Homework

In the following problems use the call tutor to help find the integrals. You can use the cheet sheets for the trigonometic integrals.
$\int \frac{x}{x^{2}+1} d x ;$
$\left[>\int \frac{1}{x \cdot \ln \left(x^{3}\right)} \mathrm{d} x\right.$;
$\left[>\int \frac{2 \cdot x}{(x-1)^{2}} \mathrm{~d} x\right.$;
$\left[>\int \frac{\cos (x)}{1+\sin (x)} \mathrm{d} x\right.$
$\left[>\int \frac{\sec (x) \cdot \tan (x)}{\sec (x)-1} \mathrm{~d} x\right.$
$\left[>\int \sec \left(\frac{x}{2}\right) \mathrm{d} x\right.$
$\left[>\int \frac{\mathrm{e}^{\frac{3}{x}}}{x^{2}} \mathrm{~d} x ;\right.$
[> \# In the following use the solve command to show that the functions are inverses of one another. Use a plot to see they are inverses.
$>f(x)=x^{2}+4 ; g(x)=\operatorname{sqrt}(x-4)$;
$>f(x)=\frac{1}{1+x} ; g(x)=\frac{(1-x)}{x}$;
[> \# In the following use the solve to find the inverse. Plot both functions
$\left[>f(x)=x^{\frac{2}{3}}\right.$;
$>f(x)=\cot (x) ;$
\# on interval (0 ,Pi) .. what is the domain of the inverse. How does this relate to graph of $\cot (x)$; can you plot $\cot (x)$;
$[>\#$ simplify $\sin (\arctan (2 x))$; Use Maple to see what answer should be
$>\int \frac{7}{16+x^{2}} \mathrm{~d} x ;$
\# look at substitutions and formulas for derivatives and trig identities on cheat sheets
[>

