In the following create partial sums from the

 sequences. First make a into a function and then create the partial sums \mathbf{s}. Use the add function instead of the sum function. It is safer. Do the sums converge or not? Explain why.1. Let a be the sequence $1, \frac{1}{2}, \frac{1}{3}, \ldots$. where the nth term is $\frac{1}{n}$.
2. Let a be the sequence $1, \frac{1}{4}, \frac{1}{9}, \ldots$. where the nth term is $\frac{1}{n^{2}}$
3. Let a be the sequence $\frac{1}{\ln (2)}, \frac{1}{\ln (3)}$..
. where the nth term is $\frac{1}{\ln (n)}$
4. Let a be the sequence $\frac{1}{\mathrm{e}^{1}}, \frac{1}{\mathrm{e}^{2}}, \frac{1}{\mathrm{e}^{3}} \ldots$ where the nth term is $\frac{1}{e^{n}}$.
5. Let a be the sequence $88 \cdot\left(\frac{4}{5}\right), 88 \cdot\left(\frac{4}{5}\right)^{2}, 88 \cdot\left(\frac{4}{5}\right)^{3}$.. . where the nth term is $88 \cdot\left(\frac{4}{5}\right)^{n}$
6. Let a be the sequence $2, \frac{2^{2}}{2!}, \frac{2^{3}}{3!}, \frac{2^{4}}{4!}, \ldots \frac{2^{n}}{n!} \ldots$
7. Let a be the sequence $1,-1,1,-1,1,-1$..
. where the nth term is $(-1)^{n+1}$
8. Let the sequence be $1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \frac{1}{5} . . \frac{(-1)^{n+1}}{n}$
$[>$
