For the following sequences take partial sums in Maple and see if the sequence of partial sums converge. As an example consider . 333333 ... whish is the sum of $.3+.03$ $+.003+.0003+\ldots$ The sequence we are summing is $.3, .03$, $.003, .0003$.... The sequence of partial sums are $.3, .3+.03$, $.3+.03+.003, .3+.03+.003+.0003$ which can be written as the sequence $.3, .33, .333, .3333 \ldots$ which converges to $1 / 3$. To write this example in Maple we have (you must enter this to work)
[> Digits $:=50$;
$\left[>s:=\left\langle\operatorname{seq}\left(\operatorname{evalf}\left(3 \cdot 10^{-n}\right), n=1 . .1000\right)\right\rangle ;\right.$
\# when you double click table open up to see the
scientific notation e-5 is 10^{-5}
[> s[3];\#etc
$[>$ partialSums $:=\langle\operatorname{seq}(\operatorname{add}(s[i], i=1 . . n), n=1 . .1000)\rangle ;$
We would really like to write the above as $\left\langle s e q\left(\sum_{i=1}^{n} s[i], n\right.\right.$ $=1$.. 1000) ; but $\sum_{i=k}^{n}$ fries to actually do the sum
. It works for this example but not in general. It is not quite the same thing as in mathematics and can confuse the issue
. In mathemaics we should write this with the sigma sign
. We can use the sigma notation to get the sum
to infinity if we just put in our formula for the sequence.
$\left[>\sum_{i=1}^{\text {infinity }} 3 \cdot 10^{-i} ;\right.$

$$
\begin{equation*}
\frac{1}{3} \tag{1}
\end{equation*}
$$

Problems:

>1. Let s be the sequence $1, \frac{1}{2}, \frac{1}{3}, .$.
.. \quad where the nth term is $\frac{1}{n}$.
$\left[>2\right.$ Let s be the sequence $1, \frac{1}{4}, \frac{1}{9}, .$.
.. where the nth term is $\frac{1}{n^{2}}$
$\overline{>}$ 3. Let s be the sequence $\frac{1}{\ln (1)}, \frac{1}{\ln (2)}, \frac{1}{\ln (3)} .$.
. where the nth term is $\frac{1}{\ln (n)}$
$\left[>4\right.$. Let s be the sequence $\frac{1}{\mathrm{e}^{1}}, \frac{1}{\mathrm{e}^{2}}, \frac{1}{\mathrm{e}^{3}}$.
. where the nth term is $\frac{1}{e^{n}}$.
$\left[>5\right.$. Let s be the sequence $88 \cdot\left(\frac{4}{5}\right), 88 \cdot\left(\frac{4}{5}\right)^{2}, 88 \cdot\left(\frac{4}{5}\right)^{3} .$.
where the nth term is $88 \cdot\left(\frac{4}{5}\right)^{n}$

