The homework consists mostly of a selection of problems from the suggested books.

1. (a) Find the value of $(1 + i)^n + (1 - i)^n$ for every $n \in \mathbb{N}$.
 (b) Show that
 $$\left(\frac{-1 \pm i\sqrt{3}}{2}\right)^3 = 1, \quad \left(\frac{\pm 1 \pm i\sqrt{3}}{2}\right)^6 = 1.$$
 (c) Find the fourth roots of -1.

2. Find the conditions under which the equation $az + b\bar{z} + c = 0$ has exactly one solution and compute the solution.

3. Describe geometrically the sets of points z in the complex plane defined by the following relations.
 (a) $|z - z_1| = |z - z_2|$, where z_1, z_2 are fixed points in \mathbb{C}.
 (b) $1/z = \bar{z}$.
 (c) $|z| = \Re(z) + 1$.

4. Prove Lagrange identity
 $$\left|\sum_{i=1}^{n} a_i b_i \right|^2 = \sum_{i=1}^{n} |a_i|^2 \sum_{i=1}^{n} |b_i|^2 - \sum_{1 \leq i < j \leq n} |a_i\bar{b}_j - a_j\bar{b}_i|^2.$$

5. Prove that
 $$\left|\frac{a - b}{1 - \bar{a}b}\right| < 1$$
 if $|a| < 1$ and $|b| < 1$.

6. Prove that it is impossible to define a total ordering on \mathbb{C}. In other words, one cannot find a relation \gg between complex numbers so that:
 (i) For any two complex numbers z and w one and only one of the following is true: $z \gg w$, $w \gg z$ or $z = w$.
 (ii) For all $z_1, z_2, z_3 \in \mathbb{C}$ the relation $z_1 \gg z_2$ implies $z_1 + z_3 \gg z_2 + z_3$.
 (iii) Moreover, for all $z_1, z_2, z_3 \in \mathbb{C}$ with $z_3 \gg 0$
 $$z_1 \gg z_2 \implies z_1 z_3 \gg z_2 z_3.$$

 Hint: Is $i \gg 0$?
7. Prove that the points \(z_1, z_2, z_3 \) are vertices of an equilateral triangle if \(z_1 + z_2 + z_3 = 0 \) and \(|z_1| = |z_2| = |z_3|\).

8. Verify the Cauchy-Riemann equations for \(z^2 \) and \(z^3 \).

9. Express \(\cos(3\phi) \) and \(\cos(4\phi) \) in terms of \(\cos(\phi) \). Express \(\sin(3\phi) \) in terms of \(\sin(\phi) \).

10. Simplify \(1 + \cos(\phi) + \cos(2\phi) + \cdots + \cos(n\phi) \) and \(\sin(\phi) + \sin(2\phi) + \cdots + \sin(n\phi) \).

11. Prove that the diagonals of a parallelogram bisect each other and that the diagonals of a rhombus are orthogonal.

12. Prove rigorously that the functions \(f(z) \) and \(f(\bar{z}) \) are simultaneously holomorphic.

13. Suppose that \(U \) and \(V \) are open sets in the complex plane. Prove that if \(f : U \to V \) and \(g : V \to \mathbb{C} \) are two functions that are differentiable in the real sense (in \(x \) and \(y \)) and \(h = g \circ f \), then the complex version of the chain rule is

\[
\frac{\partial h}{\partial z} = \frac{\partial g}{\partial z} \frac{\partial f}{\partial z} + \frac{\partial g}{\partial \bar{z}} \frac{\partial \bar{f}}{\partial z}, \quad \frac{\partial h}{\partial \bar{z}} = \frac{\partial g}{\partial z} \frac{\partial f}{\partial \bar{z}} + \frac{\partial g}{\partial \bar{z}} \frac{\partial \bar{f}}{\partial \bar{z}}.
\]

14. Show that in polar coordinates the Cauchy-Riemann equations take the form

\[
\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{1}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial r}.
\]

Use these equations to show that the logarithm function defined by \(\log z = \log r + i\theta \), \(z = r(\cos \theta + i \sin \theta) \), \(-\pi < \theta < \pi \) is holomorphic in the region \(r > 0 \) and \(-\pi < \theta < \pi \).

15. Consider the function defined by

\[
f(x + iy) = \sqrt{|x||y|}, \quad x, y \in \mathbb{R}.
\]

Show that \(f \) satisfies the Cauchy-Riemann equations at the origin, yet \(f \) is not holomorphic at 0.