In the following create partial sums from the sequences. First make **a** into a function and then create the partial sums **s**. Use the **add** function instead of the **sum** function. It is safer. Do the sums converge or not? Explain why.

- 1. Let a be the sequence $1, \frac{1}{2}, \frac{1}{3}, \dots$ where the nth term is $\frac{1}{n}$.
- 2. Let a be the sequence $1, \frac{1}{4}, \frac{1}{9}, \dots$ where the nth term is $\frac{1}{n^2}$
- 3. Let a be the sequence $\frac{1}{\ln(2)}$, $\frac{1}{\ln(3)}$...
 - . where the nth term is $\frac{1}{\ln(n)}$
- 4. Let a be the sequence $\frac{1}{e^1}$, $\frac{1}{e^2}$, $\frac{1}{e^3}$... where the nth term is $\frac{1}{e^n}$.
- 5. Let a be the sequence $88 \cdot \left(\frac{4}{5}\right)$, $88 \cdot \left(\frac{4}{5}\right)^2$, $88 \cdot \left(\frac{4}{5}\right)^3$..
 - . where the nth term is $88 \cdot \left(\frac{4}{5}\right)^n$
- 6. Let a be the sequence 2, $\frac{2^2}{2!}$, $\frac{2^3}{3!}$, $\frac{2^4}{4!}$,... $\frac{2^n}{n!}$...
- 7. Let a be the sequence 1, -1, 1, -1, 1, -1...
 - . where the nth term is $(-1)^{n+1}$

8. Let the sequence be $1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5} ... \frac{(-1)^{n+1}}{n}$