For the following sequences take partial sums in Maple and see if the sequence of partial sums converge.As an example consider .333333... which is the sum of .3 +.03 +.003 + .0003 +.... The sequence we are summing is .3,.03, .003,.0003 The sequence of partial sums are .3,.3+.03, .3+.03+.003,.3+.03+.003+.0003 which can be written as the sequence .3,.33,.333,.3333... which converges to 1/3. To write this example in Maple we have (you must enter this to work)

to infinity if we just put in our formula for the sequence. $\sum_{i=1}^{infinity} 3 \cdot 10^{-i};$ $\frac{1}{3}$ (1) **Problems:** > 1. Let s be the sequence 1, $\frac{1}{2}$, $\frac{1}{3}$, where the nth term is $\frac{1}{n}$. > 2. Let s be the sequence 1, $\frac{1}{4}$, $\frac{1}{9}$, where the nth term is $\frac{1}{2}$ > 3. Let s be the sequence $\frac{1}{\ln(1)}$, $\frac{1}{\ln(2)}$, $\frac{1}{\ln(3)}$. . where the nth term is $\frac{1}{\ln(n)}$ > 4. Let s be the sequence $\frac{1}{e^1}$, $\frac{1}{2}$, $\frac{1}{3}$ where the nth term is $\frac{1}{e^n}$. . where the nth term is $\frac{1}{p^n}$. > 5. Let s be the sequence $88 \cdot \left(\frac{4}{5}\right)$, $88 \cdot \left(\frac{4}{5}\right)^2$, $88 \cdot \left(\frac{4}{5}\right)^3$. . where the nth term is $88 \cdot \left(\frac{4}{5}\right)^n$