
MAT 128 Lab 16: Rsquared and Multiple Linear Regression 
 

Motivating question:  Can we predict when a building was built near Times Square? 
 
Dataset: Times Square Property Data (Commercial and Retail Properties) from 
OpenDataNYC 
 
This dataset stores information about various buildings near Times Square. 
 

1) Download the full dataset. 
2) What kind of information is stored in this dataset? 

 
Cleaning the data: 
 

1) We are only going to use the following columns: 'Year Built','Number Of 
Stories','Land Area (AC)', 'Rentable Building Area','Typical Floor Size','Number Of 
Elevators', 'Percent Leased' 

 
To load only these columns into the dataframe: put their names in a list, and add the 
option/parameter usecols=name_of_list  in read_csv .  Try it before looking at the 
code below. 
 
One way to do this: 
fields = ['Year Built','Number Of Stories','Land Area (AC)', 

'Rentable Building Area','Typical Floor Size','Number Of 

Elevators', 'Percent Leased'] 

 

ts = 

pd.read_csv('Times_Square_Property_Data__Commercial_and_Retail_pro

perties_.csv',usecols =fields) 

 
2) Since the column names have spaces and we will be building a linear model (where the 
command will not take column names with spaces), we need to rename the columns: 
ts.columns = 

['Year','Stories','Land_area','Rentable_area','Floor_size','Elevat

ors','Percent_leased'] 

 
3) Run your code, and run the head()  command to check that the dataframe has been 
loaded property.  What do you notice about rows 1, 3, and 4? 
 
4) NaN  is used to represent missing data.  We want to remove the rows with missing data, 
since they will cause problems later.  Assuming your dataframe is called ts  add the 
following code: 
ts = ts.dropna(axis=0, how = 'any') 

 

https://data.cityofnewyork.us/City-Government/Times-Square-Property-Data-Commercial-and-Retail-p/j86k-5i43


axis=0 drops the entire row containing the missing data, whereas axis=1  drops the entire 
column 
 
how='any'  drops the row/column if any of the values are missing, whereas how='all' 
only drops the row/column if all of the values are missing 
 
Exploratory Data Analysis: 
 

1) Compute the correlation matrix for the dataframe (ie. for all columns), and display it 
as a heatmap.  Which pairs of columns have the greatest correlation?  Are there any 
pairs of columns that have no, or almost no, relation? 

 
If you want to change the color scheme of the heatmap, add the option/parameter: 
cmap='name_of_color_map' 

 

For example: cmap = ‘YlGnBu’ 
 
cmap  stand for ‘color map’.  Some possible color maps are listed here: 
http://www.r-graph-gallery.com/38-rcolorbrewers-palettes/ 
 
2) If you have time:  plot all pairs of columns as scatter graphs.  Hint:  remember the pairplot 
command in Seaborn. 
 
Do the graphs match what you noticed from the correlation matrix? 
 
Model Building and Prediction: 
 

1) Can we predict the number of stories a building has from the number of elevators? 
Try building a linear model to predict this.  Hint:  see code from Lab 15 

 
2) Print out the coefficients/parameters of the model.  For each new elevator, how many 
more stories does the model predict? 
 
3)  Use Seaborn to make the scatter plot of the Stories and Elevators columns data with the 
best fit line. 
 
4) Predict how many stories a building with 20 elevators will have.  Hint: see code from Lab 
15 
 
Validating the Model: 
 
Validating the model means checking how accurate or good the model is at predicting the 
real data. 
 
We will do this by computing R-squared: 

http://www.r-graph-gallery.com/38-rcolorbrewers-palettes/


 
 
where RSS = Residual Sum of Squares 
 

 
 
and TSS = Total Sum of Squares 

 
 
 
This can be done in Python one line using statsmodel :  
lm.rsquared 

 
To print it: 
print(lm.rsquared) 

 

What’s the R-Squared value for our model? 
 
Multiple Linear Regression 
 
We can use the date from more than one column to predict the number of stories.  For 
example, to use the Elevators and Land_area columns: 
 
lm2 = smf.ols(formula = 'Stories ~ Elevators + Land_area ', data = ts).fit() 

 

We can still compute the parameters/coefficients the same way: 
print(lm2.params) 

 
And R-Squared: 
print(“R-Squared:”,lm2.rsquared) 

 

To predict the number of stories, we need to make a new dataframe with both the number of 
elevators and the land area: 
 
new_data = pd.DataFrame({'Elevators':[10,20],'Land_area':[0.11,0.14]}) 

 
And then use it to make the prediction: 
print("Prediction:",lm2.predict(new_data)) 

 
How many stories will a 10 elevator building on 0.11 acres of land be? 



How many stories will a 20 elevator building on 0.14 acres of land be? 
 
Classwork 
 
What linear model can you build from these columns and data that has the best R-Squared 
value? 
 
Does adding new variables to the model always increase the R-Squared value? 


