
Math 70300
Homework 3

Due: October 19, 2006

1. Let f(z) be an analytic function with nonzero derivative. Let f(z) = u(x, y)+iv(x, y)
and consider the level curves of u and v, i.e., the sets

{z = x + iy ∈ C : u(x, y) = u0}, {z = x + iy ∈ C : v(x, y) = v0}

for fixed numbers u0, v0. Prove that the set of level curves of u and the set of level
curves of v are orthogonal to each other.

If γ(t) = x(t) + iy(t) is a curve of the level set u(x, y) = u0, then the chain rule gives
at t = t0, x0 + iy0 = γ(t0)

ux(x0, y0)x
′(t0) + uy(x0, y0)y

′(t0) = 0,

which gives that the slope of the tangent vector is y′(t0)/x
′(t0) = −ux(x0, y0)/uy(x0, y0).

Similarly if z(t) = a(t) + ib(t) is a curve of the level set v(x, y) = v0, then the chain
rule gives at t = t0, a0 + ib0 = z(t0)

vx(a0, b0)a
′(t0) + vy(a0, b0)b

′(t0) = 0,

which gives that the slope of the tangent vector is b′(t0)/a
′(t0) = −vx(a0, b0)/vy(a0, b0).

At a common point of the two level curves a0 = x0 and y0 = b0 the Cauchy-Riemann
equations give:

ux(a0, b0) = vy(a0, b0), uy(a0, b0) = −vx(a0, b0).

Then the product of the slopes of the tangent vectors is

λ1λ2 = −ux(a0, b0)

uy(a0, b0)
· −vx(a0, b0)

vy(a0, b0)
= −1.

So the curves are orthogonal at (a0, b0).

Second method: One needs to know the local mapping theorem, that in the case of
nonzero derivative implies that the holomorphic map is locally one-to-one with inverse
function analytic, therefore conformal. So let f : U → V be one-to-one. Notice that

(f−1)′(w) =
1

f ′(z)
, f(z) = w.

We apply this to the point of intersection of two level curves (a0, b0). Then

{z = x + iy ∈ U : u(x, y) = u0} = f−1({w,<w = u0, w ∈ V }),

{z = x + iy ∈ U : v(x, y) = v0} = f−1({w,=w = v0, w ∈ V }).
Since the two lines are perpendicular their image under the conformal map f−1 are
orthogonal.
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2. (a) Let z1, z2, z3, z4 lie on a circle. Show that z1, z3, z4 and z2, z3, z4 determine the
same orientation iff (z1, z2, z3, z4) > 0.

We can find a linear fractional transformation T with T (z2) = 0, T (z3) = 1, T (z4) = 2,
so that (z1, z2, z3, z4) = (T (z1), T (z2), T (z3), T (z4)) by the invariance of the cross ratio.
By definition

(T (z1), T (z2), T (z3), T (z4)) =
Tz1 − Tz3

Tz1 − Tz4

:
Tz2 − Tz3

Tz2 − Tz4

,

In this way Tz2, T z3, T z4 determine an orientation from left to right, so that

Tz2 − Tz3

Tz2 − Tz4

> 0

as quotient of negative numbers. The cross ratio (z1, z2, z3, z4) is positive iff

Tz1 − Tz3

Tz1 − Tz4

> 0

i.e. either both numerator and denominator are positive or both are negative. In the
second case Tz1 is left from Tz3, which is left from Tz4, i.e. the orientation is the
same, while in the first case

Tz1 > Tz4 > Tz3.

so we go from Tz1 to infinity to Tz3 to Tz4, which is the same orientation. The l.f.t.
T preserves the orientation, so the result follows.

(b) Let z1, z2, z3, z4 lie on a circle and be the consecutive vertices of a quadrilateral.
Prove that

|z1 − z3| · |z2 − z4| = |z1 − z2| · |z3 − z4|+ |z2 − z3| · |z1 − z4|.

Interpret the result geometrically.

We know that (z1, z2, z3, z4) > 0 by (a) and the choice of labeling of the consecu-
tive vertices of the quadrilateral. Also we know that (z1, z3, z2, z4) < 0, since the
orientation of z3, z2, z4 is the opposite of z1, z2, z4. This gives

z1 − z2

z1 − z4

z3 − z4

z3 − z2

< 0 ⇔ z1 − z2

z2 − z3

z3 − z4

z1 − z4

> 0.

The equality

(z1 − z3)(z2 − z4) = (z1 − z2)(z3 − z4) + (z2 − z3)(z1 − z4)

follows from elementary algebra, as the left-hand side is z1z2 − z1z4 − z3z2 + z3z4,
while the right-hand side is z1z3 − z2z3 − z1z4 + z2z4 + z2z1 − z2z4 − z3z1 + z3z4. In
this identity we divide by (z1 − z4)(z2 − z3) to get

(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)
=

(z1 − z2)(z3 − z4)

(z1 − z4)(z2 − z3)
+ 1.
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Since the fractions represent (z1, z2, z3, z4) and−(z1, z3, z2, z4) which are both positive,
this equality gives an equality of absolute values:

|(z1 − z3)(z2 − z4)|
|(z1 − z4)(z2 − z3)|

=
|(z1 − z2)(z3 − z4)|
|(z1 − z4)(z2 − z3)|

+ 1

and this is equivalent to the result.

The geometric interpretation is that the product of the diagonals of the quadrilateral
is equal to the sum of the products of the opposite sides.

3. Let T (z) =
az + b

cz + d
. Assume that it maps the real line to the real line. Show that we

can choose a, b, c, d to be real numbers. The converse is obvious.

Set µ = T (0) = b/d, ν = T (∞) = a/c and s = T (1) = (a + b)/(c + d), which are real
by assumption. This gives

a + b = s(c + d) = νc + µd =⇒ (s− ν)c = (µ− s)d.

If (s− ν)(µ− s) 6= 0, then c = d(µ− s)/(s− ν) = ρd, with ρ real. Also a = νc = νρd,
b = µd. These imply

Tz =
az + b

cz + d
=

νρdz + µd

ρdz + d
=

νρz + µ

ρz + 1
,

which has real coefficients. If s = ν = µ, b = sd, a = sc and

Tz =
az + b

cz + d
=

scz + sd

cz + d
= s ∈ R.

The case d = 0 is even easier: Tz = (a/d)z + (b/d) with b/d ∈ R (T (0) is real), and
T (1) = a/d + b/d ∈ R. So a/d ∈ R.
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4. (a) Let −∞ < a < b < ∞ and set M(z) =
z − ia

z − ib
. Define the lines L1 = {z : =(z) =

b}, L2 = {z : =(z) = a} and L3 = {z : <(z) = 0}. The three lines split the complex
plane into 6 regions. Determine the image of them in the complex plane.

Since ib is mapped to ∞ the lines L1, L3 are mapped to lines, while the line L2

is mapped to the circle through 0 = M(ia) and 1 = M(∞). This is the circle
C : |w−1/2| = 1/2. So C = M(L2). Since M(ia) = 0 the image of L3 should contain
0, so it is the horizontal axis. This leaves M(L1) = {w ∈ C : <(w) = 1}.
We need to determine also the orientation of traversing the images, as we traverse
the three lines on the z-plane. We check that M(i(a + b)/2) = −1, so as we go on
the line L3 from ia towards ib we traverse the horizontal axis from 0 to ∞ going left.
At ia the lines L2 and L3 intersect perpendicularly. If we go from left to right on L2,
we should go from left to right w.r.t. M(L3) on M(L2). So we traverse C = M(L2)
clockwise. If we go from left to right on L1, i.e. z = x+ib, then M(z) = 1+i(b−a)/x,
which that for x > 0, M(z) lies on the upper-half plane, while for x < 0 on the lower
half-plane. We take into account that ∞ is mapped to 1, so as we go from left to
right on L1, we must traverse M(L1) from up to down. We now follow the directions,
making sure that the regions on the left (resp. right) of a line are mapped to the left
(resp. right) of the image curve and we get figure

Figure 1: The regions with the same number are mapped to each other

(b) Let log be the principal branch of the logarithm. Show that log(M(z)) is defined
for all z ∈ C with the exception of the line segment from ia to ib.

From the figure we see that outside the segment from ia to ib the value M(z) is not
a negative real number. So the principal branch of log can be applied to Mz.
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(c) Define h(z) = =(log(M(z))) for <(z) > 0. Show that h is harmonic and that
0 < h(z) < π.

The imaginary part of the holomorphic function log M(z) is a harmonic function. For
<(z) > 0 we get that Mz lies on the upper-half plane, consequently the imaginary
part of log Mz, which is the argument, is in (0, π) (use of the principal branch of log).

(d) Show that log(z − ic) is defined for <(z) > 0 and any real number c. Prove that
|=(log(z − ic))| < π/2 in this region.

We have for <(z) > 0 and c real that z − ic is not a negative number, as its real
part <(z− ic) is positive. So we can define log(z− ic) for the principal branch of the
logarithm. Moreover, since <(z − ic) > 0, its argument is in (−π/2, π/2).

(e) Prove that h(z) = =(log(z − ia)− log(z − ib)).

We have h(z) = =(log M(z)) = arg M(z) = arg(z − ia) − arg(z − ib) up to 2πik,
k ∈ Z.

By (d) | arg(z − ia)| < π/2 and | arg(z − ib)| < π/2. So when we subtract the
arguments we get an angle in (−π, π), i.e. the principal argument, and this agrees
with the argument of log M(z) by (c), as this is the principal argument as well.
Consequently we do not have to add 2πik.

(f) Use the fundamental theorem of calculus to show that∫ b

a

dt

z − it
= i(log(z − ib)− log(z − ia)).

We have ∫ b

a

dt

z − it
=

[
log(z − it)

−i

]b

a

= i(log(z − ib)− log(z − ia)).

(g) Combine (e) and (f) to show that

h(x + iy) =

∫ b

a

xdt

x2 + (y − t)2
= arctan((y − a)/x)− arctan((y − b)/x).

h(x + iy) = =(log(z − ia)− log(z − ib)) = =(i

∫ b

a

dt

z − it
)

= <
∫ b

a

dt

z − it
= <

∫ b

a

dt

x + i(y − t)
= <

∫ b

a

xdt

x2 + (y − t)2
−i

y − t

x2 + (y − t)2
dt =

∫ b

a

xdt

x2 + (y − t)2
.

Using the substitution t− y = xu we get∫ b

a

xdt

x2 + (y − t)2
=

∫ (b−y)/x

(a−y)/x

x2du

x2 + x2u2
=

∫ (b−y)/x

(a−y)/x

du

1 + u2
= arctan((b−y)/x)−arctan((a−y)/x).

It remains to use the fact that arctan is an odd function.
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(h) Interpret (g) geometrically by showing that h(z) measures (with sign) the interior
angle of the triangle with vertices ia, ib and z at the vertex z. What are the limits
of h(z) as <(z) → 0 for =(z) ∈ (a, b) and for =(z) 6∈ [a, b]?

We have that arg(z − ia) represent the angle from the positive real axis towards
the ray from ia to z, while arg(z − ib) represent the angle from the positive real axis
towards the ray from ib to z. The oriented angle with vertex z in the counterclockwise
direction represents h(z): Use the triangle with vertices ia, ib and z to see that
ẑ = π − (π/2 − arg(z − ia)) − (π/2 + arg(z − ib)) = arg(z − ia) − arg(z − ib). Pay
attention to the ± according to the positive or negative orientation for the angles.

We have

lim
<z→0

h(z) = π, =(z) ∈ (a, b), lim
<z→0

h(z) = 0, =(z) 6∈ [a, b].

5. Suppose that C1 and C2 are two circles with real centers, tangent to each other at
a ∈ R. Assume that the one is contained inside the other. Call G the region between
the two circles. Map conformally G to the unit disc D.

Hint: First try (z − a)−1.

We can assume that a > 0 and that the center of one circle is at 0. Let c be
the point where the small circle meets the real line. The real line is mapped to
itself by T (z) = (z − a)−1. Since C1 and C2 are perpendicular to R at −a and c
respectively, the images by T , i.e. T (C1) and T (C2) are perpendicular to R. Also they
contain ∞ as T (a) = ∞. So they are lines perpendicular to R at −1/(2a) = T (−a),
1/(c− a) = T (c) respectively. Then T (G) is the region between the two parallel line.
We map it conformally to a horizontal strip of width π around the real axis. This is
done by a linear map

U(w1) = i(π/2 + l(w1 + 1/(2a)), l =
π

−1/(2a)− 1/(c− a)
.
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Here l is the slope of a line that maps −1/(2a) to π/2 and 1/(c − a) to −π/2. The
factor i rotates the picture. As in Ahlfors p. 93, S(z) = tanh(z/2) maps the horizontal
strip |=z| < π/2 to the unit disc. The composition S ◦ U ◦ T is the desired map.

Alternatively, exp(z) maps the two parallel lines =(z) = ±π/2 to the rays i[0,∞)
and i[0,−∞) on the imaginary axis. The horizontal strip is mapped to the right-half
plane, as exp(0) = 1. Now use V (z) = (z − 1)/(z + 1) to map the right-half plane to
the unit disc. The desired map is V ◦ exp ◦ U ◦ T.

6. Let Ω be the upper half of the unit disc D. Find a conformal mapping f : Ω → D
that maps {−1, 0, 1} to {−1,−i, 1}. Find z ∈ Ω with f(z) = 0.

Hint: f = T1 ◦ S ◦ T2, where Ti are linear fractional transformations and S(z) = z2.

We start with the map U(z) = 1/(z + 1). The idea is to map −1 to ∞. Since U
maps the real line to the real line and this is perpendicular to the circle |z| = 1 at −1
and 1, U(∂D) is a line perpendicular to the real axis at U(1) = 1/2. Since U(0) = 1
we easily check that U(Ω) = {z : <(z) > 1/2),=(z) < 0} (a quarter plane). We map
U(Ω) to the first quadrant by the map V (w1) = 2i(w1 − 1/2) (shift by −1/2, rotate
by π/2 and scale by 2 to make things easier later), so that

T2(z) = V ◦ U(z) = 2i

(
1

z + 1
− 1

2

)
maps Ω to the first quadrant and

T2(−1) = ∞, T2(0) = i, T2(1) = 0.

The map S(z) = z2 doubles the argument so it maps the first quadrant to the upper
half-plane. We have

S ◦ T2(−1) = ∞, S ◦ T2(0) = −1, S ◦ T2(1) = 0.

Now we use a map from the upper-half-plane to the unit disc that send the points
∞, −1 and 0 to −1, −i, 1. This is

T1(w) = −w − i

w + i
.
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The desired map is f = T1 ◦ S ◦ T1. We solve the equation f(z) = 0. First T1(w) = 0
gives w = i. Now we solve S ◦ T1(z) = i. We get T1(z) = eπi/4. Finally

T1(z) = eπi/4 ⇔ 2i

(
1

z + 1
− 1/2

)
= eπi/4 ⇔ 1

z + 1
=

eπi/4

2i
+

1

2
=

1

2
e−πi/4 +

1

2

⇔ z + 1 =
2

e−πi/4 + 1
⇔ z = −1 +

2

e−πi/4 + 1
=

1− e−πi/4

1 + e−πi/4
=

(1− e−πi/4)(1 + eπi/4)

|1 + e−πi/4|2

z =
−e−πi/4 + eπi/4

(1 + 1/
√

2)2 + 1/2
=

2i/
√

2

2 + 2/
√

2
=

i√
2 + 1

.

7. Let z and z′ be points in C with corresponding points on the unit sphere Z and Z ′

by stereographic projection. Let N be the north pole N(0, 0, 1).

(a) Show that Z and Z ′ are diametrically opposite on the unit sphere iff zz̄′ = −1.

Let Z(x1, x2, x3), Z ′(x′1, x
′
2, x

′
3), where (see Ahlfors p. 18, Conway p. 9)

x1 =
z + z̄

1 + |z|2
, x2 =

−i(z − z̄)

1 + |z|2
, x3 =

|z|2 − 1

|z|2 + 1
,

x′1 =
z′ + z̄′

1 + |z′|2
, x′2 =

−i(z′ − z̄′)

1 + |z′|2
, x′3 =

|z′|2 − 1

|z′|2 + 1
.

The points Z and Z ′ are diametrically opposite on the unit sphere iff Z = −Z ′ which
gives

|z′|2 − 1

|z′|2 + 1
= −|z|

2 − 1

|z|2 + 1
⇔ (|z|2 − 1)(1 + |z′|2) = −(|z|2 + 1)(|z′|2 − 1) ⇔

|z|2|z′|2 − |z′|2 + |z|2 − 1 = −|z|2|z′|2 − |z′|2 + |z|2 + 1 ⇔ 2|z|2|z′|2 = 2 ⇔ |z′| = |z|−1.

Now

x1 = −x′1 ⇔
2<z

1 + |z|2
= − 2<z′

1 + |z|−2
= − |z|

2<z′

|z|2 + 1
⇔ <z = −<z′|z|2,

and similarly
x2 = −x′2 ⇔ =z = −=z′|z|2.

The last two equations give
z = −z′|z|2.

Now
zz̄′ = −z′z̄′|z|2 = −|z′|2|z|2 = −1.

(b) Show that the triangles Nz′z and NZZ ′ are similar. The order of the vertices is
important and is as given. Use this to derive the formula for the euclidean distance
in R3

d(Z,Z ′) =
2|z − z′|√

1 + |z|2
√

1 + |z′|2
.
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Note: Ahlfors and Conway denote this distance d(z, z′).

We change notation so that z′ = w and Z ′ = W . The three points N , z and w
define a plane P that intersects the Riemann sphere. This intersection has to be
a circle, the one passing through N , Z, W . If we fix w but move z on the line l,
which is the intersection of the plane P and the complex plane, the slanted plane
P does not change position, and the circle remains the same. The effect moves the
stereographic projection Z on the circle. The further away we move z, the closer to
N the point Z gets. If z gets the closest to the circle as possible while moving on the
line l (this means at C), then Z has to be as far away from N as possible, this means
diametrically opposite to N . In this case ZN is a diameter. The point C is then the
foot of the height of the triangle. This means that the center of the circle lies on the
height from N to the line l.

Since the angle NZW extends on the arc NW , we have

N̂ZW =
1

2
N̂OW.

As complimentary angles we get

N̂wC = π/2− ŴNO

while
ŴNO = N̂WO.
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They all give

ŴON = π − 2ÔNW = π − 2(π/2− ŴwC) = 2ŴwC.

This implies

N̂wC = N̂ZW

and the triangles NZW and Nwz are similar. This implies

|ZW |
|zw|

=
|NW |
|Nz|

⇔ d(Z,W )

|z − w|
=
|NW |
|Nz|

.

So it suffices to prove that

|NW |
|Nz|

=
2√

1 + |z|2
√

1 + |z′|2
.

We have
|Nz| = |(x, y,−1)| =

√
x2 + y2 + 1 =

√
1 + |z|2,

while

|NW |2 = |(x′1, x′2, x′3−1)|2 = (x′1)
2+(x′2)

2+(x′3−1)2 = (x′1)
2+(x′2)

2+(x′3)
2+1−2x′3 = 2−2x′3

= 2

(
1− |z′|2 − 1

|z′|2 + 1

)
=

4

|z′|2 + 1
.

(c) Show that the stereographic projection preserves angles by looking at two lines
l1 and l2 through the point z in the complex plane and their images of the Riemann
sphere, which are two arcs through the north pole. Compare the angle between l1
and l2 with the angle of the arcs at N and at the image Z of z under the projection.
This part can be done solely with geometry.

From the figure we see that the tangent line to the stereographic projection of a line
in the complex plane (this is a circle through the north pole) is parallel to the line.
The argument in (b) actually proves this.

If we now have two intersecting lines l1 and l2 in the complex plane, their projections
are two arcs, which have two tangent lines at N lying on the horizontal tangent plane
at N . Their angle is equal to the angle between l1 and l2. The arcs meet at N but
also Z. Since they are arcs of circles, the angle between NZ and each arc is the
same at both endpoints N and Z of the arc. This implies that the angle between the
tangent lines to the arcs at Z is equal to the angle of the tangent lines to the arcs
at N , which is equal to the angle between l1 and l2. (The picture at N and Z is the
same in terms of angles and tangent lines)

8. Consider the function f(z) = ez and the set

Dε = {z ∈ C, a− ε ≤ <(z) ≤ a + ε,−ε ≤ =(z) ≤ ε},
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Figure 2: One line on C, its projection and the tangent at N

Figure 3: The two arcs on the sphere and the tangent lines at N and Z
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where ε ∈ (0, π).

(a) Compute the area of f(Dε) in two ways: First geometrically and second using the
formula

A(f(Dε)) =

∫
Dε

|f ′(z)|2 dx dy.

We have, since ez = ex(cos y + i sin y),

f(Dε) = {w ∈ C, ea−ε ≤ |w| ≤ ea+ε, | arg w| ≤ ε},

i.e., it is a sector in an annulus. The inner and outer radii are ea−ε and ea+ε respec-
tively and the sector angle is 2ε. Elementary geometry gives us the total area of the
annulus to be

π(e2a+2ε − e2a−2ε)

and for the sector we multiple with 2ε/2π to get

A(f(Dε)) = ε(e2a+2ε − e2a−2ε).

Second method: Clearly f ′(z) = ez and |f ′(z)|2 = e2x. So

A(f(Dε)) =

∫ a+ε

a−ε

∫ ε

−ε

e2x dy dx = 2ε

[
e2x

2

]a+ε

a−ε

= ε(e2a+2ε − e2a−2ε).

(b) Compute the limit

lim
ε→0

A(f(Dε))

A(Dε)
.

Interpret the result.

We notice that A(Dε) = (2ε)2. We compute the limit

lim
ε→0

A(f(Dε))

A(Dε)
= lim

ε→0

ε(e2a+2ε − e2a−2ε)

4ε2
= lim

ε→0

e2a+2ε − e2a−2ε

4ε
= lim

ε→0
e2a e2ε − e−2ε

4ε

= lim
ε→0

e2a 1 + 2ε + 4ε2/2 + 8ε3/3! + · · · − (1− 2ε + 4ε2/2− 8ε3/3! + · · ·)
4ε

= e2a lim
ε→0

4ε + 16ε3/3! + · · ·
4ε

= e2a.

(Alternatively use L’Hôpital’s rule). The limit is the infinitesimal magnification factor
for the area at the point a. The general theory says that this is detJF = |f ′(a)|2 = e2a.
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