
Asteroids
You will be reinvigorating the 1979 arcade classic, a timeless tale of triumph and
sacrifice, of hatred and love, of space travel wrapped around our screens and our
hearts. One solitary ship, an interminable journey, a violent struggle for freedom –
these are the elements of our story.

Prologue
First thing, if you’ve managed to spend your years without ever having played the
game you’re about to make, I expect you’ll Google it and give it a try.

Initial class hierarchy: gold classes are abstract,
orange are concrete.

Second, you’ll need to get comfortable with the starter code, so have yourself a perusal
and come back when you’re done.

Did that? I bet you’ve noticed a few curious things: Yes, painting on a canvas requires a
brush. Yes, Java’s coordinate system has its origin is at the leftmost, topmost point of a
window. And, yes, you get a glorious empty black window when you run the starter code.

Well, now that you’ve met the brush and canvas – let’s paint! Asteroid will call its
paint(Graphics brush) method every tenth second – that way you can draw the
next frame of the game’s animation. Painting is done by calling the Graphics
methods using the brush like so: brush.fillPolygon(…) or
brush.drawString(…). (See java.awt.Graphics for details.) As we develop our
code, you’ll write paint(Graphics brush) methods for your own classes; a sensible
idea is to call those functions from inside Asteroids.paint(Graphics brush),
passing along that same brush!

Admittedly, what follows might drive some people nuts: it’s a script for you to follow
while coding. The truth is, you need not follow it exactly, the intent is for you to grasp
the concepts it focuses on: class identity and inheritance design. As long as you’ve
completed the assignment with all the details and are accountable for your class
design, you’ve done what is asked. Be inventive, and enjoy!

Characters
First up is the ship. Create a subclass of Polygon called Ship, implementing its
constructor and the aforementioned public void paint(Graphics brush)
draws the ship’s polygon. Now make sure the ship starts at the screen’s center.

We’ll be charting the
class hierarchy as it
develops.

Following this script
in exact terms is
likely the easiest way
to finish this
assignment, though.

How will the ship

Ship is a Polygon.

Now we’ll get the ship moving. Create another method public void move() that
increases the ship’s position.x and call this function in Asteroids.paint(). Now
we need the position values to wrap around when they gets out of bounds. After, you’ll
implement an interface called KeyListener that will allow our ship to respond to key
presses. It requires you to implement three methods: KeyPressed(…),
KeyReleased(…), KeyTyped(…). I suggest leaving KeyTyped(…) blank.

At this point, you’ve got a linear moving ship class. You press forward, it goes forward.
You stop, it stops. What we’ll need next is to create the zero-gravity acceleration effect:
this will require one new member variable representing an acceleration vector. It is
the rate of increase in x and in y at each time step. It can be enlarged with the
following magical math:
 public void accelerate (double acceleration) {
 pull.x += (acceleration * Math.cos(Math.toRadians(rotation)));
 pull.y += (acceleration * Math.sin(Math.toRadians(rotation)));

 }

And now that you’ve got our protagonist in fighting form, he’ll need a worthy
opponent. Create an Asteroid class much in the same vein as the Ship. Create an
array of Asteroid and paint them all.

One detail remains: collisions. We need a method to determine whether a polygon
intersects with another. The test aught to return true of either polygon overlaps the
other – and let’s put such a boolean method in our Polygon class. You’re left to
imagine how this might work.

Setting
Consider the Star and Asteroid classes. How are they similar? What abstractions
can be made that apply to both – and more importantly, does that apply to their
mutual abstraction: Polygon? Consider any similar methods, loops, and variables; do
these properties belong to all polygons? Move as much as makes sense up into the
Polygon class. At the least, paint(…) belongs in Polygon not in each and every
subclass.

know the screen
dimensions?

Experience has
shown that keeping
boolean variable for
each button, toggled
by KeyPressed() and
KeyReleased() leads
to smoother
performance than
using KeyTyped().

Of course all the
math isn’t too hard to
figure out, but let’s
just stick to
programming here.

Having trouble? The
answer is contained
within.

How does adding
paint(…) and any
other methods you’re
considering adding
change the meaning
of what Polygon
represents?

Remember that solving these design problems has immense impact on future work.
You aught to be prepared to defend your decisions: Why do these methods belong
here and not there? With which classes do the member variables best fit? What is the
identity of the classes you’ve made? Are they consistent and reasonable real-world-
like?

Conflict

Because bullets and stars aren’t polygons.

What’s left? Oh, our ship has no bullets and our sky is an awfully lonely place. Now,
everybody, what do stars and bullets have in common? Neither is a polygon! Both
are… both are circles. That means we’ll need a Circle class, but don’t fret because it
won’t be nearly as hairy nor mathy as Polygon even though it will serve a parallel
purpose.

We’ll need a public boolean contains(Point) for intersections, a
paint(Graphics) and that’s it. So that’s not bad at all. (Well, except, later on, it
might come in handy to have implemented a method that returns a bunch of points
lying on the boundary of our circle. Consider that a hint.)

Showdown
Now, much like with Ship and Asteroid earlier, we will subclass Circle to create
Bullet and Star. I’ll leave the details to you.

What’s left? One major issue: how do we know a bullet has hit something? Our
intersection-testing method is only for Polygons!

We’ve hit on something here: we have a generalized. Instead of creating another
method to repeat the test with slight variation for each possible shape, let’s just talk
about shapes in general!

You’re about to create a super class for Polygon and Circle, we’ll call it Shape. What
are shapes? They may contain(Point)s, they may intersect(Shape)s, and you
can getPerimiter()s – the perimeter is calculated differently based on type (in
Shape, it should be an abstract method). Mixing abstract and implemented types
means that there’s no such thing in our world as a Shape for its own sake, it must be
of some specific sort.

Consider making the
stars twinkle or move
toward or away from
the ship. Consider
making bullets that
fade away or come
in different colors or
sizes.

Shape thereby
becomes its own

The glorious finalized hierarchy.

Denouement
Now we’ve got quite a beefy class hierarchy: abstract classes, implemented interfaces,
lots of inheritance. This is your last opportunity to see that it all fits. Can you do
better? Are the class identities still consistent and sensible?

Conclusion
Now we do the actual game fixins: scores, timers, and controls. Remember you can set
the Game’s on member variable to false, which makes it stop paint(…)ing.

Here you’re free to consider all the fun additions you might make: add sound, levels,
difficulty, asteroids that explode into smaller asteroids, create explosive animations,
use images for backgrounds or each ships. Do anything you like, it’s your game!

