
> >
> >

> >

(1)(1)

(2)(2)

I am using material from "Introduction to Maple's Graph Theory Package" and the Help files at
MapleSoft

restart
with GraphTheory

AcyclicPolynomial, AddArc, AddEdge, AddVertex, AdjacencyMatrix, AllPairsDistance, Arrivals,
ArticulationPoints, BellmanFordAlgorithm, BiconnectedComponents, BipartiteMatching,
Blocks, CartesianProduct, CharacteristicPolynomial, ChromaticIndex, ChromaticNumber,
ChromaticPolynomial, CircularChromaticIndex, CircularChromaticNumber,
CircularEdgeChromaticNumber, CliqueNumber, CompleteGraph, ConnectedComponents,
Contract, ConvertGraph, CopyGraph, CycleBasis, CycleGraph, Degree, DegreeSequence,
DelaunayTriangulation, DeleteArc, DeleteEdge, DeleteVertex, Departures, Diameter,
Digraph, DijkstrasAlgorithm, DiscardEdgeAttribute, DiscardGraphAttribute,
DiscardVertexAttribute, DisjointUnion, Distance, DrawGraph, DrawNetwork, DrawPlanar,
EdgeChromaticNumber, EdgeConnectivity, Edges, Embed, ExportGraph, FlowPolynomial,
FundamentalCycle, GetEdgeAttribute, GetEdgeWeight, GetGraphAttribute,
GetVertexAttribute, GetVertexPositions, Girth, Graph, GraphComplement, GraphEqual,
GraphJoin, GraphNormal, GraphPolynomial, GraphPower, GraphRank, GraphSpectrum,
GraphUnion, GreedyColor, HasArc, HasEdge, HighlightEdges, HighlightSubgraph,
HighlightTrail, HighlightVertex, HighlightedEdges, HighlightedVertices, ImportGraph,
InDegree, IncidenceMatrix, IncidentEdges, IndependenceNumber, InducedSubgraph,
IsAcyclic, IsBiconnected, IsBipartite, IsClique, IsConnected, IsCutSet, IsDirected,
IsEdgeColorable, IsEulerian, IsForest, IsGraphicSequence, IsHamiltonian, IsIntegerGraph,
IsIsomorphic, IsNetwork, IsPlanar, IsRegular, IsStronglyConnected, IsTournament, IsTree,
IsTwoEdgeConnected, IsVertexColorable, IsWeighted, IsomorphicCopy, KruskalsAlgorithm,
LaplacianMatrix, Latex, LineGraph, ListEdgeAttributes, ListGraphAttributes,
ListVertexAttributes, MakeDirected, MakeWeighted, MaxFlow, MaximumClique,
MaximumDegree, MaximumIndependentSet, MinimalSpanningTree, MinimumDegree,
Mycielski, Neighborhood, Neighbors, NonIsomorphicGraphs, NumberOfEdges,
NumberOfSpanningTrees, NumberOfVertices, OddGirth, OutDegree, PathGraph,
PermuteVertices, PlaneDual, PrimsAlgorithm, RandomGraphs, RankPolynomial,
RelabelVertices, ReliabilityPolynomial, SHARCorder, SeidelSpectrum, SeidelSwitch,
SequenceGraph, SetEdgeAttribute, SetEdgeWeight, SetGraphAttribute, SetVertexAttribute,
SetVertexPositions, ShortestPath, SpanningPolynomial, SpanningTree, SpecialGraphs,
StronglyConnectedComponents, Subdivide, Subgraph, TensorProduct, TopologicSort, Trail,
TravelingSalesman, TreeHeight, TuttePolynomial, TwoEdgeConnectedComponents,
UnderlyingGraph, VertexConnectivity, Vertices, WeightMatrix

12a. We can create a graph with an adjacency list.
adjacencyList12a 2, 4, 5 , 3, 1, 5 , 2, 4, 5 , 1, 3, 5 , 1, 2, 3, 4

note if is not symmetric it goes to a directed graph

> >

> >

(3)(3)

> >

(2)(2)adjacencyList12a := 2, 4, 5 , 3, 1, 5 , 2, 4, 5 , 1, 3, 5 , 1, 2, 3, 4

G Graph adjacencyList12a
G := Graph 1: an undirected unweighted graph with 5 vertices and 8 edge(s)

DrawGraph G

1

2

34

5

DrawGraph G, style = spring

(6)(6)

(2)(2)

> >
(4)(4)

> >

(5)(5)
> >

1

2

3

4

5

Note that these are the same graph but are drawn differently. These two graphs are isomorphic. There is a
one-one onto f from the vertices of the first to the vertices of the second so that {a,b} is an edge iff {f(a),f
(b)} is an edge. It is not always simple to decide if two graphs are isomorphic. In fact it is not known
how hard it is. We will in general look for invariants like Degree to disprove graphs are not isomorphic.
A related concept is the neighbors of vertices. For directed graphs there are arrivals and departures and
outdegree and indegree.

Degree G, 4 #InDegree;OutDegree
3

Neighbors G #Arrivals,Departures
2, 4, 5 , 1, 3, 5 , 2, 4, 5 , 1, 3, 5 , 1, 2, 3, 4

T NonIsomorphicGraphs 6, 5, restrictto = connected, output = graphs, outputform = graph
T := Graph 10: an undirected unweighted graph with 6 vertices and 5 edge(s),

Graph 11: an undirected unweighted graph with 6 vertices and 5 edge(s),
Graph 12: an undirected unweighted graph with 6 vertices and 5 edge(s),
Graph 13: an undirected unweighted graph with 6 vertices and 5 edge(s),
Graph 14: an undirected unweighted graph with 6 vertices and 5 edge(s),
Graph 15: an undirected unweighted graph with 6 vertices and 5 edge(s)

> >

(2)(2)

DrawGraph T

1

2 3

4 5

6

1

2 3 4

5

6

1

2 3 4

5 6

> >

(2)(2)

(7)(7)

> >

> >

1

2 3 4

5 6

1

2 3 4 5

6

1

2 3 4 5 6

R NonIsomorphicGraphs 8, 12, restrictto = connected, regular , output = graphs,
outputform = graph

R := Graph 16: an undirected unweighted graph with 8 vertices and 12 edge(s),
Graph 17: an undirected unweighted graph with 8 vertices and 12 edge(s),
Graph 18: an undirected unweighted graph with 8 vertices and 12 edge(s),
Graph 19: an undirected unweighted graph with 8 vertices and 12 edge(s),
Graph 20: an undirected unweighted graph with 8 vertices and 12 edge(s)

DrawGraph R , style = spring

> >

(2)(2)

1
2

3

4

5

67

8
12

34 56

78

1

2

3

4

5

6

7

8

(9)(9)

(2)(2)

> >

> >

(8)(8)

1

2 3

4

5
6

7
8

1

2

3

4

5

6

7

8

We shall see that the sum of all the degrees gives twice the number of edges. Above was a list and
drawing of nonisomorphic trees of size 6. Not so simple even for trees.Want something harder look at the
more complicated example following usig list R of graphs even though each vertices had degree 3 (why)

We can also use an adjancency matrix. It is symmetric unless the graph is a digraph (directed graph)
AdjacencyMatrix G

0 1 0 1 1

1 0 1 0 1

0 1 0 1 1

1 0 1 0 1

1 1 1 1 0

12b.

> >

> >

(9)(9)

(2)(2)

(11)(11)
> >

> >

> >

(10)(10)

adjMatrix

0 1 1 1 1

1 0 1 1 1

1 1 0 0 1

1 1 0 0 1

1 1 1 1 0
note if not symmetric gives a directed graph. Use the Matrix and fill in values

adjMatrix :=

0 1 1 1 1

1 0 1 1 1

1 1 0 0 1

1 1 0 0 1

1 1 1 1 0

Gb Graph adjMatrix
Gb := Graph 2: an undirected unweighted graph with 5 vertices and 9 edge(s)

DrawGraph Gb

1

2

34

5

Edges Gb

> >

(12)(12)

(9)(9)

> >

> >
(14)(14)

> >

> >

> >

(2)(2)

(13)(13)

(11)(11)1, 2 , 1, 3 , 1, 4 , 1, 5 , 2, 3 , 2, 4 , 2, 5 , 3, 5 , 4, 5

IncidenceMatrix Gb
1 1 1 1 0 0 0 0 0

1 0 0 0 1 1 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

0 0 0 1 0 0 1 1 1

If we put symmetric weights in matrix we get a weighted graph. We can also use an IncidenceMatrix to
create a graph. Rows are vertices and columns Edges. Note we have to order the edges and that is why I
used the command Edges(Gb)

12c
edgeSet 1, 2 , 1, 3 , 1, 4 , 1, 5 , 1, 6 , 2, 4 , 2, 5 , 2, 6 , 3, 4 , 3, 5 , 3,

6 , 4, 5 , 4, 6 , 5, 6 , 1, 2 # note allows repition if forget
edgeSet := 1, 2 , 1, 3 , 1, 4 , 1, 5 , 1, 6 , 2, 4 , 2, 5 , 2, 6 , 3, 4 , 3, 5 , 3,

6 , 4, 5 , 4, 6 , 5, 6

Gc Graph edgeSet
Gc := Graph 3: an undirected unweighted graph with 6 vertices and 14 edge(s)

DrawGraph Gc

> >

(9)(9)

> >

> >

> >

(15)(15)

(2)(2)

(11)(11)

(16)(16)

> >

1

2

3

4

5

6

with SpecialGraphs
AntiPrismGraph, CageGraph, ClebschGraph, CompleteBinaryTree, CompleteKaryTree,

CoxeterGraph, DesarguesGraph, DodecahedronGraph, DoubleStarSnark, DyckGraph,
FlowerSnark, FosterGraph, GeneralizedBlanusaSnark, GeneralizedHexagonGraph,
GeneralizedPetersenGraph, GoldbergSnark, GridGraph, GrinbergGraph, GrotzschGraph,
HeawoodGraph, HerschelGraph, HoffmanSingletonGraph, HypercubeGraph,
IcosahedronGraph, KneserGraph, LCFGraph, LeviGraph, McGeeGraph,
MobiusKantorGraph, OctahedronGraph, OddGraph, PappusGraph, PayleyGraph,
PetersenGraph, PrismGraph, RobertsonGraph, ShrikhandeGraph, SoccerBallGraph,
StarGraph, SzekeresSnark, TetrahedronGraph, ThetaGraph, TorusGridGraph,
Tutte8CageGraph, WebGraph, WheelGraph

P PathGraph 7
P := Graph 4: an undirected unweighted graph with 7 vertices and 6 edge(s)

DrawGraph P

> >

> >

> >

> >

> >

> >

(9)(9)

> >

> >

(17)(17)

> >

(2)(2)

> >

> >

> >

(11)(11)

> >

> >

> >

1 2 3 4 5 6 7

#DeleteEdge P, 3, 4
#DrawGraph P
#P1 AddEdge P, 1, 7 , inplace = false
#DrawGraph P1
#DrawGraph P
#SP SpanningTree P1
#DrawGraph SP
#SPC Contract SP, 7, 1
#DrawGraph SPC
#SPCI InducedSubgraph SPC, 1, 2, 3, 6
#DrawGraph SPCI

14a
K7 CompleteGraph 7

K7 := Graph 5: an undirected unweighted graph with 7 vertices and 21 edge(s)

DrawGraph K7

> >

> >

(9)(9)

(18)(18)

> >

(2)(2)

(11)(11)

> >

1

2

3

45

6

7

This is how we create a complete bipartite graph.
K44 CompleteGraph 4, 4

K44 := Graph 6: an undirected unweighted graph with 8 vertices and 16 edge(s)

DrawGraph K44

> >

> >

(9)(9)

(19)(19)

> >

> >

> >

(2)(2)

(11)(11)

1 2 3 4

5 6 7 8
B BipartiteMatching K44

B := 4, 1, 5 , 2, 6 , 3, 7 , 4, 8

HighlightEdges K44, B 2
DrawGraph K44

> >

(20)(20)

(9)(9)

> >

> >

> >

(2)(2)

(11)(11)

1 2 3 4

5 6 7 8
C8 CycleGraph 8

C8 := Graph 7: an undirected unweighted graph with 8 vertices and 8 edge(s)

DrawGraph C8

> >

(21)(21)

(9)(9)

> >

(2)(2)

> >

(11)(11)

> >

1

2

3

45

6

7

8

W8 WheelGraph 8
W8 := Graph 8: an undirected unweighted graph with 9 vertices and 16 edge(s)

DrawGraph W8

> >

(9)(9)

> >

> >

(2)(2)

(11)(11)

> >
> >

(22)(22)

0

1

2

3

45

6

7

8

Q4 HypercubeGraph 4
Q4 := Graph 9: an undirected unweighted graph with 16 vertices and 32 edge(s)

DrawGraph Q4, style = spring, dimension = 3

(23)(23)

> >

(9)(9)

> >

> >

(24)(24)

(2)(2)

> >

(11)(11)

> >

> >

IsHamiltonian Q4,'Cir '
true

Cir
"0000", "1000", "1100", "0100", "0110", "1110", "1010", "0010", "0011", "1011", "1111",

"0111", "0101", "1101", "1001", "0001", "0000"

HighlightTrail Q4, Cir, red
DrawGraph Q4, style = spring, dimension = 3

> >

(9)(9)

> >

(2)(2)

(11)(11)

> >

(9)(9)

> >

> >

(2)(2)

(11)(11)

