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Abstract. This article summarizes my research and provides a guide to reading my papers (the
first 14 entries in the bibliography), with emphasis given to more recent results.

My area of research is centered in the geometric topology of 3- and 4-dimensional manifolds. My
work focuses on problems involving the search for certain embedded and/or disjoint submanifolds,
or the determination of obstructions to their existence. I am also interested in fitting such
problems and their (partial) solutions into frameworks that shed light on the bigger picture and
in particular provide topological interpretations of algebraic structure.

The main methodology guiding my work is to study low-dimensional topological phenomena
by “measuring” as directly as possible the well-known general failure of the Whitney move in
dimensions less than or equal to four. A successful Whitney move is shown in Figure 1:

Figure 1. Left: A canceling pair of transverse intersections between two local
sheets of surfaces in a 3-dimensional slice of 4–space. The translucent horizontal
blue sheet appears entirely in this 3-dimensional ‘present’, and the red sheet ap-
pears as an arc which is assumed to extend into ‘past’ and ‘future’. Middle: A
Whitney disk W pairing the intersections. Right: A Whitney move guided by W
eliminates the intersection pair, without creating any new intersections.

Via general position arguments available in higher dimensions, this move allows for the ex-
traction of important topological information from algebraic data in many settings (e.g. surgery
programs for classifying manifolds). In four dimensions, generic intersections between Whitney
disks and surface sheets can obstruct a successful Whitney move: Figure 2(A) shows how such
an intersection point leads to an unsuccessful Whitney move.

Frequently working in collaboration with J. Conant (UT Knoxville) and P. Teichner (Max-
Planck-Institute for Mathematics and UC Berkeley), I have developed a theory of Whitney towers
which describes this failure in terms of higher-order intersections among iterated layers of Whitney
disks in 4–manifolds (Figure 2(B)). Letting the geometric topology guide the construction of
invariants has led to interesting algebra and combinatorics, as well as the uncovering of connections
between Whitney towers and a variety of topics including Feynman diagrams and the Kontsevich
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(a) (b)

Figure 2. (A) This Whitney move eliminates the previous pair of intersections
but creates a new pair of intersections between the translucent blue sheet and
the sheet described by the green arc. (B) Higher-order intersections and Whitney
disks. All arcs are assumed to extend into past and future, describing local sheets
of surfaces in a 4–ball.

invariant, tree homology and quasi-Lie algebras, Milnor invariants and gropes, bordism groups of
homology cylinders, and quadratic forms.

The next section gives a very quick overview of my papers. The subsequent section gives a
paper-by-paper outline, presenting enough details along the way to sketch the development of the
main results.

1. Brief research summary

In [1] I defined (relative) algebraic linking invariants for (homologically essential) knots and
links in 3–manifolds. These concordance invariants characterize cobounding immersed annuli
whose intersections can be paired by Whitney disks. The paper [2] with Peter Teichner defines
homotopy invariants for immersed 2–spheres in 4–manifolds with vanishing Wall intersection
invariants. The invariants provide embedding obstructions which are defined by counting inter-
sections between Whitney disks and spheres. These invariants were later adapted in [7] to classify
stable concordance of knots in many 3–manifolds. An interesting aspect of both [2, 7] is that
the indeterminacies in the invariants reflect the topology of both the ambient manifold and the
homotopy classes of submanifolds under consideration.

A general obstruction theory for order n Whitney towers on immersed surfaces in 4–manifolds
was presented in [3], motivated by the idea that Whitney towers represent “approximations” of
embeddings of the underlying immersed surfaces. It was also shown in [3] that the (reduced)
Kontsevich invariant gives obstructions for links in S3 to bound higher-order Whitney towers in
B4. For knots in S3, the classical Arf invariant was shown in [4] to be the only obstruction to
bounding order n Whitney towers in B4 for n ≥ 2.

Intersections among higher-order Whitney disks can represent obstructions to embedding the
underlying immersed surfaces, and the Whitney tower obstruction theory is given in terms of an
invariant taking values in abelian groups generated by trivalent trees associated to such inter-
sections. A key step in the development of the theory was the geometric realization of a Jacobi
identity (IHX relation) for Whitney tower trees which allows the construction of an order n + 1
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Whitney tower after a controlled homotopy, given the vanishing of the order n intersection invari-
ant. The geometric Jacobi identity construction is described in [6], which also relates Whitney
towers to finite-type invariants for string links.

In [5] it was shown that order n Whitney towers are essentially equivalent to class n+ 1 gropes
(recall that a grope is a “geometric commutator” built by gluing punctured surfaces together
along symplectic basis curves). A key subtlety here is that Whitney towers are more “flexible,”
as reflected by the fact that their trees are unrooted, whereas grope-trees are rooted (with root
vertex corresponding to the bottom stage surface). This Whitney tower-grope relationship turns
out to play a role in the eventual classification of Whitney towers in B4 and the connection with
Milnor invariants.

The recent series of papers [8, 9, 10, 11, 12] (joint with James Conant and Peter Teichner)
describes a classification of order n (twisted) Whitney towers in B4 bounded by links in S3

modulo order n + 1 (twisted) Whitney tower concordance. This classification will be surveyed
in some detail in the next section, including some elaboration on relevant points from the above
mentioned results, as well as connections with other works. A critical step in the classification
involved the computation in [9] of the abelian group generated by labeled vertex-oriented trivalent
trees modulo IHX and antisymmetry relations. This group was previously understood only with
rational coefficients, and the move to integral coefficients unlocked vital combinatorial/topological
information, which also has implications for string links and 3-dimensional homology cylinders,
as described in [13].

The classification of Whitney towers in B4 includes the formulation of higher-order Arf invari-
ants which take values in finite-dimensional Z2-vector spaces and are obstructions to “un-twisting”
a twisted Whitney tower. Although the classification relies on algebraic invariants, especially
Milnor invariants [10], all the invariants have combinatorial/geometric formulations, and can be
extended to immersed 2–spheres in 4–manifolds. Applications of certain non-repeating Whit-
ney towers to the problem of representing homotopy classes of 2–spheres by disjoint maps are
presented in [14].

2. Summaries of papers

The following summaries are in rough chronological order, with emphasis given to more re-
cent published results. Some details and background material are included, especially regarding
Whitney towers.

Statements are given in the smooth oriented category (with discussions of orientations mostly
suppressed), even though all results hold in the locally flat topological category by the basic
results on topological immersions in Freedman–Quinn [29] (see [11, Rem.2.1]).

[1] “Algebraic linking numbers of knots in 3–manifolds”
Algebraic and Geometric Topology 3 (2003) 921–968.

Relative self-linking and linking “numbers” for pairs of oriented knots and 2–component links
in oriented 3–manifolds are defined in terms of Wall’s µ and λ intersection invariants applied to
immersed annuli in 3–manifolds crossed with an interval. The resulting concordance invariants
generalize the usual homological notion of linking by taking into account the fundamental group
of the ambient manifold and often map onto infinitely generated groups. The knot invariants gen-
eralize the type 1 invariants of Kirk and Livingston [37, 38] and when taken with respect to certain
preferred knots (which depend on the free homotopy class under consideration) are characterized
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geometrically as the complete obstruction to the existence of a singular concordance which has
all singularities paired by Whitney disks. (This paper was shaped by my Ph.D. dissertation.)

[2] “Higher order intersection numbers of 2–spheres in 4–manifolds”
(with P. Teichner)

Algebraic and Geometric Topology 1 (2001) 1–29.

A homotopy invariant τ(f) is defined for a map f : S2 → X of a 2–sphere in a 4–manifold
X with vanishing Wall self-intersection number µ(f) by counting intersections between Whitney
disks and the sphere in a quotient of the group ring Z[π1X×π1X] modulo an S3-symmetry. (Note
that µ(f) takes values in Z[π1X] modulo an S2-symmetry.) The invariant τ is an embedding
obstruction which generalizes to the non-simply connected setting the Kervaire-Milnor invariant
defined in [29] and [54].

Necessary and sufficient conditions are given for homotoping three maps f1, f2, f3 : S2 → X
to a position in which they have disjoint images. The obstruction λ(f1, f2, f3) generalizes Wall’s
intersection number λ(f1, f2) which answers the same question for a pair of spheres but is not
sufficient (in dimension 4) for a triple. In the same way as intersection numbers correspond
to linking numbers in 3–space, this new invariant corresponds to the Milnor invariant µ(123),
generalizing the Matsumoto triple [45] to the non simply-connected setting.

The algebraic properties of these new cubic forms on π2X are generalizations of the properties
of quadratic forms as defined by Wall [57, §5]. For instance, λ(f, f, f) =

∑
σ∈S3 τ(f)σ generalizes

the well known fact that Wall’s invariants satisfy λ(f, f) = µ(f) + µ(f) =
∑

σ∈S2 µ(f)σ for an
immersion f with trivial normal bundle.

At this point it was known that the vanishing of τ and λ implied the existence of another “layer”
of “higher-order” Whitney disks, but a clear notion of Whitney towers was not yet formulated.
The invariant τ would turn out to be the case n = 1 of the order n intersection invariants τn
associated to order n Whitney towers.

[3] “Whitney towers and the Kontsevich integral” (with P. Teichner)
Proceedings of a conference in honor of Andrew Casson, UT Austin 2003,

Geometry and Topology Monograph Series, Vol. 7 (2004) 101–134.

This paper introduces order nWhitney towers in 4–manifolds, including the intersection/obstruction
theory which associates to an order n Whitney tower W built on a collection A of immersed sur-
faces in a 4–manifold X an intersection invariant τn(W) ∈ Tn, where the abelian group Tn is
generated by labelled vertex-oriented trivalent trees modulo the IHX (Jacobi) and antisymme-
try relations well-known from the 3–dimensional theory of finite type invariants. (Figure 3 and
Definitions 1–4 below.)

A Whitney tower is constructed recursively starting with A (which by definition has order 0,
since there are no Whitney disks), by adjoining Whitney disks pairing up intersections among
previously-added Whitney disks and A. Any unpaired intersections determine trivalent trees
which bifurcate down through the Whitney tower, with each trivalent vertex contained in a
Whitney disk, and each edge a sheet-changing arc joining vertices in adjacent Whitney disks (with
univalent vertices lying in the components of A). A Whitney tower is order n if all its associated
trees have at least n trivalent vertices. Univalent vertices are labeled by the components of A, and
trivalent vertices inherit a cyclic ordering of the adjacent edges from orientations of the Whitney
disks.



RESEARCH SUMMARY – JANUARY 2015 5

(a) (b)

Figure 3. (A) A local picture of part of a Whitney tower W. (B) The unpaired
intersections determine trivalent trees, andW can be ‘split’ so that all singularities
are contained in neighborhoods of embeddings of these trees.

These trees which define the invariants are actually “spines” of the Whitney towers, and it
can be arranged that all singularities are contained in thickenings of the trees (Figure 3(B)). The
relations in the target can be realized by geometric constructions and the main result [3, Thm.2]
is that if τn(W) = 0 ∈ Tn, then (after a controlled homotopy) the A support a Whitney tower of
order n+ 1 (see Theorem 5 below).

The fundamental problem for Whitney towers is to determine exactly the geometric relations
needed in the target groups to promote the sufficiency of the vanishing of τn(W) to a necessary
condition for the existence of an order n+ 1 Whitney tower on the underlying order 0 immersed
surfaces. Taking τn in the resulting quotient will then give a homotopy invariant of the order 0
surfaces (which is independent of the choice of Whitney tower). These indeterminacies will in
general depend on both the ambient 4–manifold and the order 0 surfaces.

The finite type theory [51] is used to show that, after tensoring with Q, τn agrees with (the lead-
ing term of the tree part of) the Kontsevich invariant in the case of Whitney towers on immersed
disks in the 4–ball bounded by links in the 3–sphere [3, Thm.4]. By work of Habegger–Masbaum
[33], this also implies that τn rationally computes the first non-vanishing Milnor invariants of
links, but this story would not be clarified until later [11].

In this summary, details, notation and terminology are given for Whitney towers in simply
connected 4–manifolds only.

Whitney towers.

Definition 1. A surface of order 0 in an oriented 4–manifold X is a connected oriented surface
in X with boundary embedded in the boundary and interior immersed in the interior of X.
A Whitney tower of order 0 is a collection of order 0 surfaces. The order of a (transverse)
intersection point between a surface of order n and a surface of order m is n + m. The order of
a Whitney disk is (n+ 1) if it pairs intersection points of order n. For n ≥ 1, a Whitney tower of
order n is a Whitney tower W of order (n− 1) together with (immersed) Whitney disks pairing
all order (n− 1) intersection points of W.
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The Whitney disks in a Whitney tower may self-intersect and intersect each other as well
as lower order surfaces but the boundaries of all Whitney disks are required to be disjointly
embedded. In addition, all Whitney disks are required to be framed (see e.g. [11, Sec.2.2]).

Definition 2. All trees are unitrivalent, and oriented by cyclic orderings of the edges at all
trivalent vertices, with univalent vertices labeled from an index set {1, 2, 3, . . . ,m}. A rooted tree
has one unlabeled univalent vertex designated as the root. Such rooted trees correspond to formal
non-associative bracketings of elements from the index set. The rooted product (I, J) of rooted
trees I and J is the rooted tree gotten by identifying the root vertices of I and J to a single vertex
v and sprouting a new rooted edge at v. This operation corresponds to the formal bracket, and
we identify rooted trees with formal brackets. The inner product 〈I, J〉 of rooted trees I and J is
the unrooted tree gotten by identifying the roots of I and J to a single non-vertex point. Note
that all the univalent vertices of 〈I, J〉 are labeled.

The order of a tree, rooted or unrooted, is defined to be the number of trivalent vertices.

The following associations of trees to Whitney disks and intersection points respects the notion
of order given in Definition 1.

To each order zero surface Ai is associated the order zero rooted tree consisting of an edge with
one vertex labeled by i, and to each transverse intersection p ∈ Ai ∩ Aj is associated the order
zero tree tp := 〈i, j〉 consisting of an edge with vertices labeled by i and j. The order 1 rooted
Y-tree (i, j), with a single trivalent vertex and two univalent labels i and j, is associated to any
Whitney disk W(i,j) pairing intersections between Ai and Aj . This rooted tree can be thought of
as being embedded in X, with its trivalent vertex and rooted edge sitting in W(i,j), and its two
other edges descending into Ai and Aj as sheet-changing paths. Orientations of trivalent vertices
and Whitney disks are related by a convention described in [3, Sec. 3.4].

K p
( I , J )W

W

W
I

J

W

W

W
I

J

Figure 4

Recursively, the rooted tree (I, J) is associated to any Whitney disk W(I,J) pairing intersections
between WI and WJ (see left-hand side of Figure 4); with the understanding that if, say, I is
just a singleton i, then WI denotes the order zero surface Ai. To any transverse intersection
p ∈ W(I,J) ∩WK between W(I,J) and any WK is associated the un-rooted tree tp := 〈(I, J),K〉
(see right-hand side of Figure 4). Figure 6 shows an explicit example of a Whitney tower in B4

bounded by a link in S3.
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Definition 3. The group Tn (for each n = 0, 1, 2 . . .) is the free abelian group on (unitrivalent
labeled vertex-oriented) order n trees, modulo the AS (antisymmetry) and IHX (Jacobi) local
relations:

The obstruction theory works as follows:

Definition 4. The order n intersection invariant τn(W) of an order n Whitney tower W is
defined to be

τn(W) :=
∑

εp · tp ∈ Tn
where the sum is over all order n intersections p, with εp = ±1 the usual sign of a transverse
intersection point.

(The invariant τn was actually called the order n intersection “tree” in [3]; the more recent
papers use the more appropriate “invariant”.)

All relations in Tn can be realized by controlled manipulations of Whitney towers, and further
maneuvers allow algebraically canceling pairs of trees to be converted into intersection-point
pairs admitting Whitney disks. As a result, we get the following partial recovery of the “algebraic
cancellation implies geometric cancellation” principle available in higher dimensions:

Theorem 5. If a collection A of properly immersed surfaces in a simply connected 4–manifold
supports an order n Whitney tower W with τn(W) = 0 ∈ Tn, then A is regularly homotopic (rel
∂) to A′ which supports an order n+ 1 Whitney tower.

The analogous result without the assumption that X is simply connected is Theorem 2 of [3].
In the general setting, tree edges are also decorated with elements of π1X, and there are additional
relations in the target group. These relations reduce to the above AS and IHX relations for π1X
trivial.

[4] “Simple Whitney towers, half-gropes and the Arf invariant of a knot”
Pacific Journal of Mathematics Vol. 222, No. 1, Nov (2005) 169–184.

This paper gives a geometric characterization of the classical Arf invariant of a knot in the 3–
sphere in terms of bordism by certain simple Whitney towers and half-gropes, which correspond to
right- or left-normed iterated commutators (called simple commutators in [46]). It is shown con-
structively (by geometrically manipulating framing obstructions on higher-order Whitney disks)
that the Arf invariant is exactly the obstruction to cobording pairs of knots by half-gropes and
simple Whitney towers in S3 × I of arbitrarily high class and order, respectively. In particular, a
knot K ⊂ S3 bounds an order n Whitney tower or a class n grope in B4 for all n if and only if
K has vanishing classical Arf invariant.

This illustrates geometrically how, in the setting of knot concordance, the Vassiliev (isotopy)
invariants (which are known to correspond to 3-dimensional grope-cobordism [24, 25]) “collapse”
to the Arf invariant. Since the classical Arf invariant is the mod 2 reduction of the simplest non-
trivial Vassiliev invariant, this integer-valued isotopy invariant can interpreted as the obstruction
to “pushing this construction down into 3–space”.
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On the other hand, there is a highly non-trivial filtration of knot concordance by symmetric
Whitney towers (graded by height) which are closely related to the notion of n-solvability in-
troduced in [21, 22, 23] (see also “Comparisons with other iterated disk constructions”
below). Thus, the signature invariants which obstruct n-solvability of knots can interpreted as
obstructions to “symmetrizing” the construction of this paper.

[5] “Whitney towers and Gropes in 4–manifolds”
Transactions of the American Mathematical Society 358 (2006) 4251–4278.

This paper describes a precise correspondence between order n Whitney towers and class n+ 1
embedded gropes in 4–manifolds, in particular showing how one can be locally converted into the
other, and vice versa. The “flexibility” of Whitney towers is used to demonstrate some geometric
consequences for knot and link concordance connected to n-solvability [21] (“embedded height n
grope implies height n Whitney tower” – the converse is not known), k-cobordism [35] (“class
2k grope concordance implies k-cobordism”) and grope concordance (“half-gropes generate grope
concordance”). A key observation is that the unitrivalent trees associated to gropes and Whitney
towers can can be preserved during the surgeries and Whitney moves which convert one to the
other. In particular, the conversion of a Whitney tower to a grope only involves a choice of
preferred root univalent vertex on each tree, giving a geometric interpretation of a well-known
map from trees to commutators that is used in the classification of Whitney towers in the 4–ball
(compare the η′- and η-maps of [9, 10] described below).

[6] “Jacobi identities in low-dimensional topology”
(with J. Conant and P. Teichner)

Compositio Mathematica 143 Part 3 (2007) 780–810.

This paper exposes the underlying topological unity between the 3- and 4-dimensional IHX-
relations, deriving from a picture, Figure 5, of the Borromean rings embedded on the boundary
of an unknotted genus 3 handlebody in 3–space. Interpreted as sitting in a 3-dimensional slice of
4–space, this picture leads to the construction of the three trees of an IHX relator (Definition 3
above) in a Whitney tower on a quadruple of 2–spheres in 4–space. By tubing such 2–spheres
into Whitney disks in a Whitney tower this allows for the controlled geometric realization of
any IHX relation, a key step in the obstruction theory order-raising theorem of [3] Theorem 5).
The analogous relation for knot, string link and 3–manifold invariants is described via grope
cobordisms and claspers. (This 3-dimensional direction is pursued further in [13].)

Figure 5. The geometric origin of the 4-dimensional Jacobi identity.
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[7] “Stable concordance of knots in 3–manifolds”
Algebraic and Geometric Topology 10 (2010) 373–432.

Building on the notions of [1] and [2], this paper applies a variation of the order 1 invariant
τ1 to define concordance invariants of knots and links in 3–manifolds which generalize the Arf
invariant, the mod 2 Sato–Levine invariants, and Milnor’s triple linking numbers. Besides fitting
into the general theory of Whitney towers, these (relative) invariants provide obstructions to the
existence of a singular concordance in the product M×I of a 3–manifold M with an interval which
can be homotoped to an embedding after stabilization by connected sums with S2 × S2. Results
include classifications of stably slice links in orientable 3–manifolds, stable knot concordance in
products of an orientable surface with the circle, and stable link concordance for many links of null-
homotopic knots in orientable 3–manifolds. An interesting aspect here is that the indeterminacies
in the invariants generally depend on both the order 0 invariants and the topology of the 3-
manifold, especially the existence of non-orientable base surfaces and singular fibers in Seifert
fibered characteristic submanifolds.

[8] “Higher-order intersections in low-dimensional topology”
(with J. Conant and P. Teichner)

Proceedings of the National Academy of Sciences USA 2011 108 (20) 8081–8084.

This paper surveys the recent classification of Whitney towers in the 4–ball as detailed in
[9, 10, 11, 12] (summarized below) and touches on the related results for homology cylinders
in [13] (see also below). It had become clear from the above summarized papers (as well as
preliminary work on [14] below) that further progress on the general theory of Whitney towers
would depend on first understanding the setting of Whitney towers on immersed disks in the
4–ball bounded by links in the 3–sphere. This classification represents several years of work,
and is complete modulo computation of the image (within known bounds) of certain higher-
order Arf invariants, which are conjectured to be new concordance invariants (that can also be
formulated for 2–spheres in 4–manifolds). As discussed next, the main developments include
the computation of the target groups Tn using discrete Morse theory for chain complexes with
torsion [9], the geometric interpretation of Milnor invariants in terms of twisted Whitney towers
[10], the extension of the obstruction theory to twisted Whitney towers and the formulation of
the higher-order Sato-Levine and Arf invariants [11], and the interpretation of the target for the
twisted Whitney tower invariants as a quadratic refinement of the intersection pairing for framed
Whitney disks [12].

[9] “Tree homology and a conjecture of Levine”
(with J. Conant and P. Teichner)

Geometry and Topology 16 (2012) 55–600.

As an important first step towards the 4–ball Whitney tower classification, this paper computes
the groups Tn for all n, confirming a conjecture of J. Levine which was formulated during his study
of 3-dimensional homology cylinders.

Definition 6. Let L = L(m) denote the free Lie algebra (over the ground ring Z) on generators
{X1, X2, . . . , Xm}. It is N-graded, L = ⊕nLn, where the degree n part Ln is the additive abelian
group of length n brackets, modulo Jacobi identities and the self-annihilation relations [X,X] = 0.
The free quasi-Lie algebra L′ is gotten from L by replacing the self-annihilation relations with the
weaker anti-symmetry relations [X,Y ] = −[Y,X]. Note that L′ can be identified with the abelian
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group on rooted trees (unitrivalent, oriented and labeled as in Definition 2) modulo IHX and
antisymmetry relations.

The bracketing map L1 ⊗ Ln+1 → Ln+2, has a nontrivial kernel, denoted Dn. The analogous
bracketing map on the free quasi-Lie algebra is denoted D′n.

Levine studied a natural map η′n : Tn → D′n defined as follows. For v a univalent vertex of
an order n tree t, denote by B′v(t) ∈ L′n+1 the quasi-Lie bracket of generators X1, X2, . . . , Xm

determined by the formal bracketing of indices which is gotten by considering v to be a root of t.

Definition 7. Denoting the label of a univalent vertex v by `(v) ∈ {1, 2, . . . ,m}, the map η′n :
Tn → L′1 ⊗ L′n+1 is defined on generators by

η′n(t) :=
∑
v∈t

X`(v) ⊗B′v(t)

where the sum is over all univalent vertices v of t.

The Lie bracket map kernel Dn is relevant to a variety of topological settings (see e.g. the
introduction to [9]) and was known to be isomorphic to Tn after tensoring with Q when Levine’s
study of the cobordism groups of 3-dimensional homology cylinders [42, 43] led him to conjecture
that Tn is in fact isomorphic to the quasi-Lie bracket map kernel D′n, via the map η′n. Levine
made progress in [43, 44], and in theorems 1.1 and 1.4 of this paper we affirm his conjecture:

Theorem 8. η′n : Tn → D′n is an isomorphism for all n.

The proof of Theorem 8 uses techniques from discrete Morse theory on chain complexes [26, 40],
including an extension of the theory to complexes containing torsion. A key idea involves defining
combinatorial vector fields that are inspired by the Hall basis algorithm for free Lie algebras and
its generalization by Levine to quasi-Lie algebras.

Via Levine’s description of the structure of L′n and D′n from [44], Theorem 8 gives the following
useful corollary:

Corollary 9 ([9] Cor 1.2). The groups T2k are free abelian (of known rank) and the torsion in

T2k+1 is generated by symmetric trees of the form i−<J
J where J has order k.

As described below, this result will play an essential role in both the classification of Whitney
towers in B4 [11] and the extension [13] of Levine’s study of homology bordism groups of 3-
dimensional homology cylinders.

[10] “Milnor Invariants and Twisted Whitney Towers”
(with J. Conant and P. Teichner)

Journal of Topology 7 no. 1 (2014) 187–224. http://arxiv.org/abs/1102.0758.

The main result of this paper describes a precise correspondence between the Milnor invariants
of links in S3 and the intersection invariants of certain twisted Whitney towers in B4. The
(first non-vanishing) Milnor µ-invariants [49] inductively measure the link longitudes as iterated
commutators in the lower central quotients of the link group. Given that gropes are geometric
embodiments of commutators, and that Whitney towers and gropes are essentially equivalent, one
might expect a close correspondence between Milnor invariants and the Whitney tower obstruction
theory. However, the classical Arf invariant of a knot shows that Milnor invariants will not
provide complete obstructions to the existence of Whitney towers (by [5] and the fact that Milnor
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invariants vanish on knots). It turns out that appropriately weakening the framing requirement
on certain Whitney disks in a Whitney tower does indeed capture the geometry of both the Milnor
and Arf invariants:

Definition 10. A twisted Whitney tower of order 0 is a collection of properly immersed surfaces
in a 4–manifold (without any framing requirement).

For k > 0, a twisted Whitney tower of order 2k − 1 is just a (framed) Whitney tower of order
2k − 1 as in Definition 1 above.

For k > 0, a twisted Whitney tower of order 2k is a Whitney tower having all intersections of
order less than 2k paired by Whitney disks, with all Whitney disks of order less than k required
to be framed, but Whitney disks of order at least k allowed to be twisted.

Here twisted Whitney disks are just Whitney disks without the framing requirement [11,
Sec.2.2]. Special “twisted” trees are assigned to the twisted Whitney disks in a twisted Whitney
tower as follows. If WJ is a twisted Whitney disk with associated rooted tree J (Definition 2),
then the twisted -tree denoted by J associated to WJ is gotten from J by labeling the root
with the twist-symbol “ ”:

J := −−J

The obstruction theory of Theorem 5 is extended to twisted Whitney towers in [11] by including
such trees into a quadratic refinement Tn of the untwisted tree groups [12], and defining an
intersection invariant τn ∈ Tn which sums over all order n (untwisted) trees and (if n is even)
all twisted trees of order n/2.

The connection to Milnor invariants is described using a variation of the η′-map in Definition 7:

Theorem 11. [10, Thm.5] If L bounds a twisted Whitney tower W of order n, then the order k
Milnor invariants µk(L) vanish for k < n and

µn(L) = ηn ◦ τn (W) ∈ Dn

Here the map ηn : Tn → Dn is defined on (untwisted) trees analogously to the sum-over-all-
choices-of-root η′n-map above, and extended to -trees via ηn(J ) := 1

2ηn(〈J, J〉) which lies in
L1 ⊗ Ln+1 because the coefficient of ηn(〈J, J〉) is even. It turns out that ηn maps Tn onto Dn.
The order n Milnor invariant µn(L) corresponds to all the length n+ 2 Milnor invariants of L in
the traditional indexing, and the group Dn is free abelian of known rank equal to the number of
independent first non-vanishing length n+ 2 Milnor invariants [52].

In [3] the above result was shown for framed Whitney towers, using a translation into claspers
together with the Habegger-Masbaum identification of the Milnor invariants with the tree part
of the Kontsevich invariant [33]. This roundabout argument is replaced here by a very direct
geometric one, using the notion of grope duality from [41] and the resolution of a Whitney tower
to a grope described in [4]. It shows clearly the relationship between higher-order intersections
and the iterated commutators determined by the link longitudes, as expressed algebraically by the
map η, and also works for twisted Whitney towers. The proof explains why twisting is allowed in
half-order Whitney disks and sheds light on the geometry behind Habegger and Masbaum’s com-
putation of the image of the first non-vanishing Milnor invariants as a lattice in the tree-subspace
of Feynman diagrams [33, Sec.8]. In particular, the coefficients of 1/2 on certain symmetric trees
in the image lattice correspond to the effect of “reflecting” iterated commutators which is provided
by twisted Whitney disks of order n/2 in an order n twisted Whitney tower.
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The twisted Whitney tower-Milnor invariant correspondence plays a role the classification of
Whitney towers in the 4–ball [11], as well giving some new geometric characterizations of Milnor
invariants [10, Sec.1.6]. We note here one geometric characterization in the setting of k-slice links:

k-slice links: Recall (e.g. from [56]) that a grope of class k is defined recursively as follows: A
grope of class 1 is a circle. A grope of class 2 is an orientable surface Σ with one boundary
component. A grope of class k is formed by attaching to every dual pair of curves in a symplectic
basis for Σ a pair of gropes whose classes add to k.

Gropes are “geometric embodiments” of iterated commutators in the sense that a loop in
a topological space represents a k-fold commutator in the fundamental group if and only if it
extends to a continuous map of a grope of class k. Since Milnor invariants measure how deeply
the link longitudes extend into the lower central series of the link group, Milnor invariants obstruct
bounding immersed gropes essentially by definition. On the other hand, extracting information
on bounding embedded gropes from the vanishing of Milnor invariants is much more difficult.
Embedded framed gropes have usefully served as “approximations” to embedded disks in many
topological settings (see e.g. [56]).

Perhaps the most notable previously known geometric “if and only if” characterization of
Milnor invariants is the k-slice Theorem, due to K. Igusa and K. Orr: Expressed in the language
of gropes, a link L ⊂ S3 is said to be k-slice if the link components Li bound disjointly embedded
(oriented) surfaces Σi ⊂ B4 such that a symplectic basis of curves on each Σi bound class k gropes
immersed in the complement of Σ := ∪iΣi. Via a very careful analysis of the third homology
of the nilpotent quotients F/Fk of the (rank m) free group F , Igusa and Orr [35] proved the
following difficult result.

Theorem 12 ([35]). A link L is k-slice if and only if µi(L) = 0 for all i ≤ 2k − 2 (equivalently,
all Milnor invariants of length ≤ 2k vanish).

The k-slice condition says that the link components bound certain immersed gropes in B4

whose embedded bottom stage surfaces are “algebraic approximations” of slice disks modulo the
kth term of the lower central series of the link group.

Via results in [9, 11] we have the following geometric improvement:

Theorem 13 ([10]). A link L = ∪iLi has µi(L) = 0 for all i ≤ 2k − 2 if and only if the link
components Li bound disjointly embedded surfaces Σi in the 4–ball, with each surface a connected
sum of two surfaces Σ′i and Σ′′i such that

(i) a symplectic basis of curves on Σ′i bound disjointly embedded framed gropes Gi,j of class
k in the complement of Σ := ∪iΣi, and

(ii) a symplectic basis of curves on Σ′′i bound immersed disks in the complement of Σ ∪ G,
where G is the union of all Gi,j.

Theorem 13 is a considerable strengthening of the above Igusa-Orr k-slice Theorem: Since
the geometric conditions in both theorems are equivalent to the vanishing of Milnor’s invariants
through order 2k − 2 (length 2k), one can read this result as saying that the immersed gropes of
class k found by Igusa and Orr can be cleaned up to immersed disks (these are immersed gropes
of arbitrarily high class) or embedded gropes of class k. As explained next, certain higher-order
Arf invariants are exactly the obstructions to eliminating the need for the Σ′′i and these immersed
disks.
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[11] “Whitney tower concordance of classical links”
(with J. Conant and P. Teichner)

Geometry and Topology 16 (2012) 1419–1479.

The main goal of this paper is to provide an answer to the following question for any given n:
“Which links in the 3–sphere bound an order n Whitney tower in the 4–ball?” The answer to
this question is roughly summarized by the following theorem (compare Corollary 27):

Theorem 14. A link bounds a Whitney tower of order n if and only if its Milnor invariants,
higher-order Sato-Levine invariants and higher-order Arf invariants vanish up to order n.

These higher-order Sato-Levine and Arf invariants turn out to be exactly the obstructions
to converting twisted Whitney towers bounded by links to framed Whitney towers, as will be
sketched below (closely following the introduction of [11]).

To explain this result, start by defining the Whitney tower filtration:

· · · ⊆ W3 ⊆ W2 ⊆ W1 ⊆ W0 ⊆ L

on the set L = L(m) of m-component framed links in S3. Here Wn = Wn(m) is the subset of those
framed links that bound immersed disks supporting order n (framed) Whitney towers in B4.

This filtration factors through link concordance, and the intersection of all Wn contains all slice
links since a properly embedded 2–disk is a Whitney tower of arbitrarily large order.

Whitney towers built on immersed annuli connecting link components in S3 × I induce equiv-
alence relations of Whitney tower concordance on links. The quotient Wn of Wn modulo the
equivalence relation of Whitney tower concordance of order n+ 1 is the associated graded of the
filtration in the sense that L ∈ Wn+1 if and only if L ∈ Wn and [L] = 0 ∈Wn.

The Whitney tower obstruction theory leads to:

Theorem 15 ([11] Thm.1.3). The sets Wn are finitely generated abelian groups under the (well-
defined) operation of band sum, and there are realization epimorphisms Rn : Tn �Wn.

These realization maps Rn are defined similarly to T. Cochran’s iterated Bing-doubling con-
struction for realizing Milnor invariants [18, 19], and are equivalent to “simple clasper surgery
along trees” in the sense of Goussarov [31] and Habiro [34] (see Figure 6 for an example).

21

1 3

11

1

22

3

3

R2 B4into  

Figure 6. The realization map R2 sends the tree t on the left to the link L ⊂ S3

shown in the middle. The trace of a null-homotopy of L described by a pair of
crossing-changes between the blue component 1 and the red component 2 supports
an order 2 Whitney tower W ⊂ B4 bounded by L, with τ2(W) = t, as shown on
the right. (Pushing further into B4 would show a 3-component unlink bounding
disjointly embedded disks).
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The following result follows from the Milnor invariant-Whitney tower relationship and the
affirmation of the Levine Conjecture:

Theorem 16 ([11] Thm.1.4). In all even orders, the realization maps R2k : T2k → W2k are
isomorphisms and W2k are free abelian groups of known rank, detected by Milnor invariants.

The affirmation of Levine’s conjecture also implies that the torsion in T2k−1 is generated by

symmetric trees of the form i−<J
J , where J is a subtree of order k−1, and i is a univalent vertex

label (Corollary 9). These trees are actually 2-torsion by the antisymmetry relation and hence all
torsion in T is 2-torsion. The next result shows that a large part of this 2-torsion actually maps
trivially to W2k−1.

Theorem 17 ([11] Thm.1.5). The realization maps R2k−1 factor through a quotient T̃2k−1 of
T2k−1.

The Whitney tower obstruction theory also descends to these reduced groups T̃2k−1:

Definition 18. Let T̃2k−1 := T2k−1/ Im ∆2k−1, where ∆2k−1 : Tk−1 → T2k−1 is defined on gener-
ators t of order k − 1 as follows. For any univalent vertex v of t, denote by `(v) the label of v,
and write t = `(v)−−Tv(t). Then we get a 2-torsion element of T2k−1 defined by

∆2k−1(t) :=
∑
v

`(v)−<Tv(t)
Tv(t)

where the sum is over all univalent vertices v of t.

i i

i i i ii i k k k k

k

j j

j

j jj j

j
== 0

Figure 7. The framing relations in orders 1 and 3.

The relations ∆2k−1(t) = 0 are called framing relations because they correspond to the image
of twisted IHX relations in a twisted Whitney tower via a conversion to a framed Whitney tower
[11, Sec.4.4].

Conjecturally, all odd order reduced realization maps R̃2k−1 : T̃2k−1→W2k−1 are isomorphisms,
and the following theorem confirms this in half of the cases:

Theorem 19 ([11] Thm.1.7). The reduced realization maps R̃4k−1 are isomorphisms and the
torsion of W4k−1 is a Z2-vector space of known dimension, detected by higher order Sato-Levine
invariants.

The higher-order Sato-Levine invariants are certain projections of Milnor invariants, shifted
down one order. They represent obstructions to framing a twisted Whitney tower, as explained
in [11, Sec.5]. In order to sketch the proof of Theorem 19, we next introduce the twisted Whit-
ney tower filtration, and explain how higher-order Arf invariants play a role in completing the
classifications of both the twisted and framed filtrations.
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The twisted Whitney tower filtration. Denote by Wn = Wn(m) the set of framed m-
component links that bound immersed disks supporting order n twisted Whitney towers (Def-
inition 10), and by Wn the associated graded, defined as the quotient by order n + 1 twisted
Whitney tower concordance. This gives the twisted Whitney tower filtration:

· · · ⊆ W3 ⊆ W2 ⊆ W1 ⊆ W0 = L

As stated in general by Theorem 2.10 of [11], the order-raising obstruction theory (Theorem 5
above) also holds for the twisted intersection invariant τn (W) ∈ Tn . Briefly, the odd order
groups T2k−1 are defined as quotients of T2k−1 by the torsion subgroups, generated by trees of

the form i −−< J
J ; where J is a subtree of order k − 1, and i is a univalent vertex label. These

boundary-twist relations correspond to the intersections created by performing a boundary-twist
on an order k Whitney disk. In even orders, the twisted trees J = −−J in T2k which represent
framing obstructions on order k Whitney disks are involved in new symmetry, twisted IHX, and
interior twist relations (see summary of [12] below), all of which have geometric interpretations
[11, Def.2.8].

As a consequence of the twisted obstruction theory [11, Thm.1.9] and an extension of the
realization maps to twisted trees we have:

Theorem 20 ([11] Thm.1.8). The sets Wn are finitely generated abelian groups under the (well-
defined) operation of connected sum # and there are epimorphisms Rn : Tn �Wn .

From the main result of [10] we get the following commutative triangle:

Corollary 21 ([11] Cor.1.12). There is a commutative diagram of epimorphisms

Tn
Rn // //

ηn !! !!

Wn

µn
����

Dn

The affirmation of the Levine Conjecture [9] implies that ηn : Tn → Dn is an isomorphism
except when n ≡ 2 mod 4, so the computation of Wn in three quarters of the cases is complete
(in terms of the known group Dn):

Theorem 22 ([11] Thm.1.13). If n 6≡ 2 mod 4, the maps Rn and µn give rise to isomorphisms

Tn ∼= Wn
∼= Dn

The main result from [9] also gives a complete understanding of the kernel of the combinatorial
side of the above triangle of maps for all n ≡ 2 mod 4:

Proposition 23 ([11] Prop.1.14). The map sending 1⊗ J to −−−< J
J ∈ T4k−2 for rooted trees J of

order k − 1 defines an isomorphism Z2 ⊗ Lk ∼= Ker(η4k−2 : T4k−2 → D4k−2).

It follows from Corollary 21 that Z2 ⊗ Lk is also an upper bound on the kernels of the epimor-
phisms R4k−2 and µ4k−2, and the calculation of W4k−2 will be completed by invariants defined
on the kernel of µ4k−2 which are concordance invariants generalizing the classical Arf invariant,
as described next.
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Higher-order Arf invariants. Let K4k−2 denote the kernel of µ4k−2 : W4k−2 � D4k−2. It

follows from Corollary 21 and Proposition 23 above that mapping 1⊗J to R4k−2( −−< J
J ) induces

a surjection αk : Z2 ⊗ Lk � K4k−2, for all k ≥ 1. Denote by αk the induced isomorphism on
(Z2 ⊗ Lk)/Kerαk .

Definition 24 ([11] Def.1.15). The higher-order Arf invariants are defined by

Arfk := (αk )−1 : K4k−2 → (Z2 ⊗ Lk)/Kerαk

From Corollary 21, Theorem 22, Proposition 23 and Definition 24 we see that the groups Wn

are computed by the Milnor and higher-order Arf invariants:

Corollary 25 ([11] Cor.1.16). The groups Wn are classified by Milnor invariants µn and, in
addition, higher-order Arf invariants Arfk for n = 4k − 2.

In particular, it follows that a link bounds an order n+ 1 twisted Whitney tower if and only if
its Milnor invariants and higher-order Arf invariants vanish up to order n.

We conjecture that the αk are isomorphisms, which would mean that the Arfk are very inter-
esting new concordance invariants:

Conjecture 26 ([11] Conj.1.17). Arfk : K4k−2 → Z2 ⊗ Lk are isomorphisms for all k.

Conjecture 26 would imply that W4k−2
∼= T4k−2 ∼= (Z2⊗ Lk)⊕D4k−2 where the second isomor-

phism (is non-canonical and) already follows from Proposition 23. Conjecture 26 is true for k = 1,
with Arf1 given by the classical Arf invariants of the link components [10, Lem.9]. It remains
an open problem whether Arfk is non-trivial for any k > 1. The links R4k−2( −−< J

J ) realizing
the image of Arfk can all be constructed as internal band sums of iterated Bing doubles of knots
having non-trivial classical Arf invariant [10, Lem.12]. Such links are known not to be slice by
work of J.C. Cha [17], providing evidence in support of Conjecture 26.

In combination with Theorem 22, Conjecture 26 can be succinctly expressed in terms of the
twisted Whitney tower filtration classification as the statement: “the twisted realization maps
Rn : Tn →Wn are isomorphisms for all n.”

A table of the groups Wn(m) for low values of n,m is given in Figure 8, where the higher-order
Arf invariant Arf2 appears in order 6. The currently unknown ranks of Arf2 are represented by
the ranges of possible ranks of the 2-torsion subgroups of the groups W6 (m).

For n = 0, the groups are freely generated by the image under R0 of trees i −− j, with i 6= j,
and twisted trees −− j. The resulting links are detected by linking numbers and framings,

respectively. For order n = 1, the generators come (via R1 ) from trees i−<j
k where all indices

are distinct (otherwise the tree is zero in T1 by the boundary-twist relations). They are detected
by Milnor’s triple invariants µ(ijk).

In order n = 2, generators include (R2 of) -trees −<i
j (recall that these indeed lie in T2

even though the tree has only one trivalent vertex). If i 6= j these are of infinite order, detected
by Milnor’s µ(ijij), but for i = j they have order 2 and are detected by the classical Arf invariant
of the ith component. This shows how the groups T4k−2 combine Milnor and Arf invariants in
one new formalism.

Framing twisted Whitney towers. As explained in Section 5 of [11], the translation of the
classification of the twisted Whitney tower filtration back into the framed setting is accomplished
using a new interpretation of certain first non-vanishing Milnor invariants as obstructions to
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1 2 3 4 5
0 Z Z3 Z6 Z10 Z15

1 0 0 Z Z4 Z10

2 Z2 Z⊕ Z2
2 Z6 ⊕ Z3

2 Z20 ⊕ Z4
2 Z50 ⊕ Z5

2

3 0 0 Z6 Z36 Z126

4 0 Z3 Z28 Z146 Z540

5 0 0 Z36 Z340 Z1740

6 0 Z6 ⊕ Ze22 Z126 ⊕ Ze32 Z1200 ⊕ Ze42 Z7050 ⊕ Ze52

Figure 8. A table of the groups W∞n (m), where m runs horizontally and n runs
vertically. The possible ranges of the torsion exponents in order 6 depend on the
currently unknown ranks of Arf2: 0 ≤ e2 ≤ 1, 0 ≤ e3 ≤ 3, 0 ≤ e4 ≤ 6,
0 ≤ e5 ≤ 10.

framing a twisted Whitney tower. These are the higher-order Sato-Levine invariants which are
defined in all odd orders of the framed Whitney tower filtration. The higher-order Arf invariants
also appear as framing obstructions, however they are shifted down one order, due to the fact
that a twisted Whitney tower of order 2k can always be converted into a framed Whitney tower
of order 2k − 1 by twisting and IHX constructions. These geometric constructions explain the
origin of the framing relations introduced above in Definition 18.

Setting T̃2k := T2k in even orders, the reduced realization maps R̃n : T̃n → Wn for the framed
filtration turn out to be isomorphisms in three quarters of the cases, in close analogy with The-
orem 22 above. Then the higher-order Arf invariants again appear in the other quarter of cases,
and Conjecture 26 has an analogous expression in terms of the framed Whitney tower filtration

classification as the statement: “the realization maps R̃n : T̃n →Wn are isomorphisms for all n”.
However, the analogy with Theorem 22 does not hold for the Milnor invariants µn in the framed

filtration, leading to the appearance of the higher-order Sato-Levine invariants in the classification
of the framed filtration described in the following Corollary 27. This subtle interaction between
Milnor invariants and framing obstructions is the reason why the framed classification is trickier
to describe.

Corollary 27 ([11] Cor.5.11). The groups Wn are classified by Milnor invariants µn and in
addition, Sato-Levine invariants SLn if n is odd, and finally, Arf invariants Arfk for n = 4k− 3.

In particular, a link bounds an order n Whitney tower if and only it has all vanishing Milnor,
Sato-Levine and Arf invariants up to order n (Compare Theorem 14).

A table of the framed filtration groups Wn(m) for low values of n,m is given in Figure 9, where
the higher-order Arf invariant Arf2 appears in order 5. The higher-order Sato-Levine invariants
correspond to 2-torsion in all odd orders (for m > 1), and the ranges of possible ranks of the
2-torsion subgroups of the groups W5(m) correspond to the possible ranks of Arf2 (as in Figure 8).

For n = 0, the groups come from trees i −− j, and are detected by linking numbers for i 6= j

and framings for i = j. For order n = 1, the generators come (via R1) from trees i−<j
k. If all

indices are distinct then they are detected by Milnor’s triple invariants µ(ijk). However, in T̃1
repeating indices also give nontrivial elements of order 2. If i = j = k, these are detected by the
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1 2 3 4 5
0 Z Z3 Z6 Z10 Z15

1 Z2 Z3
2 Z⊕ Z6

2 Z4 ⊕ Z10
2 Z10 ⊕ Z15

2

2 0 Z Z6 Z20 Z50

3 0 Z2
2 Z6 ⊕ Z8

2 Z36 ⊕ Z20
2 Z126 ⊕ Z40

2

4 0 Z3 Z28 Z146 Z540

5 0 Ze22 Z36 ⊕ Ze32 Z340 ⊕ Ze42 Z1740 ⊕ Ze52
6 0 Z6 Z126 Z1200 Z7050

Figure 9. A table of the groups Wn(m), where m runs horizontally and n runs
vertically. The possible ranges of the torsion exponents in order 5 depend on the
currently unknown ranks of Arf2: 3 ≤ e2 ≤ 4, 18 ≤ e3 ≤ 21, 60 ≤ e4 ≤ 66,
150 ≤ e5 ≤ 160.

classical Arf invariant of the ith component. In the case where exactly two indices are equal, one
needs the classical Sato-Levine invariant (but has to note the framing relations from Figure 7).

The main tool for deriving the framed classification from the twisted one is the following
surprisingly simple relation between the twisted and framed Whitney tower filtrations. Recall

that in even orders the reduced groups T̃2k and realization maps R̃2k are by definition equal to
T2k and R2k.

Theorem 28. [11, Thm.5.1] There are commutative diagrams of exact sequences

0 // T̃2k

R̃2k
����

// T2k
R2k
����

// T̃2k−1

R̃2k−1
����

// T2k−1
R2k−1
����

// 0

0 // W2k
// W2k

// W2k−1 // W2k−1
// 0

where all maps in the bottom row are induced by the identity on the set of links. Moreover, there
are isomorphisms

Cok(T2k → T2k) ∼= Z2 ⊗ L′k+1
∼= Ker(T̃2k−1 → T2k−1)

As a consequence of the Levine Conjecture (Theorem 8), all the relevant tree-groups are com-
pletely computed. So together with some additional geometric and algebraic arguments, the
graded groups associated to the framed filtration can be computed in terms of those of the
twisted filtration.

In Section 6 of [11], the diagram of Theorem 28 relating the T - and W-groups is extended by
the relevant η- and µ-maps to include exact sequences of D-groups, giving a bird’s eye view of
the classifications. The resulting pair of master diagrams gives a succinct summary of the overall
algebraic structure connecting the T -, W-, and D-groups.

Comparisons with other iterated disk constructions. Andrew Casson was the first who
tried to recover the Whitney move in dimension four by an iterated disk construction. He started
with a simply connected 4–manifold M with a knot K in its boundary. He looked for conditions
so that K would bound an embedded disk in M . His starting point was an algebraically transverse
sphere for a (singular) disk in M bounding K, an assumption that is satisfied in the setting of the
s-cobordism theorem or the surgery exact sequence (but not for M = B4). He then showed that
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K bounds a Casson tower of arbitrary height in M . In such a tower, one attaches an immersed
disk to the accessory circles of every intersection point in a previous stage (and requires that the
new disk does not intersect previous stages).

Mike Freedman [27] realized that one can actually re-embed one Casson tower into another
and that one can obtain enough geometric control to prove his breakthrough result: Any Casson
tower of height greater than 3 contains in its neighborhood a topologically-flat embedded disk
with boundary K. This implies Freedman’s classification result for simply connected closed 4–
manifolds and leads to many stunning applications.

However, there can be no obstruction theory for finding Casson towers of larger and larger
height, not even in M = B4 (where a transverse sphere cannot exist): Any knot K bounds a
Casson tower of height 1 (which is just a singular disk) and if K bounds a Casson tower of height
4 then it is topologically slice (and hence bounds a Casson tower of arbitrary height).

The ground-breaking work of Cochran, Orr and Teichner in the setting of knot concordance
[21, 22] includes the study of symmetric Whitney towers of height n. Here one inductively attaches
Whitney disks to previous stages but only allows these new Whitney disks to intersect each other
(and not the previously constructed stages). It follows that a symmetric Whitney tower of height
h is a (particularly nice) Whitney tower of order 2h, see [5].

Such symmetric Whitney towers have an extremely rich theory, even in the case of knots (see
[23] for the fact that the filtration is nontrivial for all heights). All the iterated graded groups
are in fact infinitely generated [20], one reason being the existence of higher-order von Neumann
signatures that take values in the reals R (infinitely generated as abelian group).

There are currently no known algebraic criteria for raising the height of a symmetric Whitney
tower, and hence not too much hope for a complete classification of the symmetric Whitney tower
filtration of links, or even knots. This motivated the study of the Whitney tower filtrations by the
more basic grading by order, and the classification as expressed in Corollary 27 is the first instance
of a complete computation of a filtration defined via an iterated disk construction. These Whitney
tower filtrations have analogues for immersed 2–spheres in 4–manifolds, including a formulation
of the proposed higher-order Arf invariants. The order 1 theory goes back to [28] (see also
[2, 45, 54, 59], and 10.8A and 10.8B of [29] where the relation to the Kirby–Siebenmann invariant
is explained), but the higher-order theory is not generally understood for closed 4–manifolds.

[12] “Universal quadratic forms and Whitney tower intersection invariants”
(with J. Conant and P. Teichner)

Proceedings of the Freedman Fest, Geometry and Topology Monographs,
18 (2012) 35–60. http://arxiv.org/abs/1207.0109.

An important step in the above-described computation of the Whitney tower filtration involved
determining the role played by framing obstructions (twistings) on Whitney disks. It was partic-
ularly satisfying to discover that the target groups T2n for the twisted Whitney tower obstruction
theory can be considered as (universal) quadratic refinements of the groups T2n for the framed
setting. This is made precise by this paper, which develops a general theory of quadratic forms,
specializing from the non-commutative to the commutative to finally, the symmetric settings.
These notions generalize those introduced by H. Baues [15] and [16, §8], and A. Ranicki [53,
p.246].

To indicate some of the results which are directly relevant to the Whitney tower filtration,
start by observing that the inner product (Definition 2) on the free abelian group on rooted trees
associated to Whitney disks extends uniquely to a bilinear, symmetric, invariant pairing on the
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free quasi-Lie algebra L′

〈 , 〉 : L′(m)× L′(m) −→ T (m).

This follows since the AS and IHX relations hold on both sides and are preserved by the inner
product, with invariance corresponding to 〈 I, (J,K) 〉 = 〈 (I, J),K) 〉 by the rotation of the tree
in the plane [12, Fig.4]. This inner product is in fact universal by Lemma 10 of [12]. Note that
L′ is denoted by L in [12] (where it is the only type of Lie algebra considered).

Recall from above that the group T2n(m) is gotten from T2n(m) by including order n -trees
J as new generators, where the notation indicates that the order n rooted tree J has its root
vertex labeled by the twist symbol . In addition to the usual IHX- and AS-relations on unrooted
order 2n trees, the order n -trees are involved in the following new symmetry, interior twist and
twisted IHX relations:

J = (−J) 2 · J = 〈J, J〉 I = H +X − 〈H,X〉

As their names suggest, these new relations arose from geometric considerations for twisted Whit-
ney towers in [11].

As a specialization of the general theory, the universal symmetric pairing 〈 , 〉 is shown to admit
a universal quadratic refinement q : L′n(m) → T2n(m) defined by q(J) := J . In particular, with
the right algebraic notion of quadratic refinement, the group T2n(m) is completely determined
by the pairing 〈 , 〉. Most of this paper is dedicated to developing this general theory, which
we do not attempt to summarize here (but compare the above relations with those of Wall’s
intersection form: µ(f) = µ(−f), 2µ(f) = λ(f, f), µ(f + g) = µ(f) + µ(g) + λ(f, g), for f, g in
the subgroup of π2nX represented by immersed n-spheres with vanishing normal Euler number,
X a 4n-dimensional simply connected manifold.)

The following consequence of general properties of universal symmetric quadratic refinements
has direct implications for the classification of Whitney towers in the 4–ball:

Theorem 29 ([12] Thm.9). For all m,n, the maps t 7→ t respectively J 7→ 1⊗ J give an exact
sequence:

0 // T2k // T2k // Z2 ⊗ L′k+1
// 0

This result is essential to the proof of Theorem 28 above, which is used to translate the compu-
tation of the twisted filtration to the framed setting, and sheds light on the role of the higher-order
Arf invariants as obstructions to framing a twisted Whitney tower [11, Sec.5].

This paper also exposits the relationship between the first order Whitney tower intersection in-
variant τ1 and the Kirby–Siebenmann invariant of a closed 4–manifold, motivated by the idea that
a proper algebraic organization of the higher-order τn may contribute to a better understanding
of 4–manifolds.

[13] “Geometric filtrations of string links and homology cylinders”
(with J. Conant and P. Teichner)

(To appear in Quantum Topology) http://arxiv.org/abs/1202.2482.

This paper applies extensions of the techniques of the above-described computation of the
Whitney tower filtrations L ⊃ W0 ⊃ W1 ⊃ W2 ⊃ · · · and Wn ⊃ Wn on the set L = L(m) of
concordance classes of framed m-component links in the 3–sphere to study the following filtrations
of string links and homology cylinders:
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SL : – The analogous Whitney tower filtrations SWn and SWn on the group SL = SL(m)
of concordance classes of framed m-component string links (obtained from the usual
closure operation from string links to links).

– The Johnson filtration SJn on SL, defined as kernels of nilpotent Artin representa-
tions Artinn : SL→ Aut0(F/Fn+2), where F = F (m) is a free group onm generators,
Fn are the terms in its lower central series and Aut0(F/Fn) consists of those auto-
morphisms of F/Fn which are defined by conjugating each generator and which fix
the product of generators.

– The Goussarov-Habiro Y -filtration SYn on SL consists of string links obtained from
the unlink via surgeries along claspers with n nodes.

HC : The Johnson and Goussarov-Habiro filtrations generalize to filtrations Jn and Yn respec-
tively on the group HC = HC(g, b) of homology cobordism classes of homology cylinders
over a surface Σg,b of genus g with b boundary circles.

The graded groups associated to these filtrations will be denoted by the sans-serif versions of
the above letters, for example SWn := SWn/SWn+1.

The main results of [13] are as follows:

Theorem 30 ([13] Thm.1). The sets SWn and SWn are normal subgroups of SL which are central
modulo the next order. We obtain nilpotent groups SL/SWn and SL/SWn , with associated graded
groups

SWn
∼= Wn and SWn

∼= Wn

Theorem 30 will lead to a connection between the higher-order Arf invariants associated to the
Whitney tower filtrations and the computation of the graded groups associated to the Jn and Yn
filtrations (Theorem 35 below, and [13, Sec.4]).

The next theorem and subsequent corollary follow from the classification of Wn [11], together
with the interpretation of the Artin representation as the “universal” Milnor invariant [32].

Theorem 31 ([13] Thm.2). We have SWn ⊂ SJn, and the Artin representation Artinn induces
an epimorphism

Artinn : SL/SWn � Aut0(F/Fn+2)

The kernel is a finite 2-group, generated by (internal band sums of) iterated Bing-doubles of the
figure eight string knot (possibly with some additional trivial strands). In particular, for each n
there is an upper bound on the size of this kernel.

See Figures 1 and 2 of [13] for the definition of Bing-doubling and internal band sums in the
setting of string links.

In fact the kernel of Artinn can be characterized geometrically in several other ways:

Corollary 32 ([13] Cor.3). The following subsets of SL/SWn are equal to the kernel of Artinn :

(i) The subgroup generated by (internal band sums of) iterated Bing-doubles of a fixed string
knot K0 with nontrivial Arf invariant (possibly with some additional trivial strands).

(ii) The subgroup generated by (internal band sums) of iterated Bing-doubles of all string
knots with non-trivial Arf invariant (possibly with some additional trivial strands).

(iii) The set of equivalence classes of boundary string links.
(iv) The set of equivalence classes of π1-null string links.

Here a string link σ is a boundary string link if the components of the standard closure Lσ
bound disjoint surfaces in the 3–ball B; and a π1-null string link is a string link σ whose standard
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closure Lσ bounds a surface Σ in the 4–ball B4 = B×[0, 1] such that π0(Lσ)→ π0(Σ) is a bijection
and which for which there is a push-off inducing the trivial homomorphism π1(Σ)→ π1(B

4 \Σ).
Note that Bing-doubling preserves boundary links (see Definition 9 of [13]).

Regarding the other filtrations, Proposition 33 of [13] shows that SYn ⊆ SWn. (In fact, an
upcoming paper will show that this is an equality, and that the relation of order k − 1 Whitney
tower concordance is equivalent to the notion of Ck-concordance studied by Meilhan and Yasuhara
[47].) Summarizing, we see that the filtrations on string links SL are ordered as follows:

SYn ⊆ SWn ⊆ SWn ⊆ SJn

For n = 1, all these filtrations are equal to the set SL1 := SY1 = SW1 = SW1 = SJ1 of
concordance classes of string links with trivial linking numbers and framings.

Similarly, for n = 1 the above filtrations of HC(g, b) give those homology cylinders which
induce the identity homomorphism on first homology H1(Σg,b). We write HC1 = Y1 = J1 for this
subgroup. By taking the complement of a string link in D2 × [0, 1], one gets a well-known group
homomorphism

C : SL(m)→ HC(0,m+ 1)

which takes SJn to Jn, and takes SYn to Yn. In unpublished work [34], Habegger used the fact
that Σg,1 × [0, 1] ∼= Σ0,2g+1 × [0, 1] to give a bijection

HC1(0, 2g + 1)←→ HC1(g, 1)

which is not a group homomorphism but identifies the filtrations Jn (respectively Yn) on the two
different types of homology cylinders. In [13, Sec.4] (see Figure 6), the map C is generalized to
another geometric map

H : SL1(2g)→ HC1(g, 1)

which is not a homomorphism but takes both SYn to Yn and SJn to Jn for n ≥ 1, and it is shown
that this map H agrees with Habegger’s bijection pre-composed with C. Combining results from
[32] and [30] it follows that the induced maps on the associated graded groups Cn : SJn → Jn
are group isomorphisms for all n ≥ 1, and by composing with Habegger’s bijection we see that
the same is true for Hn : SJn → Jn. Here SJn and Jn are the quotient groups SJn/SJn+1 and
Jn/Jn+1 of the Johnson filtrations.

The analogous induced maps for the Y -filtrations are not yet fully understood but again the
statements for Cn and Hn are equivalent:

Theorem 33 ([13] Thm.4). The induced maps Cn, Hn : SYn → Yn are group isomorphisms for
n ≡ 0, 2, 3 mod 4. In the remaining cases, C4n+1, H4n+1 are epimorphisms with finitely generated
2-torsion kernel.

The graded group SYn is defined as the quotient of SYn by the equivalence relation generated
by simple order n + 1 clasper surgeries. (So for example two string links representing elements
in SYn are equivalent if and only if they differ by a sequence of concordances and order n + 1
simple clasper surgeries.) Similarly Yn is defined as the quotient of Yn by the equivalence relations
generated by order n+ 1 simple clasper surgeries.

By a theorem of Nielsen [50, 60], HC(g, b) contains the mapping class group of Σg,b. This is
one source of interest in the filtrations Jn and Yn.

Levine had already observed that in HC(g, 1) there is an inclusion Yn ⊆ Jn and he started
to study the difference in [42, 43]. He conjectured the statements of the next theorem which is
proved in the above-described [9].
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Theorem 34 ([9]). For n ≥ 1, the inclusion of filtrations Yn ⊆ Jn of HC(g, 1) induces the
following exact sequences of associated graded groups:

0→ Y2n → J2n → Ln+1 ⊗ Z2 → 0

Zm2 ⊗ Ln+1 → Y2n+1 → J2n+1 → 0

Levine did not conjecture that the map Zm2 ⊗ Ln+1 → Y2n+1 is injective, and in fact it is
not because the framing relations introduced in [11] are also present in this context. Much of
[13] is dedicated to extending the controlled constructions on (twisted) Whitney towers to the
3-dimensional clasper calculus pioneered by Habiro, and unravelling the odd order case is the
main result of this paper:

Theorem 35 ([13] Thm.6). For n ≥ 1, there are exact sequences of associated graded groups:

0→ L2n+1 ⊗ Z2 → Y4n−1 → J4n−1 → 0

0→ KY
4n+1 → Y4n+1 → J4n+1 → 0

and the kernel KY
4n+1 fits into the exact sequence Ln+1 ⊗ Z2

an+1→ KY
4n+1 → L2n+2 ⊗ Z2 → 0.

The calculation of KY
4n+1 is thus reduced to the calculation of Ker(an+1). This is the precise

analog of the question “how nontrivial are the higher-order Arf invariants?” in the setting of
Whitney tower filtrations of classical links (compare the an+1 in [13, Thm.6] with the maps αn+1

defined in [8]).

Conjecture 36. The homomorphisms an+1 are injective for all n ≥ 1.

The connection between this conjecture and the higher-order Arf invariants defined for links
is explained in Section 4 of [13], which derives several commutative diagrams comparing string
links and homology cylinders.

[14] “Pulling apart 2–spheres in 4–manifolds”
(with P. Teichner)

Documenta Mathematica Vol. 19/31 (2014) 941–992.

As a first step towards applying the theory of Whitney towers to study 4–manifolds, this paper
attacks the problem of representing homotopy classes of 2–spheres by disjoint maps using an
obstruction theory for non-repeating Whitney towers. Although much of the material in [14] is
developed for non-simply connected 4–manifolds, this summary will stick to the simply connected
setting, presenting only selected results.

Definition 37. A tree (as in Definition 2) is called non-repeating if all of its univalent labels are
distinct, and repeating otherwise. Whitney disks and intersection points are called non-repeating
if their associated trees are non-repeating, and repeating otherwise. A Whitney tower W is an
order n non-repeating Whitney tower if all non-repeating intersections of order (strictly) less than
n are paired by Whitney disks. In particular, ifW is an order n Whitney tower thenW is also an
order n non-repeating Whitney tower. In a non-repeating Whitney tower repeating intersections
of any order are not required to be paired by Whitney disks.

Since all the relations in Definition 3 are homogeneous in the univalent labels, restricting the
generators to be non-repeating order n trees defines a subgroup Λn(m) < Tn(m).
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Definition 38. If W is an order n non-repeating Whitney tower, the order n non-repeating
intersection invariant λn(W) is defined by summing the non-repeating trees ±tp over all order n
non-repeating intersections p ∈ W:

λn(W) :=
∑

sign(p) · tp ∈ Λn(m)

The obstruction theory works just as in the repeating setting:

Theorem 39. If A1, . . . , Am admit a non-repeating Whitney tower W of order n with λn(W) =
0 ∈ Λn(m), then the Ai are homotopic (rel boundary) to A′1, . . . , A

′
m admitting an order n + 1

non-repeating Whitney tower.

For a collection of order zero surfaces A1, A2, . . . , Am # X, if the Ai are homotopic (rel
boundary) to pair-wise disjoint immersions, then we say that the Ai can be pulled apart. As a
first step towards determining whether or not any given Ai can be pulled apart, we have the
following translation of the problem into the language of Whitney towers:

Proposition 40. If A1, . . . , Am admit a non-repeating Whitney tower of order m − 1, then the
Ai can be pulled apart.

The existence of a non-repeating Whitney tower of sufficient order encodes “pushing down”
homotopies and Whitney moves which lead to disjointness (see [14, Prop.1]).

Combining Theorem 39 with Proposition 40 above yields the following result, which was an-
nounced in [3, Thm.3]:

Theorem 41. If A1, . . . , Am admit a non-repeating Whitney tower W of order (m− 2) such that
λ(m−2)(W) vanishes in Λ(m−2)(m), then the Ai can be pulled apart.

Thus, the problem of deciding whether or not a given collection of order zero surfaces Ai can be
pulled apart can be attacked inductively by determining the extent to which λn(W) only depends
on the homotopy classes of the Ai.

A setting where λn(W) ∈ Λn(m) does indeed tell the whole story is described next.

Some simply connected 4-manifolds. Denote by XL the 4–manifold which is gotten by at-
taching 0-framed 2–handles to the 4–ball along a link L in the 3–sphere.

Theorem 42. If L bounds an order n Whitney tower in the 4–ball, then the following both hold:

(i) Any collection collection A = A1, A2, . . . , Am of immersed 2–spheres in XL admits an
order n Whitney tower W.

(ii) The non-repeating intersection invariant λn(A) := λn(W) ∈ Λn(m) only depends on the
homotopy class of A.

Recall that an order n Whitney tower can also be considered to be an order n non-repeating
Whitney tower. Using the realization techniques for Whitney towers in the 4–ball described in
[11, Sec.3], examples of such A realizing any value in Λn(m) can be constructed.

Corollary 43. For L bounding an order n Whitney tower and A = A1, A2, . . . , Am # XL as in
Theorem 42:

(i) λn(A) = 0 ∈ Λn(m) if and only if A admits an order n+ 1 non-repeating Whitney tower.
(ii) In the case m = n+ 2, λn(A) = 0 ∈ Λn(n+ 2) if and only if the Ai can be pulled apart.
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The “only if” parts of the statements in Corollary 43 follow from Theorem 39 and Theorem 41
above; the “if” statements follow from Theorem 42.

Note that Theorem 42 and Corollary 43 provide a complete answer to the question of whether
or not A1, A2, . . . , Am # XL can be pulled apart for the cases m ≤ n+ 2.

Pulling apart parallel surfaces. The next theorem generalizes Milnor’s surprising result that
the components of any link of 0-parallel knots in the 3–sphere bound disjoint immersed disks into
the 4–ball (Theorem 4 of [48]).

Theorem 44. If A # X is an immersed 2–sphere in a simply connected 4–manifold with
[A] · [A] = 0, then any number of parallel copies of A can be pulled apart.

Here [A] · [A] ∈ Z is the usual self-intersection number of the homology class [A] ∈ H2(X; Z),
and “parallel copies” of A are normal sections. Note that each transverse self-intersection of A
gives rise to m2 −m non-repeating order zero intersections among m parallel copies of A. The
proof of Theorem 44 proceeds by building a non-repeating Whitney tower of order m−1 and then
applying Proposition 40. The same proof works for properly immersed disks, and is completely
geometric, in contrast to Milnor’s algebraic proof of the above mentioned result in [48]. The
statement of Theorem 44 is not generally true in 4–manifolds with arbitrary fundamental group,
as illustrated in Example 7.2 of [14].

Indeterminacies from lower-order intersections. The sufficiency results of Theorem 39 and
Theorem 41 show that the groups Λn(m) provide upper bounds on the invariants needed for a
complete obstruction theoretic answer to the question of whether or not surfaces A1, . . . , Am in a
4–manifold X can be pulled apart. And as illustrated by Theorem 42 above, there are settings in
which λn(W) ∈ Λn(m) only depends on the homotopy classes of the underlying order 0 surfaces
Ai, sometimes giving the complete obstruction to pulling them apart.

In general however, more relations are needed in the target space to account for indeterminacies
in the choices of possible Whitney towers on a given collection of order 0 surfaces. In particular,
for Whitney towers in a 4–manifold X with non-trivial second homotopy group π2X, there can
be indeterminacies which correspond to tubing the interiors of Whitney disks into immersed 2–
spheres. Such INT intersection relations are, in principle, inductively manageable in the sense
that they are determined by strictly lower-order intersection invariants on generators of π2X. For
instance, the INT relations in the target groups of the order 1 invariants of [2, 45] are determined
by the order zero intersection form on π2X. However, as described in Section 9 of [14], higher-
order INT relations can be non-linear and if one wants the resulting target space to carry exactly
the obstruction to the existence of a higher order tower then interesting subtleties already arise
in the order 2 setting.

Homotopy invariance. The proposed program for pulling apart 2–spheres in 4–manifolds via
non-repeating Whitney towers involves refining Theorems 39 and 41 by formulating (and comput-
ing) the relations INTn(A) ⊂ Λn(m) so that the vanishing of λn(A) := λn(W) ∈ Λn(m)/INTn(A)
is both necessary and sufficient for the existence of an order n+ 1 non-repeating tower supported
by A = A1, . . . , Am.

Note that if λn(W) ∈ Λn(m)/INTn(A) does not depend the choice of order n non-repeating
Whitney towerW for a fixed immersion A, then λn(A) := λn(W) ∈ Λn(m)/INTn(A) only depends
on the homotopy class of A: Up to isotopy, any generic homotopy from A to A′ can be realized
as a sequence of finitely many finger moves followed by finitely many Whitney moves. Since any
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Whitney move has a finger move as an “inverse”, there exists A′′ which differs from each of A and
A′ by only finger moves (up to isotopy). But a finger move is supported near an arc, which can be
assumed to be disjoint from the Whitney disks in a Whitney tower, and the pair of intersections
created by a finger move admit a local Whitney disk; so any Whitney tower on A or A′ gives rise
to a Whitney tower on A′′ with the same intersection invariant.

Thus, the problem is to find INTn(A) relations which give independence of the choice of W,
and can be realized geometrically so that λn(W) ∈ INTn(A) implies that A bounds an order n+1
non-repeating Whitney tower. We conjecture that all these needed relations do indeed correspond
to lower-order intersections between 2–spheres, and hence deserve to be called “intersection”
relations. Although such INTn(A) relations are completely understood for n = 1 [3], a precise
formulation for the n = 2 case already presents interesting subtleties.

Useful necessary and sufficient conditions for pulling apart four or more 2–spheres in an ar-
bitrary 4–manifold are not currently known. In [14, Sec.9] the intersection indeterminacies for
an order 2 non-repeating intersection invariant in the simply connected setting are examined,
and shown to be computable as the image in Λ2(4) ∼= Z2 of a map whose non-linear part is
determined by certain Diophantine quadratic forms which are coupled by the intersection form
on π2X. Carrying out this computation in general raises interesting number theoretic questions,
and has motivated work of Konyagin and Nathanson in [39].
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