Calculus I- Midterm 2

Schneider- show work

April 19, 2016

For the first 6 questions find the derivative where your formulas tell you they exist. You do not have to specify the x where the derivative does not exist.

1. (6 points) Compute the derivative $\frac{d y}{d x}$ for $y=5 \tan (x)-2 x^{-1}+\pi^{-1}$.
2. (6 points) Compute the derivative $h^{\prime}(z)$ of the function $h(z)=6\left(\frac{1}{z^{2}}+\right.$ 2) $\cos (z)$ for $\mathrm{z}>0$.
3. (6 points) Compute the derivative $f^{\prime}(x)$ of the function $f(x)=\frac{\cos (x)}{\sqrt{x+2}}$ for $x>-2$.
4. (6 points) Compute the derivative $f^{\prime}(x)$ of the function $f(x)=e^{x^{3}+1}$.
5. (6 points) Determine the slope of the tangent line to the graph of $y=$ $\cos (x) \tan (x)$ at $(0,0)$.
6. (6 points) Find the limit or indicate the limit does not exist of:

$$
\lim _{x \rightarrow \infty} 1+x e^{-\frac{x}{10}}
$$

7. (6points) Let $f(x)=1 /(x-3)^{2}$. What is the

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

8. (6 points) Write down an equation of the tangent line to the graph of $\mathrm{y}=$ $8-\cos (x)$ at the point where $\mathrm{x}=0$.
9. (6 points) If the Volume $\mathrm{V}=\frac{4}{3} \pi r^{3}$ of an expanding sphere is increasing at the constant rate of 36π cubic inches per second, how fast is the readius r increasing when $\mathrm{r}=3$.
10. (7 points) Find Where the graph of $x^{3}-3 x^{2}+12$ is concave up or concave down, and find all the inflection points.
11. (7 points)Find and classify all the relative extrema of $f(x)=\frac{x^{4}}{4}-2 x^{2}$.
12. (7 points) Find the absolute maximum and minimum values of $f(x)=$ $\frac{x^{3}}{3}-2 x^{2}+3 x$ on the interval $[2,4]$.
13. (6 points) A point is moving along the graph of $y=3 x^{2}+1$ such that $\frac{d x}{d t}=2$. Find $\frac{d y}{d t}$ when $\mathrm{x}=2$.
14. (6 points) Use implicit differentiation to find $\frac{d y}{d x}$ at the point $(1,1)$ on the graph of $x^{3}+x y-y^{2}=1$.
15. (7 points) A rectangular poster is to have an area of 150 square inches with a 2 inch margin on the right and left and a 3 inch margin at the top and bottom. How would you find the dimensions of the poster with the largest printed area. Just set up your calculations (a derivative $=0$).
16. (6 points) The demand function for a product is modeled by $P=100 e^{-\frac{x}{100}}$) where P is the price and x is the number of units. What number of units x will yield a maximum revenue given by $x P$.
