with(combinat);

Answers first practice for midterm

1

$$\frac{5!}{2! \cdot 2!}$$
; $numbcomb(9, 5)$; 2^{8} ; $15 \cdot 14 \cdot 13 \cdot 12$; $numbcomb(10, 5)$; $numbcomb(10, 5)$;# $numbcomb(a,b)$ is a choose b

- 2 a. $AD^cBC \cap ADBC = AD^cDBABC = A$ $\varnothing BABC$ (BY COMMUTATIVITY AND ASSOCIATIVITY OF INTERSECTION) = \varnothing (AS \varnothing IS IN INTERSECTION)
- 2 b. $ABC \cup ABC^c = AB(C \cup C^c) = AB$ by distributive and $C \cup C^c = S$; Similarly $AB^cC \cup AB^cC^c = AB^c$ and $A^cBC \cup A^cBC^c$
- $= A^c B$ and $A^c B^c C \cup A^c B^c C = A^c B^c$;

Now
$$AB \cup AB^c = A(B \cup B^c) = A$$
 and similarly $A^cB \cup A^cB^c = A^c$
Finally $A \cup A^c = S$

- 3. The probability you get different colors is the event RB **or** BR (order matters is less prone **to** mistakes, can also **use** easy conditional here); probability of RB is $\left(\frac{2}{10}\right) \cdot \left(\frac{2 \cdot}{10}\right)$; probability of BR is $\left(\frac{8}{10}\right) \cdot \left(\frac{8}{10}\right)$. So just add.
- 4. Let ET be the event smoking cigarettes and AR the event smoking cigars . Then we have P(ET) = .28; P(AR) = .07; $P(ET \cap AR) = .05$. Then $P(ET \cup AR) = .28 + .07 .05 = .3$.
- 4 a. we have the event $(ET \cup AR)^c$. The probability is $1 P(ET \cup AR)$ = .7
- 4 b.We are looking for $ET \cap AR^c$. But $\left(ET \bigcap AR^c\right) \cup \left(ET \bigcap AR\right) = ET$ and this is a partition. So $P\left(ET \bigcap AR^c\right) = P(ET) - P\left(ET \bigcap AR\right)$ = .28 - .05 = .23.
- 5. P(B1) = .6; P(B2) = .5; P(B1B2)
 - = .4 where these events are the probabilities of liking the respective books

. We are asked for $P\left(B2 \middle| B1^c\right) = \frac{P\left(B2B1^c\right)}{P\left(B1^c\right)}$; Only tricky thing is

to find $P(B2B1^c) = P(B2) - P(B2B1)$. Put in numbers.

6.
$$P(AB) = P(A)P(B)$$
 is given. $P\left(A \middle| B\right) = \frac{P(AB)}{P(B)} = \frac{P(A) \cdot P(B)}{P(B)}$

= P(A) (which is an important result **in** itself **for** independence) Now P(A)

$$\begin{vmatrix} B^c \end{vmatrix} = \frac{P(AB^c)}{P(B^c)} = \frac{P(AB^c)}{1 - P(B)}; But \ P(AB^c) = P(A) - P(AB) = P(A)$$

$$-P(A) \cdot P(B) = P(A) \cdot (1 - P(B))$$
 and we get $P\left(A \middle| B^c\right)$

$$= \frac{P(A) \cdot (1 - P(B))}{1 - P(B)} = P(A) \text{ and the question is answered}$$

. Note that these are theorems that I had gone over in class and will go over with you before the test.

7. a.
$$P(T2) = P(T2H1) + P(T2H1^c) = P(T2H1) + P(T2T1) = P(T2|H1)$$

 $\cdot P(H1) + P(T2|T1) \cdot P(T1); Now P(T2|H1) = 1 - P(H2|H1) = .3$
and we know all other values from problem.

7. b.
$$P(T1|T2) = \frac{P(T1T2)}{P(T2)}$$
; We know $P(T2)$ from a and $P(T1T2) = P(T2)$

$$T1 \cdot P(T1) \text{ which we know. So we are done.}$$