
1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 1 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Chapter 1 - Introduction to Java

Section 1.1 - Programming
A recipe consists of instructions that a chef executes, like adding eggs or stirring ingredients.
Likewise, a computer program consists of instructions that a computer executes (or runs), like
multiplying numbers or printing a number to a screen.

Figure 1.1.1: A program is like a recipe.

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 2 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Participation
ActivityP 1.1.1: A first computer program.

Run the program and observe the output. Click and drag the instructions to change their order,
and run the program again. Can you make the program output 676?

Run program

m:

Participation
ActivityP 1.1.2: Instructions.

Select the instruction that achieves the desired goal.

Question Your answer

1

Make lemonade:

Fill jug with water
Add lemon juice

Stir

Add salt

Add water

Add sugar

Wash a car: Rinse car with hose

m = 5

m = 3
print m

m = m * 2
print m

m = m + 10
print m

m = m * m
print m

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 3 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Section 1.2 - A first program
Below is a simple first Java program.

2

Fill bucket with soapy water
Dip towel in bucket
Wipe car with towel

Add water to bucket

Add sugar to bucket

3

Wash hair:

Rinse hair with water
While hair isn't squeaky clean, repeat:

Work shampoo throughout hair
Rinse hair with water

Rinse hair with water

Apply shampoo to hair

Sing

4

Compute the area of a triangle:

Determine the base
Determine the height
Compute base times height

Multiply the previous
answer by 2

Add 2 to the previous
answer

Divide the previous
answer by 2

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 4 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

The program consists of several lines of code. Code is the textual representation of a
program. A line is a row of text.

A program starts by executing a method called main. A method is a list of
statements (see below). The various other items on main's line, as well as the line
with the word "class", are described in later sections.

"{" and "}" are called braces, denoting a list of statements. main's statements appear
between braces.

A statement is a program instruction. Each statement usually appears on its own
line. Each program statement ends with a semicolon ";", like each English sentence
ends with a period.

The program ends when the return; statement executes.

Each part of the program is described in later sections.

The following describes main's statements:

P Participation
Activity

1.2.1: Program execution begins with main, then proceeds
one statement at a time.

public class Salary {

 public static void main (String [] args) {
 int wage = 20;

 System.out.print("Salary is ");
 System.out.println(wage * 40 * 50);

 return;
 }
}

20 wage

Salary is 40000

Start

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 5 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Like a baker temporarily stores ingredients on a countertop, a program temporarily
stores values in a memory. A memory is composed of numerous individual locations,
each able to store a value. The statement int wage = 20 reserves a location in
memory, names that location wage, and stores the value 20 in that location. A named
location in memory, such as wage, is called a variable (because that value can vary).

print statements print a program's output. println prints output followed by a
new line.

Many code editors color certain words, as in the above program, to assist a human reader understand
various words' roles.

A compiler is a tool that converts a program into low-level machine instructions (0s and 1s)
understood by a particular computer. Because a programmer interacts extensively with a compiler,
this material frequently refers to the compiler.

Participation
ActivityP 1.2.2: First program.

Below is the Zyante Development Environment (zyDE), a web-based programming practice
environment. Click run to compile and execute the program, then observe the output. Change 20
to a different number like 35 and click run again to see the different output.

public class Salary {

 public static void main (String [] args) {
 int wage = 20;

 System.out.print("Salary is ");
 System.out.println(wage * 40 * 50);

 return;
 }
}

Run
1
2
3
4
5
6
7
8
9

10
11
12
13

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 6 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Participation
ActivityP 1.2.3: Basic program concepts.

Variable Statement main Code Compiler Braces Line

Drag and drop above item
Textual representation of a program.

Performs a specific action.

A row of text.

Delimits (surrounds) a list of statements.

The starting place of a program.

Represents a particular memory location.

Converts a program into low-level machine instructions
of a computer.

Reset

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 7 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Section 1.3 - Basic output
Printing of output to a screen is a common programming task. This section describes basic output;
later sections have more details.

Challenge
ActivityC 1.2.1: Modify a simple program.

Modify the program so the output is:

Annual pay is 40000

Note: Whitespace (blank spaces / blank lines) matters; make sure your whitespace exactly matches the expected output.

Also note: These activities may test code with different test values. This activity will perform two tests: the first with wage = 20, the second
with wage = 30. See How to Use zyBooks.

Run

public class Salary {
 public static void main (String [] args) {
 int wage = 20;

 /* Your solution goes here */

 System.out.println(wage * 40 * 50);

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11

https://zybooks.zyante.com/#/zybook/HowToUseZyBooks/chapter/1/section/2

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 8 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

The System.out.print construct supports printing. Printing text is achieved via:
System.out.print("desired text");. Text in double quotes " " is known as a string literal.
Multiple print statements continue printing on the same output line. System.out.println (note the ln at
the end, short for "line"), starts a new line after the printed output.

A common error is to use print when println should have been used, and vice-versa..

Printing a blank line is achieved by: System.out.println(""). Note that the string literal "" is empty.

A common error is to put single quotes around a string literal rather than double quotes, as in 'Keep
calm', or to omit quotes entirely.

Figure 1.3.1: Printing text and new lines.

public class KeepCalm {
 public static void main (String [] args) {

 System.out.print("Keep calm");
 System.out.print("and"); // Note: Does NOT print on new output line
 System.out.print("carry on");

 return;
 }
}

Keep calmandcarry on

public class KeepCalm {
 public static void main (String [] args) {

 System.out.println("Keep calm"); // println starts new line after output
 System.out.println("and");
 System.out.println("carry on"); // Usually finish output with new line

 return;
 }
}

Keep calm
and
carry on

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 9 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Participation
ActivityP 1.3.1: Basic text output.

Question Your answer

1

Which statement prints: Welcome! System.out.print(Welcome!);

System.out.print "Welcome!";

System.out.print("Welcome!");

2

Which statement prints Hey followed by a new
line?

System.out.print("Hey"ln);

System.out.println(Hey);

System.out.println("Hey");

Participation
ActivityP 1.3.2: Basic text output.

End each statement with a semicolon. Do not create a new line unless instructed.

Question Your answer

1
Type a statement that prints: Hello

2
Type a statement that prints Hello and then starts a
new output line.

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 10 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Printing the value of a variable is achieved via: System.out.print(variableName); Note the absence of
quotes. println() could also be used.

Note that the programmer intentionally did not start a new output line after printing "Wage is: ", so that
the wage variable's value would appear on that same line.

Figure 1.3.2: Printing a variable's value.

public class Salary {
 public static void main (String [] args) {
 int wage = 20;

 System.out.print("Wage is: ");
 System.out.println(wage); // Prints variable
 System.out.println("Goodbye.");

 return;
 }
}

Wage is: 20
Goodbye.

Participation
ActivityP 1.3.3: Basic variable output.

Question Your answer

1

Given variable numCars = 9, which statement
prints 9?

System.out.print("numCars");

System.out.print numCars;

System.out.print(numCars);

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 11 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Programmers commonly try to use a single print statement for each line of output, by combining the
printing of text, variable values, and new lines. The programmer simply separates the items with a +
symbol. Such combining can improve program readability, because the program's code corresponds
more closely to the program's printed output.

A common error is to forget the + symbols between items, as in:
System.out.println("Wage is: " wage);

Participation
ActivityP 1.3.4: Basic variable output.

Question Your answer

1
Type a statement that prints the value of numUsers
(a variable). End statement with a semicolon.

Figure 1.3.3: Printing multiple items using one print statement.

public class Salary {
 public static void main (String [] args) {
 int wage = 20;

 System.out.println("Wage is: " + wage); // The + separates items
 System.out.println("Goodbye.");

 return;
 }
}

Wage is: 20
Goodbye.

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 12 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

A new line can also be output by inserting \n, known as a newline character, within a string literal.
For example, printing "1\n2\n3" prints each number on its own output line. \n use is rare, but appears
in some existing code so is mentioned here. \n consists of two characters, \ and n, but together are
considered as one newline character. Good practice is to use println to print a newline, as println has
some technical advantages not mentioned here.

Participation
ActivityP 1.3.5: Basic output.

Indicate the actual output of each statement. Assume userAge is 22.

Question Your answer

1

System.out.print("You're " + userAge + " years."); You're 22 years.

You're userAge years.

No output; an error
exists.

2

System.out.print(userAge + "years is good."); 22 years is good.

22years is good.

No output; an error
exists.

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 13 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Participation
ActivityP 1.3.6: Output simulator.

The following variable has already been defined: int countryPopulation = 1344130000;
Using that variable (do not type the large number) along with text, finish the print statement to print
the following:

China's population was 1344130000 in 2011.

Then, try some variations, like:

1344130000 is the population. 1344130000 is a lot.

System.out.print("Change this string!"

);

Change this string!

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 14 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Challenge
ActivityC 1.3.1: Generate output for given prompt.

Start

Type a single statement that produces the following output.
Note: Each space is underlined for clarity; you should output a space, not an
underline.

u v w

System.out.print();

1 2 3 4 5

 Check Next

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 15 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Challenge
ActivityC 1.3.2: Enter the output.

Start

Enter the output of the following program.

public class generalOuput {
 public static void main (String [] args) {
 System.out.print("Sam is nice.");

 return;
 }
}

Sam is nice.

1 2 3 4 5

 Check Next

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 16 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Participation
ActivityP 1.3.7: Single output statement.

Modify the program to use only two print statements, one for each output sentence.

In 2014, the driving age is 18.
10 states have exceptions.

Do not type numbers directly in the print statements; use the variables. ADVICE: Make incremental
changes—Change one code line, run and check, change another code line, run and check, repeat.
Don't try to change everything at once.

public class DrivingAge {
 public static void main (String [] args) {

 int drivingYear = 2014;
 int drivingAge = 18;
 int numStates = 10;

 System.out.print("In ");
 System.out.print(drivingYear);
 System.out.print(", the driving age is ");
 System.out.print(drivingAge);
 System.out.println(".");
 System.out.print(numStates);
 System.out.println(" states have exceptions.");

 return;
 }
}

Run
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 17 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Challenge
ActivityC 1.3.3: Output simple text.

Write a statement that prints the following on a single output line (without a newline):

3 2 1 Go!

Note: Whitespace (blank spaces / blank lines) matters; make sure your whitespace exactly matches the expected output.

Run

public class OutputExample {
 public static void main(String [] args) {

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 18 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Challenge
ActivityC 1.3.4: Output simple text with newlines.

Write code that prints the following. End each output line with a newline.

A1
B2

Note: Whitespace (blank spaces / blank lines) matters; make sure your whitespace exactly matches the expected output.

Run

public class OutputExample {
 public static void main (String [] args) {

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 19 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Section 1.4 - Basic input
Programs commonly require a user to enter input, such as typing a number, a name, etc. This section
describes basic input; later sections have more details.

The following line (explained in a later section) at the top of a file enables a Java program to read input:

Challenge
ActivityC 1.3.5: Output text and variable.

Write a statement that outputs variable numCars as follows. End with a newline.

There are 99 cars.

Note: Whitespace (blank spaces / blank lines) matters; make sure your whitespace exactly matches the expected output.

Run

public class OutputExample {
 public static void main (String [] args) {
 int numCars = 99;

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 20 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Reading input is achieved by first creating a scanner object via the statement
Scanner scnr = new Scanner(System.in), where System.in corresponds to keyboard input.
Then, input integers can be read using hourlyWage = scnr.nextInt().

Figure 1.4.1: Enabling reading of input.
import java.util.Scanner;

Figure 1.4.2: Reading user input.

import java.util.Scanner; // Enables user input

public class Salary {
 public static void main(String [] args) {
 int hourlyWage = 0;
 int annualSalary = 0;

 Scanner scnr = new Scanner(System.in); // Setup to scan chars from System.in

 System.out.println("Enter hourly wage: ");
 hourlyWage = scnr.nextInt(); // Read next integer from scanner

 annualSalary = hourlyWage * 40 * 50;
 System.out.print("Salary is ");
 System.out.println(annualSalary);

 return;
 }
}

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 21 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Participation
ActivityP 1.4.1: Basic input.

Question Your answer

1

Assuming scnr already exists, which statement reads
a user-entered number into variable numCars?

scnr.nextInt(numCars);

numCars = scnr.nextInt;

numCars = scnr.nextInt();

Participation
ActivityP 1.4.2: Basic input.

Question Your answer

1
Type a statement that reads a user-entered integer
into variable numUsers. Assume scnr already exists.

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 22 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Participation
ActivityP 1.4.3: Basic input.

Run the program and observe the output. Change the input box value from 3 to another number,
and run again. Note: Handling program input in a web-based development environment is
surprisingly difficult. Pre-entering the input is a workaround in zyde. For dynamic output and input
interaction, use a traditional development environment.

3
import java.util.Scanner;

public class DogYears {
 public static void main(String [] args) {
 Scanner scnr = new Scanner(System.in);
 int dogYears = 0;
 int humanYears = 0;

 System.out.println("Enter dog years:");
 dogYears = scnr.nextInt();

 humanYears = 7 * dogYears;
 System.out.print("A " + dogYears + " year old dog is about a "
 System.out.println(humanYears + " year old human."

 return;
 }
}

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 23 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Challenge
ActivityC 1.4.1: Read user input and print to output.

Write a statement that reads a user's input integer into the defined variable, and a second statement that prints the integer.

Run

import java.util.Scanner;

public class InputExample {
 public static void main(String [] args) {
 Scanner scnr = new Scanner(System.in);
 int userNum = 0;

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 24 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Section 1.5 - Comments and whitespace
A comment is text added to code by a programmer, intended to be read by humans to better
understand the code, but ignored by the compiler. Two kinds of comments exist: a single-line

comment uses the // symbols, and a multi-line comment uses the /* and */ symbols:

Challenge
ActivityC 1.4.2: Read multiple user inputs.

Write two statements to read in values for birthMonth followed by birthYear, separated by a space. Write a statement to print the date
using the format birthMonth/birthYear. Ex:

1 2000 (User's input)
1/2000 (Program's output)

Run

import java.util.Scanner;

public class InputExample {
 public static void main(String [] args) {
 Scanner scnr = new Scanner(System.in);
 int birthMonth = 0;
 int birthYear = 0;

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 25 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

The following program illustrates both comment types.

Note that single-line comments commonly appear after a statement on the same line.

A multi-line comment is allowed on a single line, e.g., /* Typical ounces per person */.
However, good practice is to use // for single-line comments, reserving /* */ for multi-line comments
only. A multi-line comment is also known as a block comment.

Java supports a third type of comment, known as a JavaDoc comment, described in a later section.

Construct 1.5.1: Comments.
// Single-line comment. The compiler ignores any text to the right, like ;, "Hi", //, /* */, etc.

/* Multi-line comment. The compiler ignores text until seeing the closing half of the comment,
 so ignores ;, or (), or "Hi", or //, or /*, or num = num + 1, etc. Programmers usually line up
 the opening and closing symbols and indent the comment text, but neither is mandatory.
*/

Figure 1.5.1: Comments example.
import java.util.Scanner;

/*
 This program calculates the amount of pasta to cook, given the
 number of people eating.

 Author: Mario Boyardee
 Date: March 9, 2014
*/

public class PastaCalculator {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 int numPeople = 0; // Number of people that will be eating
 int totalOuncesPasta = 0; // Total ounces of pasta to serve numPeople

 // Get number of people
 System.out.println("Enter number of people: ");
 numPeople = scnr.nextInt();

 // Calculate and print total ounces of pasta
 totalOuncesPasta = numPeople * 3; // Typical ounces per person
 System.out.println("Cook " + totalOuncesPasta + " ounces of pasta.");

 return;
 }
}

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 26 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Whitespace refers to blank spaces between items within a statement, and to blank lines between
statements. A compiler ignores most whitespace.

The following animation provides a (simplified) demonstration of how a compiler processes code from
left-to-right and line-by-line, finding each statement (and generating machine instructions using 0s and
1s), and ignoring comments.

P Participation
Activity

1.5.1: A compiler scans code line-by-line,
left-to-right; whitespace is mostly irrelevant.

Participation
ActivityP 1.5.2: Comments.

Indicate which are valid code.

Question Your answer

Valid

System.out.println(wage * 40 * 50);

// 20 dollars/hr * 40 hrs/wk * 50 wks/year.

System.out.println("Enter integer: ");

userNum = scnr.nextInt();

Compiler

High-level
program
myfile.java

Executable
program
myfile.class

1011001101101111
0011101011011101

0000011011010111
1111100011110100

1011011001111000
0110101011101110

Start

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 27 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

1

// Get user input Valid

Invalid

2

/* Get user input */ Valid

Invalid

3

/* Determine width and height,
 calculate volume,
 and return volume squared.
*/

Valid

Invalid

4

// Print "Hello" to the screen // Valid

Invalid

5

// Print "Hello"
 Then print "Goodbye"
 And finally return.
//

Valid

Invalid

6

/*
 * Author: Michelangelo
 * Date: 2014
 * Address: 111 Main St, Pacific Ocean
 */

Valid

Invalid

7

// numKids = 2; // Typical number Valid

Invalid

8

/*
 numKids = 2; // Typical number
 numCars = 5;
*/

Valid

Invalid

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 28 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

The compiler ignores most whitespace. Thus, the following code is behaviorally equivalent to the
above code, but terrible style (unless you are trying to get fired).

In contrast, good practice is to deliberately and consistently use whitespace to make a program more
readable. Blank lines separate conceptually distinct statements. Items may be aligned to reduce visual
clutter. A single space before and after any operators like =, +, *, or << may make statements more
readable. Each line is indented the same amount. Programmers usually follow conventions defined by
their company, team, instructor, etc.

9

/*
 numKids = 2; /* Typical number */
 numCars = 5;
*/

Valid

Invalid

Figure 1.5.2: Bad use of whitespace.
import java.util.Scanner;
public class PastaCalculator {
public static void main (String [] args) {
Scanner scnr = new Scanner(System.in);int numPeople=0;int totalOuncesPasta=0;
System.out.println("Enter number of people:");
numPeople = scnr.nextInt(); totalOuncesPasta = numPeople * 3;
System.out.println("Cook "+totalOuncesPasta+" ounces of pasta.");return;}}

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 29 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Section 1.6 - Errors and warnings
People make mistakes. Programmers thus make mistakes—lots of them. One
kind of mistake, known as a syntax error, is to violate a programming
language's rules on how symbols can be combined to create a program. An
example is forgetting to end a statement with a semicolon.

Compilers are extremely picky. A compiler generates a message when
encountering a syntax error. The following program is missing a semicolon after
the first print statement.

Figure 1.5.3: Good use of whitespace.
import java.util.Scanner;

public class WhiteSpaceEx {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 int myFirstVar = 0; // Some programmers like to align the
 int yetAnotherVar = 0; // initial values. Not always possible.
 int thirdVar = 0;

 // Above blank line separates variable definitions from the rest
 System.out.print("Enter a number: ");
 myFirstVar = scnr.nextInt();

 // Above blank line separates user input statements from the rest
 yetAnotherVar = myFirstVar; // Aligned = operators, and these aligned
 thirdVar = yetAnotherVar + 1; // comments yield less visual clutter.
 // Also notice the single-space on left and right of + and =
 // (except when aligning the second = with the first =)

 System.out.println("Final value is " + thirdVar); // Single-space each side of +

 return; // The above blank line separates the return from the rest
 }
}

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 30 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Above, the 4 refers to the 4th line in the code.

Figure 1.6.1: Compiler reporting a syntax error.

1:
2:
3:
4:
5:
6:
7:
8:
9:

public class Traffic {
 public static void main(String [] args) {

 System.out.print("Traffic today")
 System.out.println(" is very light.");

 return;
 }
}

Traffic.java:4: ';' expected
 System.out.print("Traffic today")
 ^
1 error

Participation
ActivityP 1.6.1: Syntax errors.

Find the syntax errors. Assume variable numDogs exists.

Question Your answer

1

System.out.print(numDogs). Error

No error

2

System.out.print("Dogs: " numDogs); Error

No error

3

system.out.print("Everyone wins."); Error

No error

4

System.out.print("Hello friends!); Error

No error

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 31 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

5

System.out.print("Amy // Michael"); Error

No error

6

System.out.print(NumDogs); Error

No error

7

int numCats = 3
System.out.print(numCats);

Error

No error

8

System.print(numDogs); Error

No error

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 32 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Participation
ActivityP 1.6.2: Common syntax errors.

Find and click on the syntax errors.

Question

1

import java.util.Scanner;

public class CalcArea {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 int triBase = 0; // Triangle base (cm)
 int triHeight = 0; // Triangle height (cm)
 int triArea = 0 // Triangle area (cm)

 System.out.print("Enter triangle base (cm): ");
 triBase = scnr.nextInt();

 System.out.print("Enter triangle height (cm): ");
 triHeight = nextInt();

 // Calculate triangle area
 triArea = (triBase * triHeight) / 2;

 /* Print triangle base, height, area
 System.out.print("Triangle area = (")
 System.out.print(triBase);
 System.out.print(*);
 System.out.print("triHeight");
 System.out.print(") / 2 = ");
 System.out.print(triArea);
 System.out.println(" cm^2");

 return;
 }
}

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 33 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Some compiler error messages are very precise, but some are less precise. Furthermore, many errors
confuse a compiler, resulting in a misleading error message. Misleading error messages are common.
The message is like the compiler's "best guess" of what is really wrong.

The compiler indicates a missing semicolon ';'. But the real error is the missing parentheses.

Sometimes the compiler error message refers to a line that is actually many lines past where the error
actually occurred. Not finding an error at the specified line, the programmer should look to previous
lines.

Figure 1.6.2: Misleading compiler error message.

1:
2:
3:
4:
5:
6:
7:
8:
9:

public class Traffic {
 public static void main(String [] args) {

 System.out.print "Traffic today ";
 System.out.println "is very light.";

 return;
 }
}

Traffic.java:4: not a statement
 System.out.print "Traffic today ";
 ^
Traffic.java:4: ';' expected
 System.out.print "Traffic today ";
 ^

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 34 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

P Participation
Activity

1.6.3: The compiler error message's line may be past the
line with the actual error.

1: Stmt
2: Stmt
3: Stmt-with-error
4: Stmt
5: Stmt
6: Stmt

Compiler processing

Compiler message: Error at line 5

Programmer should examine line 5
and earlier lines.

Start

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 35 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Some errors create an upsettingly long list of error messages. Good practice is to focus on fixing just
the first error reported by the compiler, and then re-compiling. The remaining error messages may be
real, but more commonly are due to the compiler's confusion caused by the first error and are thus
irrelevant.

Participation
ActivityP 1.6.4: Error messages.

Question Your answer

1

When a compiler says that an error exists on line 5, that line
must have an error.

True

False

2

If a compiler says that an error exists on line 90, the actual
error may be on line 91, 92, etc.

True

False

3

If a compiler generates a specific message like "missing
semicolon", then a semicolon must be missing somewhere,
though maybe from an earlier line.

True

False

Figure 1.6.3: Good practice for fixing errors reported by the compiler.
1. Focus on FIRST error message, ignoring the rest.
2. Look at reported line of first error message. If error found, fix. Else, look at

previous few lines.
3. Compile, repeat.

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 36 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Good practice, especially for new programmers, is to compile after writing only a few lines of code,
rather than writing tens of lines and then compiling. New programmers commonly write tens of lines
before compiling, which may result in an overwhelming number of compilation errors and warnings.

Participation
ActivityP 1.6.5: Fixing syntax errors.

Click run to compile, and note the long error list. Fix only the first error, then recompile. Repeat that
process (fix first error, recompile) until the program compiles and runs. Expect to see misleading
error messages, and errors that occur before the reported line number.

public class BeansInJars {
 public static void main (String [] args) {

 int numBeans 500;
 int numJars = 3;
 int totalBeans = 0

 System.out.print(numBeans + " beans in ");
 System.out.print(numJar + " jars yields ");
 totalBeans = numBeans * numJars;
 Systems.out.println(totalBeans " total");

 return;
 }
}

Run
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 37 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Because a syntax error is detected by the compiler, a syntax error is known as a type of compile-

time error.

New programmers commonly complain: "The program compiled perfectly but isn't working."
Successfully compiling means the program doesn't have compile-time errors, but the program may
have other kinds of errors. A logic error is an error that occurs while a program runs, also called a
runtime error or bug. For example, a programmer might mean to type numBeans * numJars but
accidentally types numBeans + numJars (+ instead of *). The program would compile, but would
not run as intended.

Participation
ActivityP 1.6.6: Compile and run after writing just a few statements.

stmt1
stmt2
stmt3
stmt4
stmt5
stmt6
stmt7

 Compile&run

Don't do this

stmt1
stmt2
stmt3
stmt4
stmt5
stmt6
stmt7

 Compile&run

Do this instead

Compile&run
Compile&run

Start

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 38 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Figure 1.6.4: Logic errors.
public class BeansInJars {
 public static void main (String [] args) {

 int numBeans = 500;
 int numJars = 3;
 int totalBeans = 0;

 System.out.print(numBeans + " beans in ");
 System.out.print(numJars + " jars yields ");
 totalBeans = numBeans + numJars; // Oops, used + instead of *
 System.out.println(totalBeans + " total");

 return;
 }
}

Participation
ActivityP 1.6.7: Fix the bug.

Click run to compile and execute, and note the incorrect program output. Fix the bug in the
program.

public class BeansInJars {
 public static void main (String [] args) {

 int numBeans = 500;
 int numJars = 3;
 int totalBeans = 0;

 System.out.print(numBeans + " beans in ");
 System.out.print(numJars + " jars yields ");
 totalBeans = numBeans * numJars;
 System.out.println("totalBeans" + " total");

 return;
 }
}

Run
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 39 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

A compiler will sometimes report a warning, which doesn't stop the compiler from creating an
executable program, but indicates a possible logic error. For example, some compilers will report a
warning like "Warning, dividing by 0 is not defined" if encountering code like:
totalItems = numItems / 0 (running that program does result in a runtime error). Even though
the compiler may create an executable program, good practice is to write programs that compile
without warnings. In fact, many programmers recommend the good practice of configuring compilers
to print even more warnings. For example, javac can be run as javac -Xlint yourfile.java.

Figure 1.6.5: First bug.
The term "bug" to describe a runtime error was popularized when in 1947 engineers
discovered their program on a Harvard University Mark II computer was not working
because a moth was stuck in one of the relays (a type of mechanical switch). They taped the
bug into their engineering log book, still preserved today (The moth).

http://americanhistory.si.edu/collections/search/object/nmah_334663

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 40 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Participation
ActivityP 1.6.8: Compiler warnings.

Question Your answer

1

A compiler warning by default will prevent a program from
being created.

True

False

2

Generally, a programmer should not ignore warnings. True

False

3

A compiler's default settings cause most warnings to be
reported during compilation.

True

False

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 41 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Challenge
ActivityC 1.6.1: Basic syntax errors.

Type the statements. Then, correct the one syntax error in each statement. Hints: Statements end in semicolons, and string literals use
double quotes.

System.out.printl("Predictions are hard.");
System.out.print("Especially ');
System.out.println("about the future.").
System.out.println("Num is: " - userNum);

Run

import java.util.Scanner;

public class Errors {
 public static void main(String [] args) {
 int userNum = 5;

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 42 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Section 1.7 - Computers and programs

Challenge
ActivityC 1.6.2: More syntax errors.

Retype the statements, correcting the syntax errors.

System.out.println("Num: " + songnum);
System.out.println(int songNum);
System.out.println(songNum " songs");

Run

import java.util.Scanner;

public class Errors {
 public static void main (String [] args) {
 int songNum = 5;

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 43 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Just as knowing how a car works "under-the-hood" has benefits to a car owner, knowing how a
computer works under-the-hood has benefits to a programmer. This section provides a very brief
introduction.

When people in the 1800s began using electricity for lights and machines, they created switches to
turn objects on and off. A switch controls whether or not electricity flows through a wire. In the early
1900s, people created special switches that could be controlled electronically, rather than by a person
moving the switch up or down. In an electronically-controlled switch, a positive voltage at the control
input allows electricity to flow, while a zero voltage prevents the flow. Such switches were useful, for
example, in routing telephone calls. Engineers soon realized they could use electronically-controlled
switches to perform simple calculations. The engineers treated a positive voltage as a "1" and a zero
voltage as a "0". 0s and 1s are known as bits (binary digits). They built connections of switches,
known as circuits, to perform calculations such as multiplying two numbers.

Figure 1.7.1: Looking under the hood of a car.

Source: Robert Couse-Baker / CC-BY-2.0 via Wikimedia Commons (Original image cropped)

http://creativecommons.org/licenses/by/2.0

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 44 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

These circuits became increasingly complex, leading to the first electronic computers in the 1930s and
1940s, consisting of about ten thousand electronic switches and typically occupying entire rooms as
in the above figure. Early computers performed thousands of calculations per second, such as
calculating tables of ballistic trajectories.

P Participation
Activity

1.7.1: A bit is either 1
or 0, like a light switch
is either on or off
(click the switch).

Figure 1.7.2: Early computer made from thousands of switches.

Source: ENIAC computer (U. S. Army Photo / Public domain)

http://ftp.arl.army.mil/ftp/historic-computers/

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 45 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

To support different calculations, circuits called processors were created to process (aka execute) a
list of desired calculations, each calculation called instruction. The instructions were specified by
configuring external switches, as in the figure on the left. Processors used to take up entire rooms, but
today fit on a chip about the size of a postage stamp, containing millions or even billions of switches.

Instructions are stored in a memory. A memory is a circuit that can store 0s and 1s in each of a series
of thousands of addressed locations, like a series of addressed mailboxes that each can store an
envelope (the 0s and 1s). Instructions operate on data, which is also stored in memory locations as 0s
and 1s.

Thus, a computer is basically a processor interacting with a memory, as depicted in the following
example. In the example, a computer's processor executes program instructions stored in memory,
also using the memory to store temporary results. The example program converts an hourly wage

Figure 1.7.3: As switches shrunk, so did computers. The computer processor
chip on the right has millions of switches.

Source: zyBooks

Figure 1.7.4: Memory.

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 46 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

($20/hr) into an annual salary by multiplying by 40 (hours/week) and then by 50 (weeks/year),
outputting the final result to the screen.

The arrangement is akin to a chef (processor) who executes instructions of a recipe (program), each
instruction modifying ingredients (data), with the recipe and ingredients kept on a nearby counter
(memory).

Below are some sample types of instructions that a processor might be able to execute, where X, Y,
Z, and num are each an integer.

Participation
ActivityP 1.7.2: Computer processor and memory.

Multiply 20 by 40

Multiply result by 50

Output result on screen

Memory

Processor

40000

40000

Start

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 47 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

For example, the instruction "Mul 97, #9, 98" would multiply the data in memory location 97 by the
number 9, storing the result into memory location 98. So if the data in location 97 were 20, then the
instruction would multiply 20 by 9, storing the result 180 into location 98. That instruction would
actually be stored in memory as 0s and 1s, such as "011 1100001 001001 1100010" where 011
specifies a multiply instruction, and 1100001, 001001, and 1100010 represent 97, 9, and 98 (as
described previously). The following animation illustrates the storage of instructions and data in
memory for a program that computes F = (9*C)/5 + 32, where C is memory location 97 and F is
memory location 99.

Table 1.7.1: Sample processor instructions.

Add X, #num, Y Adds data in memory location X to the number num, storing result in
location Y

Sub X, #num, Y Subtracts num from data in location X, storing result in location Y

Mul X, #num, Y Multiplies data in location X by num, storing result in location Y

Div X, #num, Y Divides data in location X by num, storing result in location Y

Jmp Z Tells the processor that the next instruction to execute is in memory
location Z

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 48 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

The programmer-created sequence of instructions is called a program, application, or just app.

When powered on, the processor starts by executing the instruction at location 0, then location 1,
then location 2, etc. The above program performs the calculation over and over again. If location 97 is
connected to external switches and location 99 to external lights, then a computer user (like the
women in the above picture) could set the switches to represent a particular Celsius number, and the
computer would automatically output the Fahrenheit number using the lights.

Participation
ActivityP 1.7.3: Memory stores instructions and data as 0s and 1s.

 011 1100001 001001 1100010
 100 1100010 000101 1100010
 001 1100010 100000 1100011
 101 00000000000000000000
 ??

 ??
 00000000000000000010100
 ??
 ??

Mul

Div 98, #5, 98

Add 98, #32, 99

Jmp 0

97, 98#9,

Meaning

20

Location Memory

0
1
2
3
4

96
97
98
99

...

0
1
2
3
4

Mul 97, #9, 98
Div 98, #5, 98
Add 98, #32, 99
Jmp 0

20
96
97
98
99

 ??

 ??

 ??
 ??

Location Memory

Start

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 49 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Participation
ActivityP 1.7.4: Processor executing instructions.

Processor

0
1
2
3
4

96
97
98
99

Mul 97, #9, 98
Div 98, #5, 98

Add 98, #32, 99
Jmp 0

...

??
20

Next:

68

0

0

Mul 97, #9, 98

20 * 9 --> 180

180

Start

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 50 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

In the 1940s, programmers originally wrote each instruction using 0s and 1s, such as "001 1100001
001001 1100010". Instructions represented as 0s and 1s are known as machine instructions, and
a sequence of machine instructions together form an executable program (sometimes just called an
executable). Because 0s and 1s are hard to comprehend, programmers soon created programs called
assemblers to automatically translate human readable instructions, such as "Mul 97, #9, 98", known
as assembly language instructions, into machine instructions. The assembler program thus helped
programmers write more complex programs.

Participation
ActivityP 1.7.5: Computer basics.

Question Your answer

1

A bit can only have the value of 0 or 1. True

False

2

Switches have gotten larger over the years. True

False

3

A memory stores bits. True

False

4

The computer inside a modern smartphone would have been
huge 30 years ago.

True

False

5

A processor executes instructions like, Add 200, #9, 201,
represented as 0s and 1s.

True

False

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 51 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

In the 1960s and 1970s, programmers created high-level languages to support programming using
formulas or algorithms, so a programmer could write a formula like: F = (9 /5) * C + 32. Early
high-level languages included FORTRAN (for "Formula Translator") or ALGOL (for "Algorithmic
Language") languages, which were more closely related to how humans thought than were machine
or assembly instructions.

To support high-level languages, programmers created compilers, which are programs that
automatically translate high-level language programs into executable programs.

Participation
ActivityP 1.7.6: Program compilation and execution.

MainProgram()
begin

 hourlyWage = GetInput("Enter wage: ");
 Print("Salary is: ");
 Print(hourlyWage * 40 * 50);

end

...
011 1100001 001001 1100010
100 1100010 000101 1100010
001 1100010 100000 1100011
...

High level
program

myfile.txt

Executable
program

myfile.exe
Not human readable

> myfile.exe
Enter wage:20
Salary is: 40000
>

Start

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 52 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Using the above approach, an executable can only run on a particular processor type (like an x86
processor); to run a program on multiple processor types, the programmer must have the compiler
generate multiple executables. Some newer high-level languages like Java use an approach that
allows the same executable to run on different processor types. The approach involves having the
compiler generate an executable using machine instructions of a "virtual" processor, such an
executable sometimes called bytecode. Then, the real processor runs a program, sometimes called a
virtual machine, that executes the instructions in the bytecode. Such an approach may yield slower
program execution, but has the advantage of portable executables.

Note (mostly for instructors): Why introduce machine-level instructions in a high-level language book?
Because a basic understanding of how a computer executes programs can help students master
high-level language programming. The concept of sequential execution (one instruction at a time) can
be clearly made with machine instructions. Even more importantly, the concept of each instruction
operating on data in memory can be clearly demonstrated. Knowing these concepts can help
students understand the idea of assignment (x = x + 1) as distinct from equality, why x = y; y = x does
not perform a swap, what a pointer or variable address is, and much more.

Participation
ActivityP 1.7.7: Programs.

Assembly language Compiler Machine instruction Application

Drag and drop above item Translates a high-level language program into low-level
machine instructions.

Another word for program.

A series of 0s and 1s, stored in memory, that tells a
processor to carry out a particular operation like a
multiplication.

Human-readable processor instructions; an assembler
translates to machine instructions (0s and 1s).

Reset

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 53 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Section 1.8 - Computer tour
The term computer has changed meaning over the years. The term originally referred to a person that
performed computations by hand, akin to an accountant ("We need to hire a computer.") In the
1940s/1950s, the term began to refer to large machines like in the earlier photo. In the 1970s/1980s,
the term expanded to also refer to smaller home/office computers known as personal computers or
PCs ("personal" because the computer wasn't shared among multiple users like the large ones) and to
portable/laptop computers. In the 2000s/2010s, the term may also cover other computing devices
like pads, book readers, and smart phones. The term computer even refers to computing devices
embedded inside other electronic devices such as medical equipment, automobiles, aircraft,
consumer electronics, military systems, etc.

In the early days of computing, the physical equipment was prone to failures. As equipment became
more stable and as programs became larger, the term "software" became popular to distinguish a
computer's programs from the "hardware" on which they ran.

A computer typically consists of several components (see animation below):

Input/output devices: A screen (or monitor) displays items to a user. The above
examples displayed textual items, but today's computers display graphical items too.
A keyboard allows a user to provide input to the computer, typically accompanied by
a mouse for graphical displays. Keyboards and mice are increasingly being replaced
by touchscreens. Other devices provide additional input and output means, such as
microphones, speakers, printers, and USB interfaces. I/O devices are commonly
called peripherals.

Storage: A disk (aka hard drive) stores files and other data, such as program files,
song/movie files, or office documents. Disks are non-volatile, meaning they maintain
their contents even when powered off. They do so by orienting magnetic particles in a
0 or 1 position. The disk spins under a head that pulses electricity at just the right
times to orient specific particles (you can sometimes hear the disk spin and the head
clicking as the head moves). New flash storage devices store 0s and 1s in a non-
volatile memory rather than disk, by tunneling electrons into special circuits on the
memory's chip, and removing them with a "flash" of electricity that draws the
electrons back out.

Memory: RAM (random-access memory) temporarily holds data read from storage,
and is designed such that any address can be accessed much faster than disk, in
just a few clock ticks (see below) rather than hundreds of ticks. The "random access"
term comes from being able to access any memory location quickly and in arbitrary
order, without having to spin a disk to get a proper location under a head. RAM is
costlier per bit than disk, due to RAM's higher speed. RAM chips typically appear on
a printed-circuit board along with a processor chip. RAM is volatile, losing its
contents when powered off. Memory size is typically listed in bits, or in bytes where a

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 54 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

byte is 8 bits. Common sizes involve megabytes (million bytes), gigabytes (billion
bytes), or terabytes (trillion bytes).

Processor: The processor runs the computer's programs, reading and executing
instructions from memory, performing operations, and reading/writing data from/to
memory. When powered on, the processor starts executing the program whose first
instruction is (typically) at memory location 0. That program is commonly called the
BIOS (basic input/output system), which sets up the computer's basic peripherals.
The processor then begins executing a program called an operating system (OS). The
operating system allows a user to run other programs and which interfaces with the
many other peripherals. Processors are also called CPUs (central processing unit) or
microprocessors (a term introduced when processors began fitting on a single chip,
the "micro" suggesting small). Because speed is so important, a processor may
contain a small amount of RAM on its own chip, called cache memory, accessible in
one clock tick rather than several, for maintaining a copy of the most-used
instructions/data.

Clock: A processor's instructions execute at a rate governed by the processor's
clock, which ticks at a specific frequency. Processors have clocks that tick at rates
such as 1 MHz (1 million ticks/second) for an inexpensive processor ($1) like those
found in a microwave oven or washing machine, to 1 GHz (1 billion ticks/second) for
costlier ($10-$100) processors like those found in mobile phones and desktop
computers. Executing about 1 instruction per clock tick, processors thus execute
millions or billions of instructions per second.

Computers typically run multiple programs simultaneously, such as a web browser, an office
application, a photo editing program, etc. The operating system actually runs a little of program A,
then a little of program B, etc., switching between programs thousands of times a second.

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 55 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

After computers were first invented and occupied entire rooms, engineers created smaller switches
called transistors, which in 1958 were integrated onto a single chip called an integrated circuit or
IC. Engineers continued to find ways to make smaller transistors, leading to what is known as
Moore's Law: The doubling of IC capacity roughly every 18 months, which continues today. By
1971, Intel produced the first single-IC processor named the 4004, called a microprocessor ("micro"
suggesting small), having 2300 transistors. New more-powerful microprocessors appeared every few
years, and by 2012, a single IC had several billion transistors containing multiple processors (each
called a core).

Participation
ActivityP 1.8.1: Some computer components.

ML

ProgA

ProgBDoc1

Doc2 OS

Processor

Memory

Cache

Head

Disk

Terabytes

Gigabytes

Megabytes

Clock (GHz)

Start

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 56 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

A side-note: A common way to make a PC faster is to add more RAM. A processor spends much of
its time moving instructions/data between memory and storage, because not all of a program's
instructions/data may fit in memory—akin to a chef that spends most of his/her time walking back and
forth between a stove and pantry. Just as adding a larger table next to the stove allows more
ingredients to be kept close by, a larger memory allows more instructions/data to be kept close to the
processor. Moore's Law results in RAM being cheaper a few years after buying a PC, so adding RAM
to a several-year-old PC can yield good speedups for little cost.

Participation
ActivityP 1.8.2: Programs.

Moore's Law Clock Operating system RAM Disk Cache

Drag and drop above item
Manages programs and interfaces with peripherals.

Non-volatile storage with slower access.

Volatile storage with faster access usually located off
processor chip.

Relatively-small volatile storage with fastest access
located on processor chip.

The frequency a processor executes instructions.

The doubling of IC capacity roughly every 18 months.

Reset

Exploring further:
Video: Where's the disk/memory/processor in a desktop computer (20 sec).
Link: What's inside a computer (HowStuffWorks.com).

http://www.youtube.com/watch?v=8Qybq1SAVWo
http://computer.howstuffworks.com/inside-computer.htm

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 57 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

(*ML) Moore actually said every 2 years. And the actual trend has varied from 18 months. The key is
that doubling occurs roughly every couple years, causing enormous improvements over time.
Wikipedia: Moore's Law.

Section 1.9 - Language history
In 1978, Brian Kernighan and Dennis Ritchie at AT&T Bell Labs (which used computers extensively for
automatic phone call routing) published a book describing a new high-level language with the simple
name C, being named after another language called B (whose name came from a language called
BCPL). C became the dominant programming language in the 1980s and 1990s.

In 1985, Bjarne Stroustrup published a book describing a C-based language called C++, adding
constructs to support a style of programming known as object-oriented programming, along with
other improvements. The unusual ++ part of the name comes from ++ being an operator in C that
increases a number, so the name C++ suggests an increase or improvement over C.

In 1991, James Gosling and a team of engineers at Sun Microsystems (acquired by Oracle in 2010)
began developing the Java language with the intent of creating a language whose executable could
be ported to different processors, with the first public release in 1995.

The language had a C/C++ style and for portability reasons was designed to execute on a virtual
machine. Java was initially intended to be run on consumer appliances like interactive TVs. Web
browsers like Netscape Navigator began providing support for running Java programs within the
browser, bringing much attention to the language. The Java language continues to evolve for the
programming of traditional computers and consumer devices. Java should not be confused with
JavaScript, which is an entirely different language used for developing web applications that was
named similarly.

An December 2015 survey ranking language by their usage (lines of code written) yielded the
following:

Video: How memory works (1:49)
Video: Adding RAM (2:30)
"How Microprocessors Work" from howstuffworks.com.

http://en.wikipedia.org/wiki/Moore's_law
https://www.youtube.com/watch?v=Ye6W6mMSPl0
http://youtu.be/zo-HboY6VpA
http://www.howstuffworks.com/microprocessor.htm

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 58 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Table 1.9.1: Language ranking by usage.

Language Usage by percentage

Java 21%

C 17%

C++ 6%

Python 5%

C# 4%

PHP 3%

Visual Basic .NET 2%

Javascript 2%

Perl 2.2%

Ruby 2%

Assembly language 1%

(Source: http://www.tiobe.com)

Participation
ActivityP 1.9.1: C/C++ history.

Question Your answer

1
In what year was the first C book published?

2
In what year was the first C++ book published?

http://www.tiobe.com/

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 59 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Section 1.10 - Problem solving
A chef may write a new recipe in English, but inventing a delicious new recipe involves more than just
knowing English. Similarly, writing a good program is about much more than just knowing a
programming language. Much of programming is about problem solving: Creating a methodical
solution to a given task.

The following are real-life problem-solving situations encountered by one of this material's authors.

Participation
ActivityP 1.9.2: Java history.

Question Your answer

1
When was the first public release of Java?

Example 1.10.1: Solving a (non-programming) problem: Matching socks.
A person stated a dislike for matching socks after doing laundry, indicating there were three
kinds of socks. A friend suggested just putting the socks in a drawer, and finding a matching
pair each morning. The person said that finding a matching pair could take forever: After
pulling out a first sock, then pulling out a second, placing back, and repeating until the
second sock matches the first, could go on for many times (5, 10, or more).

The friend provided a better solution approach: Pull out a first sock, then pull out a second,
and repeat (without placing back) until a pair matches. In the worst case, the fourth sock will
match one of the first three.

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 60 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Participation
ActivityP 1.10.1: Matching socks solution approach.

Three sock types A, B, and C exist in a drawer.

Question Your answer

1

If sock type A is pulled first, sock type B second, and sock
type C third, the fourth sock type must match one of A, B, or
C.

True

False

2

If socks are pulled one at a time and kept until a match is
found, at least four pulls are necessary.

True

False

3

If socks are pulled two at a time and put back if not
matching, and the process repeated until the two pulled
socks match, the maximum number of pulls is 4.

True

False

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 61 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Participation
ActivityP 1.10.2: Greeting people problem.

An organizer of a 64-person meeting wants to start by having every person individually greet every
other person for 30 seconds. Indicate whether the proposed solution achieves the goal, without
using excessive time. Before answering, think of a possible solution approach for this seemingly
simple problem.

Question Your answer

1

Form an inner circle of 32, and an outer circle of 32, with
people matched up. Every 30 seconds, have the outer circle
shift left one position.

Yes

No

2

Pair everyone randomly. Every 30 seconds, tell everyone to
find someone new to greet. Do this 63 times.

Yes

No

3

Have everyone form a line. Then have everyone greet the
person behind them.

Yes

No

4

Have everyone form a line. Have the first person greet the
other 63 people for 30 seconds each. Then have the second
person greet each other person for 30 seconds each
(skipping anyone already met). And so on.

Yes

No

5

Form two lines of 32 each, with attendees matched up. Every
30 seconds, have one line shift left one position (with the
person on the left end wrapping to right). Once the person
that started on the left is back on the left, then have each line
split into two matched lines, and repeat until each line has
just 1 person.

Yes

No

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 62 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Example 1.10.2: Solving a (non-programming) problem: Sorting (true story).
1000 name tags were printed and sorted by first name into a stack. A person wishes to sort
the tags by last name. Two approaches to solving the problem are:

Solution approach 1: For each tag, insert that tag into the proper location in
a new last-name sorted stack.
Solution approach 2: For each tag, place the tag into one of 26 sub-stacks,
one for last names starting with A, one for B, etc. Then, for each sub-
stack's tags (like the A stack), insert that tag into the proper location of a
last-name sorted stack for that letter. Finally combine the stacks in order
(A's stack on top, then B's stack, etc.)

Solution approach 1 will be very hard; finding the correct insertion location in the new sorted
stack will take time once that stack has about 100 or more items. Solution approach 2 is
faster, because initially dividing into the 26 stacks is easy, and then each stack is relatively
small so easier to do the insertions.

In fact, sorting is a common problem in programming, and the above sorting approach is
similar to a well-known sorting approach (radix sort).

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 63 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

A programmer usually should carefully create a solution approach before writing a program. Like
English being used to describe a recipe, the programming language is just a description of a solution
approach to a problem; creating a good solution should be done first.

Participation
ActivityP 1.10.3: Sorting name tags.

1000 name tags are to be sorted by last name by first placing tags into 26 unsorted sub-stacks
(for A's, B's, etc.), then sorting each sub-stack.

Question Your answer

1

If last names are equally distributed among the alphabet,
what is the largest number of name tags in any one sub-
stack?

1

39

1000

2

Suppose the time to place an item into one of the 26 sub-
stacks is 1 second. How many seconds is required to place
all 1000 name tags onto a sub-stack?

26 sec

1000 sec

26000 sec

3

When sorting each sub-stack, suppose the time to insert a
name tag into the appropriate location of a sorted N-item
sub-stack is N * 0.1 sec. If the largest sub-stack is 50 tags,
what is the longest time to insert a tag?

5 sec

50 sec

4

Suppose the time to insert a name tag into an N-item stack is
N * 0.1 sec. How many seconds are required to insert a
name tag into the appropriate location of a 500 item stack?

5 sec

50 sec

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 64 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Section 1.11 - Java example: Salary calculation program
This material has a series of sections providing increasingly larger program examples. The examples
apply concepts from earlier sections. Each example is in a web-based programming environment so
that code may be executed. Each example also suggests modifications, to encourage further
understanding of the example. Commonly, the "solution" to those modifications can be found in the
series' next example.

This section contains a very basic example for starters; the examples increase in size and complexity
in later sections.

P

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 65 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Participation
ActivityP 1.11.1: Modify salary calculation.

The following program calculates yearly and monthly salary given an hourly wage. The program
assumes a work-hours-per-week of 40 and work-weeks-per-year of 50.

1. Insert the correct number in the code below to print a monthly salary. Then run the
program.

Reset
public class Salary {

 public static void main (String [] args) {
 int hourlyWage = 20;

 System.out.print("Annual salary is: ");
 System.out.println(hourlyWage * 40 * 50);

 System.out.print("Monthly salary is: ");
 System.out.println((hourlyWage * 40 * 50) / 1);
 // FIXME: The above is wrong. Change the 1 so the statement prints monthly salary.

 return;
 }
}

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 66 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Section 1.12 - Java example: Married-couple names

Participation
ActivityP 1.12.1: Married-couple names.

Pat Smith and Kelly Jones are engaged. What are possible last name combinations for the married
couple (listing Pat first)?

1. Run the program below to see three possible married-couple names.
2. Extend the program to print the two hyphenated last name options (Smith-Jones,

and Jones-Smith). Run the program again.

Reset

Pat
Smith
Kelly
Jones

import java.util.Scanner;

public class ShowMarriedNames {

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 String firstName1 = "";
 String lastName1 = "";
 String firstName2 = "";
 String lastName2 = "";

 System.out.println("What is the first person's first name?");
 firstName1 = scnr.nextLine();
 System.out.println("What is the first person's last name?");
 lastName1 = scnr.nextLine();

 System.out.println("What is the second person's first name?");
 firstName2 = scnr.nextLine();
 System.out.println("What is the second person's last name?");

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 67 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 68 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

Participation
ActivityP 1.12.2: Married-couple names (solution).

A solution to the above problem follows:

Reset

Pat
Smith
Kelly
Jones

import java.util.Scanner;

public class ShowMarriedNames_Solution {

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 String firstName1 = "";
 String lastName1 = "";
 String firstName2 = "";
 String lastName2 = "";

 System.out.println("What is the first person's first name?");
 firstName1 = scnr.nextLine();
 System.out.println("What is the first person's last name?");
 lastName1 = scnr.nextLine();

 System.out.println("What is the second person's first name?");
 firstName2 = scnr.nextLine();
 System.out.println("What is the second person's last name?");

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:57 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 69 of 69https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/1/print

