Math 434/734

Midterm 2

April 18, 2007

1. Use Green's theorem to evaluate

$$\int_C y dx - x^2 dy$$

where C is the square with vertices at (0,0), (2,0), (2,2) and (0,2) oriented counterclockwise.

2. (a) Calculate the divergence of the following vector field:

$$\mathbf{F} = x^2 \mathbf{i} + 2y \mathbf{j} + z \mathbf{k}$$

(b) Calculate $\int_{S} \mathbf{F} \cdot \mathbf{n} \, dS$, where S is the surface of the cube $[0, 2] \times [0, 2] \times [0, 2]$ with \mathbf{n} the outer unit normal vector on it.

3. (a) Calculate the curl of the following vector field:

$$\mathbf{F} = z^2 \mathbf{i} + 2x \mathbf{j} - y^2 \mathbf{k}$$

(b) Calculate the (line integral)

$$\int_C \mathbf{F} \cdot \mathbf{T} \, ds$$

where C is the ellipse on the xy-plane with equation $x^2 + 4y^2 = 4$ oriented counterclockwise.

- (c) (*Extra credit*) Reformulate (a) and (b) in terms of forms and redo the calculations.
- 4. Assume that the mixed partial derivatives of the given function are equal. Show that div (curl \mathbf{F}) = 0, which in alternative notation is $\nabla \cdot (\nabla \times \mathbf{F}) = 0$.
- 5. Consider the differential form $\omega = \cos y \, dx + (3y^2 x \sin y) \, dy$. Is it closed? Is it exact? Why?