1110 94 ^

101 1111 95 _

111 1011 123 {

111 1100 124 |

111 1101 125 }

111 1110 126 ~

Table 2.10.2: Common escape sequences.

Escape sequence Char

\n newline

\t tab

\' single quote

\" double quote

\\ backslash

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 69 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Participation
ActivityP 2.10.5: Character encoding.

Question Your answer

1

The statement char keyPressed = 'R' stores
what decimal number in the memory location for
keyPressed?

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 70 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Section 2.11 - String basics
Some variables should store a sequence of characters like the name Julia. A sequence of characters
is called a string. A string literal uses double quotes as in "Julia". Various characters may be included,
such as letters, numbers, spaces, symbols like $, etc., as in "Hello ... Julia!!".

Challenge
ActivityC 2.10.1: Printing a message with ints and chars.

Print a message telling a user to press the letterToQuit key numPresses times to quit. End with newline.
numPresses = 2, print:

Press the q key 2 times to quit.

Run

import java.util.Scanner;

public class QuitScreen {
 public static void main (String [] args) {
 char letterToQuit = '?';
 int numPresses = 0;

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 71 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

A programmer defines a string variable similarly to defining char, int, or double variables, but using the
String data type. Note the capital S.

P Participation
Activity

2.11.1: A string is stored as a sequence of characters in
memory.

Type a string below to see how a string is stored as a sequence of characters in memory (in this
case, the string happens to be allocated to memory locations 501 to 506).

Type a string (up to 6 characters): Julia

Memory
501 J

502 u

503 l

504 i

505 a

506

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 72 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Note that scnr.next() is used to get the next string from input, versus scnr.nextInt() to get the next
integer.

Figure 2.11.1: Strings example: Word game.

import java.util.Scanner;

/* A game inspired by "Mad Libs" where user enters nouns,
 verbs, etc., and then a story using those words is output.
*/

public class StoryGame {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 String wordRelative = "";
 String wordFood = "";
 String wordAdjective = "";
 String wordTimePeriod = "";

 // Get user's words
 System.out.println("Provide input without spaces.");

 System.out.println("Enter a kind of relative: ");
 wordRelative = scnr.next();

 System.out.println("Enter a kind of food: ");
 wordFood = scnr.next();

 System.out.println("Enter an adjective: ");
 wordAdjective = scnr.next();

 System.out.println("Enter a time period: ");
 wordTimePeriod = scnr.next();

 // Tell the story
 System.out.println();
 System.out.print ("My " + wordRelative);
 System.out.println(" says eating " + wordFood);
 System.out.println("will make me more " + wordAdjective + ",");
 System.out.println("so now I eat it every " + wordTimePeriod + ".");

 return;
 }
}

Provide input without spaces.
Enter a kind of relative:
mother
Enter a kind of food:
apples
Enter an adjective:
loud
Enter a time period:
week

My mother says eating apples
will make me more loud,
so now I eat it every week.

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 73 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

A programmer can initialize a string variable during definition, as in
String firstMonth = "January";.

scnr.next() gets the next input string only up to the next input space, tab, or newline. So following the
user typing Betty Sue(ENTER), scnr.next() will only store Betty in stringVar. Sue will be the next
input string. In contrast, the method scnr.nextLine() reads all user text on the input line, up to the
newline character resulting from the user pressing ENTER, into stringVar.

Participation
ActivityP 2.11.2: Strings.

Question Your answer

1
Define a string named firstName. Don't initialize the
string.

2
Print a string named firstName, using println.

3
Read an input string from scnr into firstName.

Participation
ActivityP 2.11.3: String initialization.

Question Your answer

1
Define a string named smallestPlanet, initialized to
"Mercury", using the above syntax.

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 74 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

(An interesting poem about Sue McKay on YouTube (4 min)).

Figure 2.11.2: Reading an input string containing spaces using nextLine.

import java.util.Scanner;

public class NameWelcome {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 String firstName = "";
 String lastName = "";

 System.out.println("Enter first name: ");
 firstName = scnr.nextLine(); // Gets enter line up to ENTER

 System.out.println("Enter last name: ");
 lastName = scnr.nextLine(); // Gets enter line up to ENTER

 System.out.println();
 System.out.println("Welcome " + firstName + " " + lastName + "!");
 System.out.println("May I call you " + firstName + "?");

 return;
 }
}

Enter first name:
Betty Sue
Enter last name:
McKay

Welcome Betty Sue McKay!
May I call you Betty Sue?

http://www.youtube.com/watch?v=WxjZB5S_g7s

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 75 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Participation
ActivityP 2.11.4: Input string with spaces.

(ENTER) means the user presses the enter/return key. scnr is already defined.

Question Your answer

1

Asked to enter a fruit name, the user types:

Fuji Apple (ENTER).

What does fruitName = scnr.next() store in
fruitName?

2

Given:

System.out.println("Enter fruit name:");
fruitName = scnr.next();
System.out.println("Enter fruit color:");
fruitColor = scnr.next();

The user will type Fuji Apple (ENTER) for the fruit
name and red (ENTER) for the fruit color. What is
stored in fruitColor?

3
Using scnr, type a statement that reads an entire
user-entered line of text into string userStr.

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 76 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

A String variable is a reference type (discussed in depth elsewhere) variable that refers to a String
object. An object consists of some internal data items plus operations that can be performed on that
data. Ex: String movieTitle = "Frozen"; defines a String reference variable named
movieTitle that refers to a String object. That String object stores the string "Frozen".

A programmer can assign a new literal to a String variable, which creates a new String object. Ex:
movieTitle = "The Martian"; creates a new String object with the string "The Martian", and
assigns the String object's reference to the variable movieTitle.

Assigning one String variable to another String variable causes both variables to refer to the same
String, and does not create a new String. Ex: movieTitle = favoriteMovie; assigns
favoriteMovie's reference to movieTitle. Both movieTitle and favoriteMovie refer to the same String
object.

Participation
ActivityP 2.11.5: Reading string input.

The following program is part of a larger application to get a user's mailing address. Run the
program and observe the output. Update the program to store the entire mailing address in
userAddress.

1600 Pennsylvania Ave.
import java.util.Scanner;

public class ReadMailingAddress {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 String userAddress = "";

 System.out.println("Enter street address: ");
 userAddress = scnr.next();

 System.out.println("Street address is: " + userAddress

 return;
 }
}

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 77 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Figure 2.11.3: Assigning a value to a string.

import java.util.Scanner;

public class SentenceFromStrings {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 String userNoun1 = "";
 String userVerb = "";
 String userNoun2 = "";
 String sentenceSubject = "";
 String sentenceObject = "";

 System.out.print("Enter a noun: ");
 userNoun1 = scnr.next();
 System.out.print("Enter a verb: ");
 userVerb = scnr.next();
 System.out.print("Enter a noun: ");
 userNoun2 = scnr.next();

 sentenceSubject = userNoun1;
 sentenceObject = userNoun2;
 System.out.print(sentenceSubject);
 System.out.print(" ");
 System.out.print(userVerb);
 System.out.print(" ");
 System.out.print(sentenceObject);
 System.out.println(".");

 sentenceSubject = userNoun2;
 sentenceObject = userNoun1;
 System.out.print(sentenceSubject);
 System.out.print(" ");
 System.out.print(userVerb);
 System.out.print(" ");
 System.out.print(sentenceObject);
 System.out.println(".");

 return;
 }
}

Enter a noun: mice
Enter a verb: eat
Enter a noun: cheese
mice eat cheese.
cheese eat mice.

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 78 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Participation
ActivityP 2.11.6: Assigning a value to a String variable.

str1 and str2 are String variables.

Question Your answer

1
Write a statement that assigns "miles" to str1.

2

str1 is initially "Hello", str2 is "Hi".
After str1 = str2, what is str1?
Omit the quotes.

3

str1 is initially "Hello", str2 is "Hi".
After str1 = str2 and then str2 = "Bye", what is str1?
Omit the quotes.

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 79 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Section 2.12 - Integer overflow
An integer variable cannot store a number larger than the maximum supported by the variable's data
type. An overflow occurs when the value being assigned to a variable is greater than the maximum
value the variable can store.

A common error is to try to store a value greater than about 2 billion into an int variable. For example,
the decimal number 4,294,967,297 requires 33 bits in binary, namely
100000000000000000000000000000001 (we chose the decimal number for easy binary viewing).

Challenge
ActivityC 2.11.1: Reading and printing a string.

A user types a word and a number. Read them into the provided variables. Then print: word_number. End with newline. Example output if
user entered: Amy 5

Amy_5

Run

import java.util.Scanner;

public class SpaceReplace {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 String userWord = "";
 int userNum = 0;

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 80 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Trying to assign that number into an int results in overflow. The 33rd bit is lost and only the lower 32
bits are stored, namely 00000000000000000000000000000001, which is decimal number 1.

Defining the variable of type long, (described in another section) which uses 64 bits, would solve the
above problem. But even that variable could overflow if assigned a large enough value.

Most compilers detect when a statement assigns a variable with a literal constant that is so large as to
cause overflow. For example, the javac compiler reports the error "possible loss of precision".

A common source of overflow involves intermediate calculations. Given int variables num1, num2,
num3 each with values near 1 billion, (num1 + num2 + num3) / 3 will encounter overflow in the
numerator, which will reach about 3 billion (max int is around 2 billion), even though the final result after
dividing by 3 would have been only 1 billion. Dividing earlier can sometimes solve the problem, as in
(num1 / 3) + (num2 / 3) + (num3 / 3), but programmers should pay careful attention to possible implicit
type conversions.

Participation
ActivityP 2.12.1: Overflow error.

int hrsUploadedTotal = 0;
...
hrsUploadedTotal = 4294967297;

int hrsUploadedTotal
 32 bits wide

100000000000000000000000000000001

000000000000000000000000000000011 98

1

Start

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 81 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Participation
ActivityP 2.12.2: long long variables.

Run the program and observe the output is as expected. Replicate the multiplication and printing
three more times, and observe incorrect output due to overflow. Change num's type to long, and
observe the corrected output.

public class OverflowExample {
 public static void main (String [] args) {
 int num = 1000;

 num = num * 100;
 System.out.println("num: " + num);

 num = num * 100;
 System.out.println("num: " + num);

 num = num * 100;
 System.out.println("num: " + num);

 return;
 }
}

Run
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 82 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Participation
ActivityP 2.12.3: Overflow.

Assume all variables below are defined as int, which uses 32 bits.

Question Your answer

1

Overflow can occur at any point in the program, and not only
at a variable's initialization.

Yes

No

2

Will x = 1234567890 cause overflow? Yes

No

3

Will x = 9999999999 cause overflow? Yes

No

4

Will x = 4000000000 cause overflow? Yes

No

5

Will these assignments cause overflow?
x = 1000;
y = 1000;
z = x * y;

Yes

No

6

Will these assignments cause overflow?
x = 1000;
y = 1000;
z = x * x;
z = z * y * y;

Yes

No

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 83 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Section 2.13 - Numeric data types
int and double are the most common numeric data types. However, several other numeric types exist.
The following table summarizes available integer numeric data types.

int is the most commonly used integer type.

long is used for integers expected to exceed about 2 billion.

In case the reader is wondering, the language does not have a simple way to print numbers with
commas. So if x is 8000000, printing 8,000,000 is not trivial.

A common error made by a program's user is to enter the wrong type, such as entering a string when
the input statement was myInt = scnr.nextInt(); where myInt is an int, which can cause
strange program behavior.

short is rarely used. One situation is to save memory when storing many (e.g., tens of thousands) of
smaller numbers, which might occur for arrays (another section). Another situation is in embedded

computing systems having a tiny processor with little memory, as in a hearing aid or TV remote
control. Similarly, byte is rarely used, except as noted for short.

Table 2.13.1: Integer numeric data types.

Definition Size Supported number range

byte myVar; 8 bits -128 to 127

short myVar; 16 bits -32,768 to 32,767

int myVar; 32 bits -2,147,483,648 to 2,147,483,647

long myVar; 64 bits -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 84 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

The following table summarizes available floating-point numeric types.

Participation
ActivityP 2.13.1: Integer types.

Indicate whether each is a good variable definition for the stated purpose, assuming int is usually
used for integers, and long is only used when absolutely necessary.

Question Your answer

1

The number of days of school per year:
int numDaysSchoolYear;

True

False

2

The number of days in a human's lifetime.
int numDaysLife;

True

False

3

The number of years of the earth's existence.
int numYearsEarth;

True

False

4

The number of human heartbeats in one year, assuming 100
beats/minute.
long numHeartBeats;

True

False

Table 2.13.2: Floating-point numeric data types.

Definition Size Supported number range

float x; 32 bits -3.4x10 to 3.4*10

double x; 64 bits -1.7x10 to 1.7*10

38 38

308 308

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 85 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

The compiler uses one bit for sign, some bits for the mantissa, and some for the exponent. Details are
beyond our scope.

float is typically only used in memory-saving situations, as discussed above for short.

Due to the fixed sizes of the internal representations, the mantissa (e.g, the 6.02 in 6.02e23) is limited
to about 7 significant digits for float and about 16 significant digits for double. So for a variable defined
as double pi, the assignment pi = 3.14159265 is OK, but pi = 3.14159265358979323846 will be
truncated.

A variable cannot store a value larger than the maximum supported by the variable's data type. An
overflow occurs when the value being assigned to a variable is greater than the maximum value the
variable can store. Overflow with floating-point results in infinity. Overflow with integer is discussed
elsewhere.

On some processors, especially low-cost processors intended for "embedded" computing, like
systems in an automobile or medical device, floating-point calculations may run slower than integer
calculations, such as 100 times slower. Floating-point types are typically only used when really
necessary. On more powerful processors like those in desktops, servers, smartphones, etc., special
floating-point hardware nearly or entirely eliminates the speed difference.

Floating-point numbers are sometimes used when an integer exceeds the range of the largest integer
type.

Participation
ActivityP 2.13.2: Representation of floating-point (double) values.

Enter a decimal value:

Sign Exponent Mantissa

0 0 0 0 0 0 0 0 0 1. 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 86 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Section 2.14 - Random numbers
Some programs need to use a random number. For example, a program might
serve as an electronic dice roller, generating random numbers between 1 and 6. The
following example demonstrates how to generate four random numbers between 1
and 6. The program's relevant parts are explained further below.

Participation
ActivityP 2.13.3: Floating-point numeric types.

Question Your answer

1

float is the most commonly-used floating-point type. True

False

2

int and double types are limited to about 16 digits. True

False

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 87 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Line 1 makes Java's Random class available to the program. Line 5 creates a new random number
generator object named randGen. The method call randGen.nextInt(X) can then be used to get a
random number ranging from 0 to X - 1. Mentioned concepts like class, object, and method call will
be described in later sections; here, the programmer can just copy the given code to get random
numbers.

After the above setup, line 11 uses randGen.nextInt(6) to get a new random number between 0 and 5.
The code adds 1 to obtain values between 1 and 6. Lines 12, 13, and 14 follow similarly.

Figure 2.14.1: Random numbers: Four dice rolls.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

import java.util.Random;

public class DiceRoll {
 public static void main (String[] args) {
 Random randGen = new Random(); // New random number generator

 System.out.println("Four rolls of a dice...");

 // randGen.nextInt(6) yields 0, 1, 2, 3, 4, or 5
 // so + 1 makes that 1, 2, 3, 4, 5, or 6
 System.out.println(randGen.nextInt(6) + 1);
 System.out.println(randGen.nextInt(6) + 1);
 System.out.println(randGen.nextInt(6) + 1);
 System.out.println(randGen.nextInt(6) + 1);

 return;
 }
}

Four rolls of a dice...
2
2
3
3

...

Four rolls of a dice...
1
5
4
3

Participation
ActivityP 2.14.1: Random numbers.

randGen already exists.

Question Your answer

1

If program is executing and randGen.nextInt(10) returns the
value 6, what will the next randGen.nextInt(10) return?

7

Unknown

What is the smallest possible value returned by
randGen.nextInt(10)?

0

1

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 88 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Because an important part of testing or debugging a program is being able to have the program run
exactly the same across multiple runs, most programming languages use a pseudo-random number
generation approach. A pseudo-random number generator produces a specific sequence of
numbers based on a seed number, that sequence seeming random but always being the same for a

2

1

10

Unknown

3

What is the largest possible value returned by
randGen.nextInt(10)?

10

9

11

4

randGen.nextInt(), with no number between the (), returns a
random value that could be any integer (of int type), positive
or negative. What is the largest possible value?

10

2,147,483,647

Unknown

5

Which generates a random number in the range 18..30? randGen.nextInt(30)

randGen.nextInt(31)

randGen.nextInt(30 -
18)

randGen.nextInt(30 -
18) + 18

randGen.nextInt(30 -
18 + 1) + 18

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 89 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

given seed. For example, a program that prints four random numbers and that seeds a random
number generator with a seed of 3 might then print 99, 4, 55, and 7. Running with a seed of 8 might
yield 42, 0, 22, 9. Running again with 3 will yield 99, 4, 55, and 7 again—guaranteed.

Early video games used a constant seed for "random" features, enabling players to
breeze through a level by learning and then repeating the same winning moves.

Random() seeds the pseudo-random number generator with a number based on the
current time; that number is essentially random, so the program will get a different
pseudo-random number sequence on each run. On the other hand, Random(num) will seed the
generator with the value num, where num is any integer (actually, any "long" value).

Having seen the current time's use as a random seed, you might wonder why a program can't just
use a number based on the current time as a random number—why bother with a pseudo-random
number generator at all? That's certainly possible, but then a program's run could never be identically
reproduced. By using a pseudo-random number generator, a programmer can set the seed to a
constant value during testing or debugging.

Participation
ActivityP 2.14.2: Seeding a pseudo-random number generator.

Question Your answer

1

A dice-rolling program has a statement that seeds a
pseudo-random number generator with the
constant value 99. The program is run and prints 4,
3, 6, 0. An hour later, the program is run again.
What is the first number printed? Type a number or
"Unknown" if the solution is unknown.

2

A dice-rolling program's pseudo-random number
generator is seeded with a number based on the
current time. The program is run and prints 3, 2, 1,
6. An hour later, the program is run again. What is
the first number printed? Type a number or
"Unknown" if the solution is unknown.

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 90 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Challenge
ActivityC 2.14.1: rand function: Seed and then get random numbers

Type two statements using nextInt() to print two random integers between 0 and 9. End with a newline. Ex:

5
7

Note: For this activity, using one statement may yield different output (due to the compiler calling nextInt() in a different order). Use two
statements for this activity.

Run

import java.util.Scanner;
import java.util.Random;

public class DiceRoll {
 public static void main (String [] args) {
 Random randGen = new Random();
 int seedVal = 0;
 randGen.setSeed(seedVal);

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 91 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Section 2.15 - Reading API documentation
Java provides an extensive set of classes for creating programs. Oracle's Java API Specification
provides detailed documents describing how to use those classes. The class' documentation is
known as an API, short for application programming interface.

The main page of the Java documentation lists all Java packages that are available to programmers. A
package is a group of related classes. Organizing classes into packages helps programmers find
needed classes.

Challenge
ActivityC 2.14.2: Fixed range of random numbers.

Type two statements that use nextInt() to print 2 random integers between (and including) 100 and 149. End with a newline. Ex:

112
102

Note: For this activity, using one statement may yield different output (due to the compiler calling nextInt() in a different order). Use two
statements for this activity.

Run

import java.util.Scanner;
import java.util.Random;

public class RandomGenerateNumbers {
 public static void main (String [] args) {
 Random randGen = new Random();
 int seedVal = 0;

 seedVal = 4;
 randGen.setSeed(seedVal);

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

http://docs.oracle.com/javase/7/docs/api/

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 92 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Previous programs in this material used a Scanner object to read input from the user. The Scanner
class is located in the package java.util. The Java documentation for a class consists of four main
elements. The following uses the Scanner class to illustrate these documentation elements. The
documentation for the Scanner is located at: Scanner class documentation.

Class overview: The first part of the documentation provides an overview of the class, describing the
class' functionality and providing examples of how the class is commonly used in a program.

Figure 2.15.1: Java documentation lists and describes available packages.

http://docs.oracle.com/javase/7/docs/api/java/util/Scanner.html

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 93 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

The package in which a class is located appears immediately above the class name. The figure above
shows the Scanner class is located in the java.util package. To use a class, a program must include an
import statement that informs the compiler of the class' location.

The statement import java.util.Scanner; imports the scanner class.

Constructor summary: Provides a list and brief description of the constructors that can be used to
create objects of the class.

Figure 2.15.2: Scanner class' overview.

Construct 2.15.1: Import statement.
import packageName.ClassName;

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 94 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Previous programs in this material used the statement
Scanner scnr = new Scanner(System.in); to construct a Scanner object. System.in is a
InputStream object automatically created when a Java programs executes. So, the constructor
Scanner(InputStream source) listed in the documentation is the matching constructor.

Method summary: Provides a list and brief description of all methods that can be called on objects
of the class. The Java documentation only lists the public methods that a program may use.

Figure 2.15.3: Scanner class' constructor summary.

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 95 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Constructor and method details: Lastly, the documentation for a class provides a detailed
description of all constructors and methods for the class. For each method, the documentation
provides the method declaration, a description of the method, a list of parameters (if any), a
description of the method's return value, and a list of possible exceptions the method may throw
(discussed elsewhere).

The following shows the method details for the nextInt() method.

Figure 2.15.4: Scanner class' method summary.

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 96 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Section 2.16 - Debugging

Figure 2.15.5: Scanner class' nextInt method documentation.

Participation
ActivityP 2.15.1: Java API Documentation.

Using Oracle's Java API Specification, match the class to the correct package.

BigDecimal FileInputStream Scanner Rectangle

Drag and drop above item
java.util

java.awt

java.io

java.math

Reset

http://docs.oracle.com/javase/7/docs/api/

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 97 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Debugging is the process of determining and fixing the cause of a problem in a computer program.
Troubleshooting is another word for debugging. Far from being an occasional nuisance, debugging
is a core programmer task, like diagnosing is a core medical doctor task. Skill in carrying out a
methodical debugging process can improve a programmer's productivity.

A common error among new programmers is to try to debug without a methodical process, instead
staring at the program, or making random changes to see if the output is improved.

Consider a program that, given a circle's circumference, computes the circle's area. Below, the output
area is clearly too large. In particular, if circumference is 10, then radius is 10 / 2 * PI_VAL, so about
1.6. The area is then PI_VAL * 1.6 * 1.6, or about 8, but the program outputs about 775.

Figure 2.16.1: A methodical debugging process.

Figure 2.16.2: Circle area program: Problem detected.

import java.util.Scanner;

public class CircumferenceToArea {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 double circleRadius = 0.0;
 double circleCircumference = 0.0;
 double circleArea = 0.0;
 final double PI_VAL = 3.14159265;

 System.out.print("Enter circumference: ");
 circleCircumference = scnr.nextDouble();

 circleRadius = circleCircumference / 2 * PI_VAL;
 circleArea = PI_VAL * circleRadius * circleRadius;

 System.out.println("Circle area is: " + circleArea);

 return;
 }
}

Enter circumference: 10
Circle area is: 775.1569143502577

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 98 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

First, a programmer may predict that the problem is a bad output statement. This prediction can be
tested by adding the statement area = 999;. The output statement is OK, and the predicted
problem is invalidated. Note that a temporary statement commonly has a "FIXME" comment to remind
the programmer to delete this statement.

Next, the programmer predicts the problem is a bad area computation. This prediction is tested by
assigning the value 0.5 to radius and checking to see if the output is 0.7855 (which was computed by
hand). The area computation is OK, and the predicted problem is invalidated. Note that a temporary
statement is commonly left-aligned to make clear it is temporary.

Figure 2.16.3: Circle area program: Predict problem is bad output.

import java.util.Scanner;

public class CircumferenceToArea {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 double circleRadius = 0.0;
 double circleCircumference = 0.0;
 double circleArea = 0.0;
 final double PI_VAL = 3.14159265;

 System.out.print("Enter circumference: ");
 circleCircumference = scnr.nextDouble();

 circleRadius = circleCircumference / 2 * PI_VAL;
 circleArea = PI_VAL * circleRadius * circleRadius;

 circleArea = 999; // FIXME delete
 System.out.println("Circle area is: " + circleArea);

 return;
 }
}

Enter circumference: 0
Circle area is: 999.0

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 99 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

The programmer then predicts the problem is a bad radius computation. This prediction is tested by
assigning PI_VAL to the circumference, and checking to see if the radius is 0.5. The radius
computation fails, and the prediction is likely validated. Note that unused code was temporarily
commented out.

Figure 2.16.4: Circle area program: Predict problem is bad area computation.

import java.util.Scanner;

public class CircumferenceToArea {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 double circleRadius = 0.0;
 double circleCircumference = 0.0;
 double circleArea = 0.0;
 final double PI_VAL = 3.14159265;

 System.out.print("Enter circumference: ");
 circleCircumference = scnr.nextDouble();

 circleRadius = circleCircumference / 2 * PI_VAL;

 circleRadius = 0.5; // FIXME delete
 circleArea = PI_VAL * circleRadius * circleRadius;

 System.out.println("Circle area is: " + circleArea);

 return;
 }
}

Enter circumference: 0
Circle area is: 0.7853981625

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 100 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

The last test seems to validate that the problem is a bad radius computation. The programmer visually
examines the expression for a circle's radius given the circumference, which looks fine at first glance.
However, the programmer notices that radius = circumference / 2 * PI_VAL; should have
been radius = circumference / (2 * PI_VAL);. The parentheses around the product in
the denominator are necessary and represent the desired order of operations. Changing to
radius = circumference / (2 * PI_VAL); solves the problem.

The above example illustrates several common techniques used while testing to validate a predicted
problem:

Manually set a variable to a value.

Insert print statements to observe variable values.

Comment out unused code.

Visually inspect the code (not every test requires modifying/running the code).

Statements inserted for debugging must be created and removed with care. A common error is to
forget to remove a debug statement, such as a temporary statement that manually sets a variable to a
value. Left-aligning such a statement and/or including a FIXME comment can help the programmer

Figure 2.16.5: Circle area program: Predict problem is bad radius computation.

import java.util.Scanner;

public class CircumferenceToArea {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 double circleRadius = 0.0;
 double circleCircumference = 0.0;
 double circleArea = 0.0;
 final double PI_VAL = 3.14159265;

 System.out.print("Enter circumference: ");
 circleCircumference = scnr.nextDouble();

circleCircumference = PI_VAL; // FIXME delete
 circleRadius = circleCircumference / 2 * PI_VAL;
System.out.println("Radius: " + circleRadius); // FIXME delete

 /*
 area = PI_VAL * radius * radius;

 System.out.println("Circle area is: " + area);
 */

 return;
 }
}

Enter circumference: 0
Radius: 4.934802189267012

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 101 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

remember. Another common error is to use /* */ to comment out code that itself contains /* */
characters. The first */ ends the comment before intended, which usually yields a syntax error when
the second */ is reached or sooner.

The predicted problem is commonly vague, such as "Something is wrong with the input values."
Conducting a general test (like printing all input values) may give the programmer new ideas as to a
more-specific predicted problems. The process is highly iterative—new tests may lead to new
predicted problems. A programmer typically has a few initial predictions, and tests the most likely ones
first.

Participation
ActivityP 2.16.1: Debugging using a repeated two-step process.

Use the above repeating two-step process (predict problem, test to validate) to find the problem in
the following code.

 10000
import java.util.Scanner;

public class CubeVolume {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 int sideLength = 0;
 int cubeVolume = 0;

 System.out.println("Enter cube's side length: ");
 sideLength = scnr.nextInt();

 cubeVolume = sideLength * sideLength * sideLength;

 System.out.println("Cube's volume is: " + cubeVolume

 return;
 }
}

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 102 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Participation
ActivityP 2.16.2: Debugging.

Answer based on the above discussion.

Question Your answer

1

The first step in debugging is to make random changes to the
code and see what happens.

True

False

2

A common predicted-problem testing approach is to insert
print statements.

True

False

3

Variables in temporary statements can be written in
uppercase, as in MYVAR = 999, to remind the programmer to
remove them.

True

False

4

A programmer lists all possible predicted problems first, then
runs tests to validate each.

True

False

5

Most beginning programmers naturally follow a methodical
process.

True

False

6

A program's output should be positive and usually is, but in
some instances the output becomes negative. Overflow is a
good prediction of the problem.

True

False

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 103 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Section 2.17 - Style guidelines
Each programming team, whether a company or a classroom, may have its own style for writing code,
sometimes called a style guide. Below is the style guide followed by most code in this material. That
style is not necessarily better than any other style. The key is to be consistent in style so that code
within a team is easily understandable and maintainable.

You may not have learned all of the constructs discussed below; you may wish to revisit this section
after covering new constructs.

Table 2.17.1: Sample style guide.

Sample guidelines,
used in this
material

Yes No (for our sample style)

Whitespace

Each statement
usually appears on
its own line.

x = 25;
y = x + 1;

x = 25; y = x + 1; // No
if (x == 5) { y = 14; } // No

A blank line can
separate
conceptually
distinct groups of
statements, but
related statements
usually have no
blank lines
between them.

x = 25;
y = x + 1;

x = 25;
 // No
y = x + 1;

Most items are
separated by one
space (and not
less or more). No
space precedes
an ending
semicolon.

C = 25;
F = ((9 * C) / 5) + 32;
F = F / 2;

C=25; // No
F = ((9*C)/5) + 32; // No
F = F / 2 ; // No

Sub-statements
are indented 3
spaces from
parent statement.
Tabs are not used
as they may
behave
inconsistently if

if (a < b) {
 x = 25;

if (a < b) {
 x = 25; // No
 y = x + 1; // No
}

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 104 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

inconsistently if
code is copied to
different editors.
(Auto-tabbing may
need to be
disabled in some
source code
editors).

 x = 25;
 y = x + 1;
}

}
if (a < b) {
 x = 25; // No
}

Braces

For branches,
loops, methods, or
classes, opening
brace appears at
end of the item's
line. Closing brace
appears under
item's start.

if (a < b) {
 // Called "K&R" style
}
while (x < y) {
 // K&R style
}

if (a < b)
{
 // Also popular, but we use K&R
}

For if-else, the else
appears on its
own line

if (a < b) {
 ...
}
else {
 // "Stroustrup" style, modified K&R
}

if (a < b)
{
 ...
} else {
 // Original K&R style
}

Braces always
used even if only
one sub-
statement

if (a < b) {
 x = 25;
}

if (a < b)
 x = 25; // No, can lead to error later

Naming

Variable/parameter
names are
camelCase,
starting with
lowercase

int numItems; int NumItems; // No
int num_items; // Common, but we don't use

Variable/parameter
names are
descriptive, use at
least two words (if
possible, to
reduce conflicts),
and avoid
abbreviations
unless widely-
known like "num".
Single-letter
variables are rare;

int numBoxes;
char userKey;

int boxes; // No
int b; // No
char k; // No
char usrKey; // No

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 105 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

K&R style for braces and indents is named after C language creators Kernighan and Ritchie.
Stroustrup style for braces and indents is named after C++ language creator Bjarne Stroustrup. The
above are merely example guidelines.

Section 2.18 - Java example: Salary calculation with variables
Using variables in expressions, rather than numbers like 40, makes a program more general and

variables are rare;
exceptions for
loop indices (i, j),
or math items like
point coordinates
(x, y).

Constants use
upper case and
underscores (and
at least two words)

final int MAXIMUM_WEIGHT = 300;
final int MAXIMUMWEIGHT = 300
final int maximumWeight = 300
final int MAXIMUM = 300;

Variables usually
defined early (not
within code), and
initialized to be
safe (if practical).

int i = 0;
char userKey = '-';

int i; // No
char userKey; // No

userKey = 'c';
int j; // No

Method names are
camelCase with
lowercase first.

printHello() PrintHello() // No
print_hello() // No

Miscellaneous

Lines of code are
typically less than
100 characters
wide.

Code is more easily readable when lines
are kept short. One long line can usually
be broken up into several smaller ones.

Exploring further:
More on indent styles from Wikipedia.org
Oracle's Java Style Guide

http://en.wikipedia.org/wiki/Indent_style
http://www.oracle.com/technetwork/java/index-135089.html

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 106 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

makes expressions more meaningful when read too.

P Participation
Activity

2.18.1: Calculate salary: Generalize a program with variables and
input.

The following program uses a variable workHoursPerWeek rather than directly using 40 in the
salary calculation expression.

1. Run the program, observe the output. Change 40 to 35 (France's work week), and
run again.

2. Generalize the program further by using a variable workWeeksPerYear . Run the
program. Change 50 to 52, and run again.

3. Introduce a variable monthlySalary, used similarly to annualSalary, to further
improve program readability.

Reset

public class Salary {
 public static void main (String [] args) {
 int hourlyWage = 20;
 int workHoursPerWeek = 40;
 // FIXME: Define and initialize variable workWeeksPerYear, then replace the 50's below
 int annualSalary = 0;

 annualSalary = hourlyWage * workHoursPerWeek * 50;
 System.out.print("Annual salary is: ");
 System.out.println(annualSalary);

 System.out.print("Monthly salary is: ");
 System.out.println((hourlyWage * workHoursPerWeek * 50) / 12);

 return;
 }
}

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 107 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

When values are stored in variables as above, the program can read user inputs for those values. If a
value will never change, the variable can be defined as final.

P Participation
Activity

2.18.2: Calculate salary: Generalize a program with variables and
input.

The program below has been generalized to read a user's input value for hourlyWage.
1. Run the program. Notice the user's input value of 10 is used. Modify that input

value, and run again.
2. Generalize the program to get user input values for workHoursPerWeek and

workWeeksPerYear (change those variables' initializations to 0). Run the program.
3. monthsPerYear will never change, so define that variable as final. Use the standard

for naming final variables. Ex: final int MAX_LENGTH = 99. Run the program.
4. Change the values in the input area below the program, and run the program

again.

Reset

import java.util.Scanner;

public class Salary {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 int hourlyWage = 0;
 int workHoursPerWeek = 40;
 int workWeeksPerYear = 50;
 int monthsPerYear = 12; // FIXME: Define as final and use standard naming
 int annualSalary = 0;
 int monthlySalary = 0;

 System.out.println("Enter hourly wage: ");

1
2
3
4
5
6
7
8
9

10
11
12
13
14

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 108 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Section 2.19 - Java example: Married-couple names with
variables

10

Participation
ActivityP 2.19.1: Married-couple names with variables.

Pat Smith and Kelly Jones are engaged. What are possible last name combinations for the married
couple (listing Pat first)?

1. Run the program below to see three possible married-couple names. Note the use
of variable firstNames to hold both first names of the couple.

2. Extend the program to define and use a variable lastName similarly. Note that the
print statements are neater. Run the program again.

3. Extend the program to print two more options that abut the last names, as in
SmithJones and JonesSmith. Run the program again.

Reset

 System.out.println("Enter hourly wage: ");
 hourlyWage = scnr.nextInt();

 // FIXME: Get user input values for workHoursPerWeek and workWeeksPerYear

 annualSalary = hourlyWage * workHoursPerWeek * workWeeksPerYear;

Run

import java.util.Scanner;

14
15
16
17
18
19

1

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 109 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Pat
Smith
Kelly
Jones

import java.util.Scanner;

public class ShowMarriedNames {

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 String firstName1 = "";
 String lastName1 = "";
 String firstName2 = "";
 String lastName2 = "";
 String firstNames = "";
 // FIXME: Define lastName

 System.out.println("What is the first person's first name?");
 firstName1 = scnr.nextLine();
 System.out.println("What is the first person's last name?");
 lastName1 = scnr.nextLine();

 System.out.println("What is the second person's first name?");

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 110 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

Participation
ActivityP 2.19.2: Married-couple names with variables (solution).

A solution to the above problem follows:

Reset

Pat
Smith
Kelly
Jones

import java.util.Scanner;

public class ShowMarriedNames {

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 String firstName1 = "";
 String lastName1 = "";
 String firstName2 = "";
 String lastName2 = "";
 String firstNames = "";
 String lastName = "";

 System.out.println("What is the first person's first name?");
 firstName1 = scnr.nextLine();
 System.out.println("What is the first person's last name?");
 lastName1 = scnr.nextLine();

 System.out.println("What is the second person's first name?");

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:58 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 111 of 111https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/2/print

