Histogram for a 12-sided die | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
  |   |   |   |   |   |   |   |   |   |   |   |
  |   |   |   |   |   |   |   |   |   |   |   |
  |   |   |   |   |   |   |   |   |   |   |   |
1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |
Histogram for sum of 2 6-sided dice | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
  |   |   |   |   |   |   |   |   |   |   |   |
  |   |   |   |   |   |   |   |   |   |   |   |
  |   |   |   |   |   |   |   |   |   |   |   |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Histogram for sum of a 4-sided & 8-sided dice | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
  |   |   |   |   |   |   |   |   |   |   |   |
  |   |   |   |   |   |   |   |   |   |   |   |
  |   |   |   |   |   |   |   |   |   |   |   |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
E[X] = 1*(probability of rolling 1) + 2*(probability of rolling 2) + ... + 12*(probability of rolling 12) = 1*Pr[X = 1] + 2*Pr[X = 2] + ... + 12*Pr[X = 12] = 1 * 1/12 + 2 * 1/12 + ... + 12 * 1/12 = 13*6/12 = 13/2 = 6.5What happens if we have 2 6-sided dice? How many ways can we roll each value?
sum | 1 | 2 | 3 | 4 | 5     | 6     | 7     | 8     | 9     | 10   | 11   | 12   |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ways | none | 1+1 | 1+2 | 1+3 |   |   |   |   |   |   |   |   |
  |   | 2+1 | 2+2 |   |   |   |   |   |   |   |   | |
  |   |   | 3+1 |   |   |   |   |   |   |   |   | |
  |   |   |   |   |   |   |   |   |   |   |   | |
  |   |   |   |   |   |   |   |   |   |   |   | |
  |   |   |   |   |   |   |   |   |   |   |   | |
Prob: | 0 | 1/36 | 2/36 | 3/36 |   |   |   |   |   |   |   |   |
What happens if we have a 4-sided and 8-sided dice? How many ways can we roll each value?
sum | 1 | 2 | 3 | 4 | 5     | 6     | 7     | 8     | 9     | 10   | 11   | 12   |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ways | none | 1+1 | 1+2 | 1+3 | 1+4 | 1+5 |   |   |   |   |   |   |
  |   | 2+1 | 2+2 | 2+3 | 2+4 |   |   |   |   |   |   | |
  |   |   | 3+1 | 3+2 | 3+3 |   |   |   |   |   |   | |
  |   |   |   | 4+1 | 4+2 |   |   |   |   |   |   | |
Prob: | 0 | 1/32 | 2/32 | 3/32 |   |   |   |   |   |   |   |   |
The probability of rolling i and then j (to get i+j) is 1/4 * 1/8 = 1/32. What is the expected value?
What happens if we have 3 4-sided dice?
For which set of dice, would you expect the highest value rolled? Why?