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Introduction
Maple's GraphTheory package was developed by a group of graduate students and 
faculty at Simon Fraser University under the direction of Michael Monagan starting in 
2004.  The design of the package was first presented at the 2005 Maple conference in 
Waterloo in the summer of 2005.   New commands and improvements, in particular to 
facilities for drawing graphs, were presented at the 2006 Maple conference.  The first 
version of the package was released in Maple 11 in 2007 as the GraphTheory package.  
Since then further improvements have been added and more improvements will appear 
in Maple 17 this year. The package supports simple undirected graphs and simple 
directed graphs, both of which may be weighted.  At this time there is no support for 
multi-graphs.

It has been a very stimulating experience for me as director of the project.  Graph theory 
is such a rich area with an inexhaustible list of improvements that one might wish to add 
and a wide variety of software development issues that needed to address.  We've been 
fortunate to have many dedicated and very talented graduate students work on the 
package.  The package itself has a bit of everything.  It has basic tools for creating and 
manipulating graphs, a subpackage of known special graphs from the literature, tools for
creating random and non-isomorphic graphs, for exporting and importing graphs, 
animations of algorithms for teaching, programs for computing graph properties and 
graph polynomials, some of which are known to be NP-complete and NP-hard, and lastly,
but perhaps most useful, tools for drawing graphs.  This article gives you a taste.  More 
information within Maple can be found at the main help page ?GraphTheory  and the 
main example help page ?examples,GraphTheory.

A quick tour
To use the GraphTheory package we first load it.



>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

with(GraphTheory):
Here are two graphs with 5 vertices.  The first is a simple undirected graph.  The second 
is a simple directed graph.  

       

  
The two graphs may be input in Maple using the Graph command as shown below.  The 
difference is that for an undirected graph we input edges in set braces { } and for a 
directed graph we use square brackets [ ] .

G  : =  G r a p h ( 5 ,  { { 1 , 2 } , { 2 , 3 } , { 3 , 4 } , { 4 , 1 } , { 3 , 5 } , { 4 , 5 } } ) ;

H  : =  G r a p h ( 5 ,  { [ 1 , 2 ] , [ 2 , 3 ] , [ 3 , 4 ] , [ 4 , 3 ] , [ 4 , 1 ] , [ 3 , 5 ] , [ 4 , 5 ] } ) ;

Notice that the default output is a one-line description of the graph.  The two drawings 
of the graphs above were created with the DrawGraph command as follows.  I'll explain 
later the style=spring option which two of the students and I worked long hours on.

DrawGraph(G,style=spring);
DrawGraph(H,style=spring);

The package has many commands, because that's the nature of the subject.  Commands 
are input like other Maple commands. There are commands for testing for properties.  
For example the graph G has no Eulerian tour but it is planar.  

I s E u l e r i a n ( G ) ;
false

I s P l a n a r ( G , ' F a c e s ' ) ;
true

Faces;

The faces computed correspond to the drawing.  [4,1,2,3] means the cycle [4,1,2,3,4], 



>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

which is the inner square; [4,3,5] is the triangle; and [3,2,1,4,5] is the outside face.  There 
are commands for testing for structural information that allow you to program with 
graphs.  Here is the list of neighbors of G, the arrivals and departures for H.  Notice that 
there is no departure from vertex 5 in H.

Neighbors(G);

A r r i v a l s ( H ) ;

Departures(H);

Special Graphs
A library of standard special graphs (and some not so standard) is available.  For 
example, here is the well known Petersen graph.

P := SpecialGraphs[PetersenGraph]() ;

DrawGraph(P);

It is well known that the Petersen graph is not planar but it is 3-colorable.
I s P l a n a r ( P ) ;

false
I s V e r t e x C o l o r a b l e ( P , 3 , ' C ' ) ;

true
C ;

Each list in C is the list of vertices which have the same color.  Here is how we can color 
the vertices to visualize the coloring. 

H i g h l i g h t V e r t e x ( P , [ 1 , 3 , 8 , 1 0 ] , r e d ) ;
H i g h l i g h t V e r t e x ( P , [ 2 , 4 , 6 ] , g r e e n ) ;

DrawGraph(P);



>  >  

>  >  

>  >  

>  >  

Table 1 lists Maple commands for computing polynomials related to graphs.

  AcyclicPolynomial(G,p)
  CharacteristicPolynomial(G,x) 

  FlowPolynomial(G,q)
  GraphPolynomial(G,x,y)
  RankPolynomial(G,x,y)
  SpanningPolynomial(G,p)
  ReliabilityPolynomial(G,p) - added for Maple 17
  TuttePolynomial(G,x,y)

Table 1   Maple commands for computing polynomials 
related to graphs

  
Here is the Chromatic polynomial for the Petersen graph.  It counts the number of ways a
graph G can be colored with colors.

CP := ChromaticPolynomial(P,lambda);

there are 0 ways to color the graph with 2 colors.
eval(CP,lambda=3);

120
eval(CP,lambda=2);

0

Weighted graphs and networks.
Here is an example of a weighted undirected graph and a weighted directed graph (a 
network).



>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  
>  >  

  

The two graphs were input using the following commands.
G  : =  G r a p h ( 4 , { [ { 1 , 2 } , 2 ] , [ { 2 , 3 } , 1 ] , [ { 3 , 4 } , 2 ] , [ { 4 , 1 } , 1 ] , [ { 2 , 4 } , 1 ] } ) ;

N  : =  G r a p h ( 5 , { [ [ 1 , 2 ] , 2 ] , [ [ 1 , 3 ] , 2 ] , [ [ 2 , 3 ] , 1 ] , [ [ 2 , 4 ] , 1 ] , [ [ 3 , 5 ] , 2 ] , [ [ 4 ,
5 ] , 2 ] , [ [ 3 , 4 ] , 2 ] } ) ;

The two graphs were drawn with the following commands.
DrawGraph(G);
DrawNetwork(N,horizontal);

Here is a minimal spanning tree of G - it's the 3 edges with weight 1.
 

T := MinimalSpanningTree(G);

Edges(T,weights);

And here is the maximum flow for the network N which is 4 and a flow matrix achieving 
that flow.

MaxFlow(N,1,5);



>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

Well, you can see that there are a lot of commands.  Many of the commands are 
accessible from the context menu for a graph.  Try right-clicking on one of the graph 
objects e.g. Graph 6 in (2.18) above.

Graph input and export
r e s t a r t ;
with(GraphTheory):

The Graph command is the main command for creating graphs.  It takes 4 main 
arguments, which may be given in any order.

   n - the number of vertices
   V - a list of vertex labels (can be integers, symbols or strings)
   D - either d i r e c t e d or u n d i r e c t e d
   E - edge information which can be any of
      - set of (weighted) edges,
      - array of neighbor sets,
      - trails or 
      - the adjacency matrix.

The Graph command is smart in that you don't need to specify n, V or D if they can be 
deduced from the edge information.
Here are the four ways to input the cycle (a,b,c,d). 

G  : =  G r a p h ( { { a , b } , { b , c } , { c , d } , { d , a } } ) ;

G  : =  G r a p h ( 4 , [ a , b , c , d ] , A r r a y ( 1 . . 4 , [ { 2 , 4 } , { 1 , 3 } , { 2 , 4 } , { 3 , 1 } ] ) ) ;

G  : =  G r a p h ( T r a i l ( a , b , c , d , a ) ) ;

A  : =  M a t r i x ( [ [ 0 , 1 , 0 , 1 ] , [ 1 , 0 , 1 , 0 ] , [ 0 , 1 , 0 , 1 ] , [ 1 , 0 , 1 , 0 ] ] ) ;

G  : =  G r a p h ( [ a , b , c , d ] , A ) ;

You can also create the graph one or more edges at a time.
G  : =  G r a p h ( [ a , b , c , d ] ) :



>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

AddEdge(G,{a,b});
Graph 5: an undirected unweighted graph with 4 vertices and 1 edge(s)

AddEdge(G,{b,c});
Graph 5: an undirected unweighted graph with 4 vertices and 2 edge(s)

AddEdge(G, { {c ,d} , {d ,a } } ) ;
Graph 5: an undirected unweighted graph with 4 vertices and 4 edge(s)

DrawGraph(G,style=circle) ;

Maple uses a list-of-neighbors representation for storing the graph.  It stores the edges 
as an array of sets of vertices.  You can see Maple's data representation for a graph by 
using the lprint command.

l p r i n t ( G ) ;
G R A P H L N ( u n d i r e c t e d ,  u n w e i g h t e d ,  [ a ,  b ,  c ,  d ] ,  A r r a y ( 1  . .  4 ,  { 1  =  { 2 ,  4 } ,
2  =  { 1 ,  3 } ,  3  =  { 2 ,  4 } ,  4  =  { 1 ,  3 } } ,  d a t a t y p e  =  a n y t h i n g ,  s t o r a g e  =  
r e c t a n g u l a r ,  o r d e r  =  F o r t r a n _ o r d e r ) ,  ` G R A P H L N / t a b l e / 5 ` ,  0 )
You can access the information using the IsDirected, IsWeighted, Vertices, Edges, 
Neighbors, WeightMatrix (for weighted graphs) commands.

I s D i r e c t e d ( G ) ;
false

V e r t i c e s ( G ) ;

Neighbors(G);

L  : =  o p ( 4 , G ) ;

You can import a graph from a file in several formats e.g. dimacs, dimacs_relaxed,
combinatorica, edges, and dot.
And export it in those formats.

ExportGraph(G,"Ggraph",dimacs);



>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

F i l e  " G g r a p h "  c r e a t e d  i n  d i m a c s  f o r m a t
This created the following text file.
     c  Genera ted  by  t he  Map le  GraphTheory  package
     p  e d g e  4  8
     e  1  2
     e  2  1
     e  1  4
     e  4  1
     e  2  3
     e  3  2
     e  3  4
     e  4  3
Reading that file back into Maple we can recover the graph.

H := ImportGraph("Ggraph",dimacs);

And relabel the vertices 1,2,3,4 with labels a,b,c,d.
H  : =  R e l a b e l V e r t i c e s ( H , [ a , b , c , d ] ) ;

Neighbors(H);

Graph drawing and special graphs
The graph drawing commands are

 DrawGraph - main command
 DrawNetwork  - for drawing a network (must identify the source and sink)
 DrawPlanar - for drawing a planar graph

The best drawing is usually obtained using the s t y l e = s p r i n g option.  Here is Petersen 
graph and two drawings of the Petersen graph obtained using the s t y l e = s p r i n g option.  
The Petersen graph is one of the graphs in the SpecialGraphs subpackage.

with(SpecialGraphs);

P :=  PetersenGraph() ;



>  >  

>  >  

>  >  

>  >  

>  >  DrawGraph(P,style=spring);

You may have to execute these several times to get these drawings.
DrawGraph(P,style=spring,redraw);

These drawings are generated by simulating a physical system where the vertices are 
modeled as electrons that repel each other and the edges are modeled as springs that 
attract each other.  Initially the vertices are placed randomly in the unit square and the 
system (a system of differential equations) is solved to determine the final placement of 
the vertices.  Here is the soccer ball graph (a bucky ball).  In the first (and default) 
drawing, the vertex positions are predefined. 

S :=  SoccerBal lGraph( ) ;



>  >  

>  >  

>  >  

>  >  

>  >  

DrawGraph(S);

Using the style=spring option we generate this drawing.
DrawGraph(S,style=spring);



>  >  

>  >  

>  >  

>  >  

We also support a 3D option which allows us to place the vertices in 3D and the method 
automatically finds a 3D representation of a soccer ball.  In this version, the graph can be
rotated with the mouse.

DrawGraph(S,style=spring,dimension=3);



>  >  

>  >  

>  >  

>  >  

>  >  

As noted, the graphs in the SpecialGraphs package have pre-defined vertex positions for 
drawing.  You can also specify how a graph is to be drawn by specifying directly the 
vertex positions. Here is a Canadian example for the (mostly Canadian) cities Vancouver, 
Calgary, Edmonton, Toronto, Ottawa and Montreal, and Seattle.  (I included Seattle 
because I'm a Seattle Mariners fan.)

G := Graph([Van,Cal,Edm,Tor,Ott ,Mon,Sea],
{{Van,Cal} , {Van,Edm},{Cal ,Edm},{Cal ,Tor} , {Edm,Tor} ,
 {Tor ,Ot t } , {Van ,Tor } , {Ot t ,Mon} , {Tor ,Mon} , {Van ,Sea} } ) ;

DrawGraph(G,style=spring);



>  >  

>  >  

>  >  

>  >  

>  >  

Let's see if we can fix this. (The resulting figure is more faithful to the actual geographic 
locations.)

S e t V e r t e x P o s i t i o n s ( G , [ [ 0 , 1 ] , [ 2 , 1 . 2 ] , [ 2 , 3 ] , [ 6 , 0 ] , [ 7 , 1 . 5 ] , [ 8 . 3 , 1 . 4 ] ,
[ 0 , 0 ] ] ) ;
DrawGraph(G);



>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  
Graph isomorphism and graph generation

with(GraphTheory):
NonIsomorphicGraphs(6,5,restrictto=connected);

6
That means there are 6 trees with 6 vertices.  We obtained trees by specifying  
vertices,  edges and forcing the graphs to be connected.  We can generate graphs for
each of them and draw them side by side as follows.

T := NonIsomorphicGraphs(6,5,restrictto=connected,output=graphs,
outputform=graph);

DrawGraph([T]);

We can restrict to regular graphs (graphs where each vertex has the same degree) as 
follows.

NonIsomorphicGraphs(8,12,restr ictto=regular);
6

R := NonIsomorphicGraphs(8,12,restr ictto=[connected,regular] ,output=
graphs,outputform=graph);



>  >  

>  >  

>  >  

>  >  

>  >  

DrawGraph([R],style=spring,width=3);

We can verify independently that these 5 graphs are not pairwise isomorphic as follows
f o r  g  i n  [ R ]  d o  
    f o r  h  i n  [ R ]  d o  
        i f  g  < >  h  t h e n  p r i n t ( I s I s o m o r p h i c ( g , h ) ) ;  f i ;  
    o d ;
od;

false
false
false
false
false



>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

false
false
false
false
false
false
false
false
false
false
false
false
false
false
false

The algorithm is implemented in C.  It can compute to quite large graphs.  Here are the 
number of connected non-isomorphic graphs on  vertices with edges 

.  This took less than one minute to compute on my desktop.
NonIsomorphicGraphs(10,restrictto=connected,output=countbyedges);

Random graphs
The GraphTheory package contains a subpackage of routines for generating random 
graphs.

with(RandomGraphs);

The names of the commands are self explanatory.  Here is a random tree on 100 vertices. 
Notice that the vertex labels are suppressed by default for large graphs.  I liked these 
drawings which look like bunches of grapes.

T := RandomTree(100):
DrawGraph(T);



>  >  

>  >  

>  >  

Spanning polynomials and the reliability of computing 
networks
When I was a graduate student, a fellow student introduced me to reliability polynomials 
(or spanning polynomials) of networks.  The idea is that if you a computer network and 
the edges in the network fail with probability p, then if you want to make the network 
more reliable, which new connection should you add?  Consider the early internet known 
as the Arpanet.  Each of the connections in this network is a land-line connecting 
computer centres.



>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

It seems to me that to improve the reliability of the Arpanet the most, we should add 
another connection from the western US to the eastern US.  I'm going to add the edge 
UCSB to MITRE and try to measure how much this improves the reliability of the Arpanet.
 Incidentally if you google "Arpanet" you will find a sequence of images showing new 
connections made to the Arpanet.  Let's first input the Arpanet as a graph. 

G := Graph(Trail(SRI,AMES,STANFORD,UCLA,UCSB,SRI),Trail(SRI,UCLA,
RAND,SDC,UTAH,SRI),
           Trail(CASE,CARNEGIE,MITRE,BURR,HARVARD,BBN,BBNT,MIT,
LINCOLN,CASE),
           { { R A N D , B B N } } ,
           T r a i l ( U T A H , I L L I N O I S , M I T ) ) ;

The SpanningPolynomia l (G,p) command returns a polynomial in p when p is a variable 
which represents the probability that each edge is operative.  Thus,  means that 
each edge fails with probability 1/4.  The spanning polynomial measures the probability 
that the graph G is spanned (connected).  Here it is for our graph:

S := SpanningPolynomial(G,p);

e v a l ( S , p = 0 . 7 5 ) ;
0.186161880

Thus the graph is connected with probability 0.186.
Let's connect USCB with MITRE.

AddEdge(G,{UCSB,MITRE});
Graph 22: an undirected unweighted graph with 18 vertices and 23 edge(s)

T := SpanningPolynomial(G,p);



>  >  

>  >  

>  >  

>  >  

>  >  

>  >  e v a l ( T , p = 0 . 7 5 ) ;
0.285019905

Not bad!  Let's graph the polynomials and try to measure the improvement.
p l o t (  [ S , T ] ,  p = 0 . . 1 ,  c o l o r = [ c y a n , b l a c k ]  ) ;

Notice that the black curve (with the new connection) is above the light curve. We can 
measure the improvement by computing the area between the two curves.  That's just 
this definite integral

i n t ( T - S , p = 0 . . 1 . 0 ) ;
0.02978889913

Maple computes the spanning polynomial using the Tutte edge deletion/contraction 
algorithm mentioned previously.  The method is exponential in the size of the graph so it
won't work for large graphs. This is because computing the Spanning polynomial is NP-
hard.  There is quite a lot of literature on this subject, most of which focuses on 
approximation algorithms.  For Maple 17, I've improved the algorithm by using a new 
heuristic that I called "SHARC," which stands for SHort ARC vertex ordering.  The new 
method is still exponential but it's just 100 times faster.  Using this heuristic I can 
compute the Tutte polynomial of the Soccer ball graph (see above) in about 2 minutes of 
CPU on my desktop, which compares with the previous record of 2 weeks using 150 
computers by Hargard, Pearce and Royle (see [3]) below.  Details of the heuristic can be 
found in [4] below. 

Teaching with the GraphTheory package



>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

Kruskal's algorithm and Prim's algorithm
Two of the main algorithms we teach in a first course on graph theory are Prim's 
algorithm and Kruskal's algorithm for finding a minimal spanning tree in a weighted 
graph (with positive edge weights).  Here is a simple example.

with(GraphTheory):
G  : =  G r a p h ( 6 , { [ { 1 , 2 } , 2 ] , [ { 2 , 3 } , 3 ] , [ { 3 , 4 } , 2 ] , [ { 1 , 4 } , 3 ] , [ { 4 , 5 } , 2 ] , [ { 5 ,
6 } , 3 ] , [ { 4 , 6 } , 2 ] , [ { 2 , 5 } , 1 ] , [ { 1 , 6 } , 2 ] } ) ;

T := MinimalSpanningTree(G);

A minimal spanning tree for the graph is a sub-tree with minimal total edge weight.  In 
general it is not unique.  The one chosen by Maple is shown on the right in the figure 
below.  It has total edge weight 9.

DrawGraph( [G,T] ,s ty le=c i rc le ) ;

An animation of Kruskal's algorithm and an animation for Prim's algorithm are available 
using the following commands.  I've shown the animation after the first step is executed. 
For Prim's algorithm, the edges being considered (the "fringe") are in magenta and the 
edge chosen is in green.

KruskalsAlgorithm(G,animate);



>  >  

>  >  

>  >  

>  >  

PrimsAlgorithm(G,animate);



>  >  

>  >  

>  >  
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