with(combinat);
Answers first practice for midterm
1
$\frac{5!}{2!\cdot 2!} ; \operatorname{numbcomb}(9,5) ; 2^{8} ; 15 \cdot 14 \cdot 13 \cdot 12 ; \operatorname{numbcomb}(10,5)$;
numbcomb $(10,5) ; \#$ numbcomb (a, b) is a choose b
2 a. $A D^{c} B C \cap A D B C=A D^{c} D B A B C=A$
\varnothing BABC (BY COMMUTATIVITY AND ASSOCIATIVITY OF
INTERSECTION $)=\varnothing(A S \varnothing$ IS IN INTERSECTION $)$
2b. $A B C \cup A B C^{c}=A B\left(C \cup C^{c}\right)=A B$ by distributive and $C \cup C^{c}=S$;
Similarly $\boldsymbol{A} \boldsymbol{B}^{c} \boldsymbol{C} \cup \boldsymbol{A} \boldsymbol{B}^{c} \boldsymbol{C}^{\boldsymbol{c}}=\boldsymbol{A} \boldsymbol{B}^{\boldsymbol{c}}$ and $\boldsymbol{A}^{\boldsymbol{c}} \boldsymbol{B} \boldsymbol{C} \cup \boldsymbol{A}^{\boldsymbol{c}} \boldsymbol{B} \boldsymbol{C}^{\boldsymbol{c}}$
$=A^{c} B$ and $\boldsymbol{A}^{c} \boldsymbol{B}^{c} \boldsymbol{C} \cup \boldsymbol{A}^{c} \boldsymbol{B}^{c} \boldsymbol{C}=\boldsymbol{A}^{c} \boldsymbol{B}^{c}$;
Now $\boldsymbol{A} \boldsymbol{B} \cup \boldsymbol{A} \boldsymbol{B}^{\boldsymbol{c}}=\boldsymbol{A}\left(\boldsymbol{B} \cup \boldsymbol{B}^{\boldsymbol{c}}\right)=A$ and similarly $\boldsymbol{A}^{\boldsymbol{c}} \boldsymbol{B} \cup \boldsymbol{A}^{\boldsymbol{c}} \boldsymbol{B}^{\boldsymbol{c}}=\boldsymbol{A}^{\boldsymbol{c}}$
Finally $\boldsymbol{A} \cup \boldsymbol{A}^{\boldsymbol{c}}=\boldsymbol{S}$
3. The probability you get different colors is the event $R B$ or $B R$ (order matters

- - is less prone to mistakes, can also use easy conditional here); probability of $R B$ is $\left(\frac{2}{10}\right) \cdot\left(\frac{2 \cdot}{10}\right)$; probability of $B R$ is $\left(\frac{8}{10}\right) \cdot\left(\frac{8}{10}\right)$
. So just add.

4. Let ET be the event smoking cigarettes and $A R$ the event smoking cigars
. Then we have $P(E T)=.28 ; P(A R)=.07 ; P(E T \cap A R)=.05$. Then $P(E T$
$\cup A R)=.28+.07-.05=.3$.
4 a. we have the event $(E T \cup A R)^{c}$. The probability is $1-P(E T \bigcup A R)$ $=.7$
4 b.We are looking for $E T \cap A R^{c} . B u t\left(E T \bigcap A R^{c}\right) \cup(E T \bigcap A R)=E T$ and this is a partition. So $P\left(E T \bigcap A R^{c}\right)=P(E T)-P(E T \bigcap A R)$
$=.28-.05=.23$.
5. $P(B 1)=.6 ; P(B 2)=.5 ; P(B 1 B 2)$
$=.4$ where these events are the probabilities of liking the respective books

We are asked for $P\left(B 2 \mid B 1^{c}\right)=\frac{P\left(B 2 B 1^{c}\right)}{P\left(B 1^{c}\right)}$; Only tricky thing is to find $P\left(B 2 B 1^{c}\right)=P(B 2)-P(B 2 B 1)$. Put in numbers.
6. $P(A B)=P(A) P(B)$ is given. $P(A \mid B)=\frac{P(A B)}{P(B)}=\frac{P(A) \cdot P(B)}{P(B)}$
$=P(A)$ (which is an important result in itself for independence) Now $P(A$
$\left.\mid B^{c}\right)=\frac{P\left(A B^{c}\right)}{P\left(B^{c}\right)}=\frac{P\left(A B^{c}\right)}{1-P(B)} ;$ But $P\left(A B^{c}\right)=P(A)-P(A B)=P(A)$
$-P(A) \cdot P(B)=P(A) \cdot(1-P(B))$ and we get $P\left(A \mid B^{c}\right)$
$=\frac{P(A) \cdot(1-P(B))}{1-P(B)}=P(A)$ and the question is answered
. Note that these are theorems that I had gone over in class and will go over with you before the test.
7. a. $P(T 2)=P(T 2 H 1)+P\left(T 2 H 1 l^{c}\right)=P(T 2 H 1)+P(T 2 T 1)=P(T 2 \mid H 1)$ $\cdot P(H 1)+P(T 2 \mid T 1) \cdot P(T 1) ;$ Now $P(T 2 \mid H 1)=1-P(H 2 \mid H 1)=.3$
and we know all other values from problem.
7. b. $P(T 1 \mid T 2)=\frac{P(T 1 T 2)}{P(T 2)}$; We know $P(T 2)$ from a and $P(T 1 T 2)=P(T 2$ $\mid T 1) \cdot P(T 1)$ which we know. So we are done.

