#### **PART VII**

#### INTERNET PROTOCOL: FORWARDING IP DATAGRAMS

# **Datagram Transmission**

- Host delivers datagrams to directly connected machines
- Host sends datagrams that cannot be delivered directly to router
- Routers forward datagrams to other routers
- Final router delivers datagram directly



Does a host need to make forwarding choices?

# Question

Does a host need to make forwarding choices?

Answer: YES!



#### **Two Broad Cases**

- Direct delivery
  - Ultimate destination can be reached over one network
  - The "last hop" along a path
  - Also occurs when two communicating hosts both attach to the same physical network
- Indirect delivery
  - Requires intermediary (router)

## **Important Design Decision**

Transmission of an IP datagram between two machines on a single physical network does not involve routers. The sender encapsulates the datagram in a physical frame, binds the destination IP address to a physical hardware address, and sends the resulting frame directly to the destination.

# Testing Whether A Destination Lies On The Same Physical Network As The Sender

Because the Internet addresses of all machines on a single network include a common network prefix and extracting that prefix requires only a few machine instructions, testing whether a machine can be reached directly is extremely efficient.

# **Datagram Forwarding**

- General paradigm
  - Source host sends to first router
  - Each router passes datagram to next router
  - Last router along path delivers datagram to destination host
- Only works if routers cooperate

## **General Concept**

Routers in a TCP/IP Internet form a cooperative, interconnected structure. Datagrams pass from router to router until they reach a router that can deliver the datagram directly.

### **Efficient Forwarding**

- Decisions based on table lookup
- Routing tables keep only network portion of addresses (size proportional to number of networks, not number of hosts)
- Extremely efficient
  - Lookup
  - Route update

### **Important Idea**

- Table used to decide how to send datagram known as routing table (also called a forwarding table)
- Routing table only stores address of next router along the path
- Scheme is known as *next-hop forwarding* or *next-hop routing*

### **Terminology**

- Originally
  - Routing used to refer to passing datagram from router to router
- More recently
  - Purists decided to use forwarding to refer to the process of looking up a route and sending a datagram
- But...
  - Table is usually called a routing table





- Default route
- Host-specific route

#### **Default Route**

- Special entry in IP routing table
- Matches "any" destination address
- Only one default permitted
- Only selected if no other match in table

### **Host-Specific Route**

- Entry in routing table
- Matches entire 32-bit value
- Can be used to send traffic for a specific host along a specific path (i.e., can differ from the network route)
- More later in the course

# **Level Of Forwarding Algorithm**



Routing table uses IP addresses, not physical addresses

### **Summary**

- IP uses routing table to forward datagrams
- Routing table
  - Stores pairs of network prefix and next hop
  - Can contain host-specific routes and a default route