Consider the following sequences. Show by making large vectors that the numerator and denominator approach $0 / 0$, infinity/infinity, $0 *$ infintiy or any of the other indeterminant forms. Use large sequences to see what values the ratios approach. Can you change the problem to one about a variable x and a function and use L'hôpital's theorem. Can you use other theorems about limiting values to figure out answers theoretically?
$\frac{n^{3}}{\exp (n)} ;$ \#as $n \rightarrow$ infinity,
\# Does the answer change with a different positive power of n?
$\frac{n}{\ln (n)}$; \# as $n->$ infinity
$\frac{\sin \left(\frac{1}{n}\right)}{\frac{1}{n}}$; \#as $n \rightarrow$ infinity
$\frac{\tan \left(\frac{\mathrm{Pi}}{2}-\frac{1}{n}\right)}{n} ; \#$ as $n->$ infinity
$\frac{\left(n^{5}+3 \cdot n^{4}+2\right)}{4 \cdot n^{5}+6 \cdot n^{3}+7} ; \#$ as $n->$ infinity
$\frac{\exp (n)}{n!}$; \# as $n->$ infinity
$n^{\frac{1}{2}} \cdot \ln \left(1+\frac{1}{n^{3}}\right) ;$ \# as $n->$ infinity
$\frac{\cos (n)}{n}$; \# as $n->$ infinity
$\left(\left(8+\frac{1}{n}\right)^{3}-8^{3}\right) \cdot n ; \#$ as $n \rightarrow$ infinity
$\left(\tan \left(1-\frac{1}{n^{3}}\right)-\tan (1)\right) \cdot n^{3} ; \#$ as $n->$ infinity
$\left(\int_{0}^{1+\frac{1}{n}} \exp \left(x^{3}\right) \mathrm{d} x-\int_{0}^{1} \exp \left(x^{3}\right) \mathrm{d} x\right) \cdot n ;$ \#as $n->$ infinity

