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Abstract

This paper presents two approaches to quantifying and visualizing variation in
datasets of trees. The first approach localizes subtrees in which significant pop-
ulation differences are found through hypothesis testing and sparse classifiers on
subtree features. The second approach visualizes the global metric structure of
datasets through low-distortion embedding into hyperbolic planes in the style of
multidimensional scaling. A case study is made on a dataset of airway trees in
relation to Chronic Obstructive Pulmonary Disease.

1 Introduction
Tree-structured data appears in many medical imaging applications, e.g., airway trees [14],
blood vessel trees [18], dendrites [32] and galactograms [26]. Typically, these anatom-
ical trees vary both in tree topology and associated branch features such as branch
length or shape, and as a result there is no straight-forward way to analyze the trees us-
ing standard Euclidean statistics. One way to integrate both tree topology and branch
features in a single parametric framework is by modeling trees as residing in a non-
linear, non-smooth tree-space [7,14]. The non-linear, non-smooth nature of tree-space
creates several problems for data analysis. First, statistics have to be redefined, as the
standard statistical procedures such as finding an average or a principal component, or
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performing classification, do not translate directly to the tree-space setting. Second,
even if we define classification algorithms in tree-space, we do not know which parts
of the anatomical tree are responsible for causing class differences, for example, be-
cause each tree-space point represents an entire tree structure. Third, due to the lack of
statistical tools such as principal component analysis, it is hard to visualize how distri-
butions of trees vary in tree-space. While recent work has resulted in basic statistical
tools [5, 14, 27, 29], the two latter problems are still unsolved. In this paper we in-
vestigate two approaches to these two problems: First, we study the influence of local
subtrees on the results of hypothesis testing and classification, and the identification
of subtrees which are responsible for significant differences between two populations
of trees. Second, we use hyperbolic low-distortion embedding to visualize the global
metric structure of data living in tree-space. As a case study, we demonstrate the use of
these techniques on a population of airway trees from a lung cancer screening study.

This paper presents results from the one-week collaboration workshop Women in
Shape: Modeling Boundaries of Objects in 2- and 3-Dimensions held at the Institute
of Pure and Applied Mathematics at UCLA, July 15-19 2013. At this workshop, most
of the authors of this paper spent a week working together on two projects related to
quantifying and visualizing variance in populations of trees, which are described in
Sections 3 and 4, respectively.

1.1 Tree-space
A tree-space is any geometric space in which points represent trees. The tree-space
used in this paper, described in [14, 15], is a generalization of the phylogenetic tree-
space proposed by Billera et al. [7], illustrated in Figure 1. This tree-space, denoted
Tn, contains all rooted trees with n labeled leaves with vertices of degree at least 3,
where the n leaf labels are given by a fixed set of cardinality n. In this paper, the root
of a tree is not considered to be among the leaves. For any tree in this tree-space, each
edge has k-dimensional vector associated with it. An example of such an edge vector is
a non-negative real number representing the edge length (i.e. k = 1); a second example
is the vector of l 3-dimensional landmark points sampled along a branch centerline,
giving k = 3 · l. For each edge, the landmark points are translated so that the edge starts
at the origin. We refer to the latter edge vector as the shape of the edge. The trees in
such a tree-space can, for instance, be used to model airways in the lung. In this space,
we will use edge shape to describe edges unless otherwise is stated.

Tree-space is a non-positively curved metric space [7], which implies that there is a
unique shortest path between any two trees, called the geodesic. The geodesic distance
between two trees is the length of the geodesic between them, and it can be computed in
polynomial time [30]. Certain statistics, such as means and first principal components,
can also be computed on trees in this space [5, 14, 27, 29].

While sections of tree-space are identical to the non-negative part of higher di-
mensional Euclidean spaces, tree-space itself is not a manifold. In particular, it has
several singularities, which have infinite negative curvature. One such singularity is at
the origin, which corresponds to the tree which has all 0 edge lengths or vectors. A
simpler model of this singularity in T4 is a corner: five Euclidean quadrants, glued
together around an single origin, see Fig. 1(b). Singular points in tree-space also occur
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Figure 1: (a) Two adjacent quadrants in the tree-space of trees with 4 leaves and edge
vectors of 1 dimension. A quadrant contains all trees with a given topology, and each
tree with that topology is represented by the coordinates corresponding to its edge
lengths. Only coordinates for internal edges are shown in these figures. (b) Represen-
tation of 5 of the 15 quadrants in the tree-space T4, with edge vectors of 1 dimension.
(c) An occurrence of half open book with 3 2-dimensional sheets in tree-space.

where the the higher dimensional Euclidean subspaces join together to form a space
that locally resembles an open book. An open book is a set of Euclidean half planes, or
sheets, which are identified along their boundary hyperplanes, which form the spine,
see Fig. 1(c).

The Fréchet mean in tree-space

In Euclidean space, there are a number of equivalent definitions of the mean. Some of
these definitions cannot be carried over to tree-space, while those that can be carried
over are no longer equivalent. One of the definitions of mean in Euclidean space is the
Fréchet mean, or barycenter, which minimizes the sum of square distances to the input
set. If {T1,T2, ...,Tr} are a set of input trees, then their Fréchet mean in tree-space is
the tree t which minimizes ∑

r
i=1 d(t,Ti)

2, where d is the geodesic distance. The Fréchet
mean was introduced for tree-space independently by [5] and [27], both of whom also
gave an algorithm to approximate it based on a Law of Large Numbers holding in
non-positively curved spaces [35].

2 Related work
This paper studies two problems related to understanding variance in datasets of trees:
(i) detection of local subtree differences, and (ii) visualization of global population-
level geometry.

Local significant differences

Many data types represent entities which can be decomposed into parts or regions.
Examples are graph-structured data [13, 23], anatomical data which can be segmented
into different organs [17,20] or even single anatomical organs where additional spatial



information is relevant; for instance, in the framework of shape analysis [9, 10] where
local analysis is made on correspondence points on biomedical shape surfaces. A typ-
ical problem when studying such data is interpretability: A classifier will often only
predict a certain diagnosis or class, but in order to understand the cause of the result
(and, e.g. in diagnostic settings, do something about it) one also desires to know which
parts of the collection caused a certain classification outcome.

While a large body of work has been done on classifying structured data, less is
known about how to identify which parts of a structure are relevant for the classification
problem. Most such work has been done in settings where there is a correspondence
between the parts constituting the data object: In analysis of brain connectivity [19,23],
one usually has a matching between the nodes in the dataset, while in voxel-based
morphometry [3] or shape analysis [10], registration is used to match different images
to a template. A popular approach to such problems is structured sparsity [4, 22, 23],
which detects discriminative substructures in data described by fixed-length Euclidean
vectors with a known underlying structure relating the vector coordinates. However,
anatomical trees usually cannot be described by fixed-length vectors without discarding
parts of the tree. Thus, these methods are not directly applicable.

Low-distortion embeddings

The standard technique for visualising population structure in high-dimensional or non-
Euclidean datasets is to extract the pairwise distances between data points, and then
use multidimensional scaling (MDS), which attempts to embed the points into a lower
dimensional Euclidean space such that the given distances between the points are pre-
served. This is expressed mathematically as minimizing the sum of the differences be-
tween original and embedded pairwise distances [8]. In a sequence of work [2, 21, 28]
Amenta, St. John et al. investigate visualization of sets of phylogenetic, or evolution-
ary, trees using multidimensional scaling. In this work, inter-tree distances are given
by the Robinson-Foulds distance [34], which only measures topological differences in
the trees. More recently, Wilgenbusch et al. [41] compare several non-linear versions
of MDS on phylogenetic trees, and find that a metric that places less weight on large
distances gives more meaningful visualizations. Chakerian and Holmes [11] use MDS
with the geodesic distance between trees [7]. A different approach is that of Sundberg
et al. [36], who visualize phylogenetic trees by projecting them onto a hypersphere;
this approach does consider branch lengths, only tree topology.

All of these methods approach visualization through embedding into a Euclidean
space in a low-distortion way. However, embedding spaces need not be restricted to
only Euclidean spaces. For instance, low-distortion embedding of a general metric into
a tree has been considered for various measures of distortion [1,6]. Low-distortion em-
bedding of general metrics into hyperbolic spaces has also been considered by Walter
et al. [39,40] and Cvetkovski and Crovella [12]. In this paper, we use hyperbolic MDS
for more truthful visualizations of tree variation.



3 Quantification and visualization of local tree-shape
differences

While previous work [14] developed methods for finding significant differences be-
tween populations of trees, this work did not address the question of where these
changes came from. In this section we investigate different methods for detecting
where in a tree significant differences appear. In Sec. 3.1 we perform hypothesis testing
on nested subtrees in order to detect how significant changes take place in particular
subtrees. In Sec. 3.2 we develop a structured sparsity framework which takes advan-
tage of the tree-space geometry in order to handle the fact that subtrees have variable
topological structure. In both of these sections, we obtain results on which subtrees in-
duce significant differences. A disadvantage of the methods developed in Sections 3.1
and 3.2 is that they do not take correlation between different subtrees into account. In
Sec. 3.3 we therefore develop a method that allows us to study how subtree differences
correlate with each other.

Case study. We apply the developed methods to a case study of airway trees from
subjects with and without Chronic Obstructive Pulmonary Disease (COPD). The 600
airway trees are from randomly selected subjects from the Danish Lung Cancer Screen-
ing Trial [31], of which 300 were diagnosed with COPD at scan time and 300 were
symptom free. The trees were extracted from low-dose (120 kV and 40 mAs) pul-
monary CT scans. To extract the tree, the airway lumen surface was extracted from
the images using the locally optimal path approach of [24] and then refined using the
optimal surface approach of [33]. Afterwards centerlines were computed by front prop-
agation within the refined lumen surface as described in [25]. The resulting centerlines
were disconnected in bifurcation regions and so Dijkstra’s algorithm was used to con-
nect them along shortest paths within an inverted distance transform of the refined
lumen surface. These centerlines were then represented by 6 equidistantly sampled
landmark points. The airway trees were normalized by patient height as an affine scal-
ing parameter.

Our decomposition of trees into subtrees requires an assumption that the same sub-
trees can be found in all trees, which is equivalent to an assumption that certain inter-
mediate branches at which the subtrees are rooted are present in all trees. For the case
study on airway trees, we assume that the branches

Trachea, LMB, RMB, LUL, RUL, L123, LLB, BronchInt, and RLL, (1)

see Fig. 2, are always present (the branch labels are assigned using the geodesic label-
ing algorithm [15], which makes the same assumption).

3.1 Permutation tests for subtree statistics

Figure 2: Airway tree
(black) and sub-tree (red,
LMB)

In this section we perform subtree hypothesis testing
using the tree-shape permutation tests for equality of
means and variances developed in [14] on the nested



subtrees defined by the subtree root branches (1). For classes G1 and G2 of trees, the
test statistics used for comparing means and variances between classes are defined as

tm = d(µ(G1),µ(G2)) and tv = |v(G1)− v(G2)|,

respectively, where µ(Gi) is the mean of the trees in the ith class, and v(Gi) denotes the
variance of the ith class 1

(N−1) ∑t∈Gi d2(t,µ(Gi)).

Table 1: Group comparison: results of per-
mutation tests on COPD and healthy air-
way subtree populations.

LABEL P-VALUE P-VALUE
mean variance

full 0.0010 0.0060
RMB 0.0020 0.0939
RUL 0.2298 0.1668
BrInt 0.0050 0.1249
RLL 0.0300 0.0959
LMB 0.0859 0.0210
LUL 0.0320 0.0390
L123 0.0260 0.0410
LLB 0.5524 0.1588

Permutation tests for the two statis-
tics were performed with 1000 permu-
tations for each subtree; the results are
summarized in Table 1, and show sig-
nificant differences in several subtrees,
which can be interpreted by referring
back to Fig. 2. In comparison, the same
hypothesis test was made on the individ-
ual branches (1) along with the segment
branches R1-R10, L1-L10, with results
shown in Table 2. The tests on individ-
ually identified branches show relatively
fewer significant differences between the
two populations, emphasizing a need for
considering the airway subtrees as enti-
ties rather than collections of indepen-
dent branches.

This suggests that the permutation test described here can be applied to study local
group differences between subtrees in a hierarchical manner.

3.2 Classification for subtree statistics

Method Accuracy Accuracy
length shape

LDA 0.56±0.06 0.52±0.06
QDA 0.55±0.05 N/A

Mahalanobis 0.54±0.05 N/A
kNN 0.53±0.06 0.53±0.06
SVM 0.56±0.06 0.56±0.06

Table 3: Mean ± standard deviation
of COPD classification accuracy using
branch length (left) and branch shape
(right).

In the previous section we saw how hy-
pothesis testing on subtrees allowed us
to learn about which subtrees differed
significantly between two populations of
trees. While significant differences are
interesting in their own right, we are of-
ten particularly interested in finding pre-
dictive differences, and in particular find-
ing subtrees such that restricting predic-
tion to these subtrees results in good pre-
dictive performance, giving interpretable
classifiers in the sense that we can detect
which tree changes are predictive.

3.2.1 Classification on known branches

A straight-forward approach to tree classification and identification of discriminative
substructures of trees is to use standard classification methods on vectors correspond-



LABEL P-VALUE P-VALUE LABEL P-VALUE P-VALUE
mean variance mean variance

RMB 0.163 0.621 LMB 0.020 0.786
RUL 0.134 0.416 LUL 0.297 0.118
R1 0.410 0.363 L1 0.163 0.391
R2 0.116 0.255 L2 0.324 0.017
R3 0.329 0.854 L3 0.968 0.800

BronchInt 0.001 0.764 L45 0.078 0.312
R4 0.134 0.190 L4 0.372 0.570
R5 0.027 0.175 L5 0.023 0.050
R6 0.992 0.135 L6 0.260 0.833

RLL 0.001 0.865 LLB 0.177 0.112
R7 0.058 0.325 L7 0.496 0.611
R8 0.014 0.207 L8 0.466 0.900
R9 0.037 0.127 L9 0.146 0.026

R10 0.308 0.652 L10 0.855 0.162
L123 0.393 0.361

Table 2: Case study: Permutation testing for subtree differences between populations of
airway trees from healthy individuals and COPD patients. P-values below a threshold
of 0.05 are shown in bold.

ing to named branches. From classifiers such as the support vector machine (SVM),
the weight corresponding to each individual feature indicates how relevant that given
feature is for classification. This method will form a baseline to which our proposed
methods are compared.

Using the list of branches (1) along with the leaves {R1-R10, L1-L10}, we per-
formed classification with linear discriminant analysis (LDA), quadratic discriminant
analysis (QDA), Mahalanobis distance, k-nearest neighbor (kNN) using k = 5, and
support vector machine (SVM) using 10 repetitions of 10-cross validation. The cor-
responding classification accuracies are reported in Table 3. Note that the QDA and
Mahalanobis distance are missing for the shape branch features; this is because these
both require a positive definite covariance matrix, for which the data set was too small
for the higher-dimensional shape vectors.

While the mean classification accuracy is above chance for all classifiers, none of
them are significantly above chance. A common heuristic to find features which are
important in classification is to study the magnitudes of the coordinates of the weight
vector produced by the SVM algorithm, as shown in Table 4. Note that in addition to
the classification accuracy being very low, the weights of high magnitude are scattered
around the airway tree, not adding much in terms of interpretation.

The poor performance of classifiers on the set of all branches could be explained
by the fact that many branches are highly correlated, and the choice of which of a
set of correlated branches is highly weighted may not carry much information. The
poor classification accuracy may be explained by the dimensionality of the data. This
motivates our search for a more predictive and interpretable classification algorithm by



including subtree information in the classifier.

Branch SVM weight Branch SVM weight Branch SVM weight Branch SVM weight

RMB 2.0±1.45 R5 2.8±1.6 LMB −2.6±1.6 L4 −1.4±1.2
RUL 4.3±1.6 R6 −1.7±1.6 LUL 1.7±2.1 L5 2.3±1.6
R1 −0.7±1.2 L6 1.5±1.6 L123 −0.8±1.4 RLL 2.6±1.6
R2 4.9±1.2 R7 1.4±1.5 L1 −1.6±1.2 LLB −3.6±1.5
R3 −3.6±1.4 R8 3.3±2.2 L2 −3.2±1.3 L7 −2.8±1.3

BrInt −5.0±1.6 R9 7.3±1.5 L3 1.4±1.3 L8 2.2±1.5
R4 −0.4±1.6 R10 2.9±1.6 L45 3.6±1.8 L9 3.2±1.5

L10 5.2±1.5

Table 4: The mean and standard deviations of the SVM weight vectors on the
COPD/healthy classification. The largest weight vectors as well as those falling within
one standard deviation are highlighted.

3.2.2 Structured sparse feature selection through regularized logistic regression
on subtree similarity

Under a hypothesis that significant differences are found in local subtrees, we incorpo-
rate local subtree structure into classification through a sparse classifier taking subtree
similarity as input. Logistic regression measures the relationship between a categorical
dependent variable (class label) and one or more independent variables by using con-
ditional probabilities as predicted values of the dependent variable. The L1 regularized
logistic regression, or the so-called sparse logistic regression [38], regularizes the clas-
sifier by forcing the weight vector of the classifier to have a small number of nonzero
values. This results in implicit feature selection and robustness to noise, as well as
interpretability through the selected subtree features. In addition to its solid theoretical
foundation, this model is computationally efficient [16].

In order to fix terminology and notation, consider a set of n training examples T =
{(x1,y1),(x2,y2), · · · ,(xn,yn)} from which a tree classifier y = f (x) will be learned.
The ith tree is represented by a d-dimensional feature vector xi = [xi1,xi2, · · · ,xid ]

T

where xi j = d(Si
j,µ j), where Si

j is the jth subtree of the ith tree, µ j is the Fréchet mean
tree of all jth subtrees in the training set, and d denotes geodesic distance between trees.
The d subtrees are rooted at the branches listed in (1). The values yi ∈ {0,1} indicate
the class labels of the two groups, modeling the conditional probability distribution of
the class label y given a feature vector x as:

p(y = 1|x,β ) = 1
1+ exp(−β T x)

,

where β ∈ Rd are the parameters of logistic model. The estimation of the parame-
ters β is done by likelihood maximization, equivalent to minimizing the negative log-
likelihood

β̂ = argmin
n

∑
i=1
− log p(yi|xi,β ).



Table 5: Results of the structured logistic classifier with lasso and elastic net regular-
ization. Classification results are averaged over 10 randomized folds, and significant
features are those where the distances to both class means were kept as features in the
classifier in all folds.

Value of α Classification result Significant features
1 (lasso) 65±2.7% full
0.75 64.3±2.1% RMB, full
0.5 62.5±2.4% RMB, BronchInt, full
0.25 62.5±2.3% RMB, LMB, LLB, BronchInt, RLL, full

Applying a sparse regularizer we obtain feature selection, interpretability and reduced
overfitting. This is done by adding a regularization term:

β̂ = argmin
n

∑
i=1
− log p(yi|xi,β )+λ ||β ||1,

where λ is a parameter controlling the sparsity of β , in the sense that fewer nonzero co-
efficients of β remain as λ increases. The optimal λ is chosen to optimize classification
accuracy by 5-fold cross validation.

The nested subtrees used will be correlated by definition. One way of handling this
is by adding an l2 norm regularization term as well, leading to an objective function

β̂ = argmin
n

∑
i=1
− log p(yi|xi,β )+λ (α||β ||1 +

1−α

2
||β ||22).

The results of the sparse classifiers for different values of α are shown in Table 5.
Note that the classification performance is significantly better than that of the standard
classifiers on identified branches seen in Table. 3. Moreover, note the discriminative
subtrees selected by the classifier. The fact that the lasso regularizer results in only
the full tree being selected is most likely a result of the correlation between subtrees.
As an l2 regularizer is also added, we obtain a tradeoff between sparsity and including
correlated subtrees.

3.3 Subtree variance correlation testing
As the localized methods use features extracted from nested subtrees, we expect a high
degree of correlation between overlapping subtrees. Most of the previously described
methods do not take such correlations into account, and this may, in particular, be a
problem for the interpretability through selected features. Moreover, it is interesting to
know whether variation in non-overlapping subtrees is correlated. In this section we
provide a method for testing the correlation between variance in the subtrees.

To compare the variance between subtrees in the same airway tree, we use the
distance from a subtree S to the population mean of all such subtrees in some class as a
measure of the amount of variation in subtree S. We compute the correlation between
these distances for each pair of subtrees, and measure whether deviation from the mean



subtree in one part of the tree is correlated with deviation from the mean in a different
subtree. To measure the correlation, we use Pearson’s sample correlation coefficient,

rxy =
∑

n
i=1(xi− x̄)(yi− ȳ)

(n−1)sxsy
,

where x̄ and ȳ are the same means of the two variables X and Y , and sx and sy are the
sample standard deviations of the X and Y . This is equivalent to the sample covariance
divided by the sample standard deviations.

The results of applying this test to the airway data set is shown in Fig. 3. Many of
the subtree pairs exhibiting correlation in their variance are nested, as expected. For
example, variation is very correlated between the three subtrees RMB, Bronchint, and
RLL, where RLL is a subtree of Bronchint, which is itself a subtree of RMB. Similarly,
there is a high correlation in the variation between the nested pairs LMB and LUL, and
LMB and LLB. However, not all nested subtrees are highly correlated. In particular,
RUL is also a subtree of RMB, but variation in it is not very correlated with that in
RMB – in fact, variance in RUL is not strongly correlated with any other subtree. The
trees are not separated by class as there was no significant difference in the behavior of
the two classes.

4 Visualization of NPC information spaces via Low-Distortion
Embedding into the Hyperbolic Disc

High-dimensional data is often embedded into lower dimensional spaces in order to
improve the efficiency of computations, or, with a two- or three-dimensional embed-
ding space, for visualization. Besides being high-dimensional and stratified, the tree
space Tn has negative curvature. While it is exactly this property that gives it unique
geodesics, it also means that the number of trees within a given neighborhood can grow
exponentially with the radius of the neighborhood. Our hypothesis was that embedding
point sets in Tn into lower-dimensional hyperbolic space, which also has negative cur-
vature, would allow embeddings with lower distortion and/or lower total error. We
explore the use of two different visualization techniques for general metric distance
matrices, Multi-Dimensional Scaling and Isomap.

Multidimensional Scaling (MDS) is a classical approach that maps the original met-
ric dataset to a target Euclidean space, usually of low dimension. It transforms the
input metric distance matrix into a set of coordinate positions for the data points - in
our case, each tree is a data point - such that the Euclidean distances between the coor-
dinates approximate the input distances as well as possible. Using the new embedded
coordinates, one can visualize dataset structure through the embedded dataset, where
inter-point distances have been preserved as well as possible. Different definitions for
what it means to preserve the distances “as well as possible” produce different compu-
tational problems. Principle Components Analysis (PCA) can be seen as a version of
MDS, for which the problem has a global solution, but other definitions of optimal dis-
tance preservation often lead to better visualizations. These versions are all non-linear,
so both the optimization criterion and the method of optimization can lead to different
results.
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Figure 3: The plots in the lower triangle compare the distances between subtrees in
the same tree to their corresponding mean subtree of healthy patients. The plots along
the diagonal are the histograms of these distances when the subtree is fixed. The upper
diagonal gives the correlation of the distances plotted in the corresponding plot in the
lower triangle.

IsoMap [37] is a more recent method intended for points which lie on a lower-
dimensional surface in the high-dimensional space. It begins by constructing a neigh-
borhood graph connecting nearby points in the input space. Then, using this graph, it
approximates geodesic distances on the surface. Finally it applies MDS to the matrix
of geodesic distances.

While the standard approach in both of these methods is to use a Euclidean target
space for the embedding, in the past decades, hyperbolic multidimensional scaling has
also been proposed. In a nutshell, the original Euclidean distance in the target space is



replaced by the hyperbolic distance:

d(zi,z j) = 2tanh−1 |zi− z j|
|1− ziz̄ j|

, (2)

where zi and z j denote two points in the target space. The modification in the distance
metric makes the computation of gradients non-trivial. Our goal was to explore the
question of whether hyperbolic space would be a more successful target space for the
visualization of distributions of trees, since tree space is also non-positive curved.

Recently, Cvetkovski and Crovella [12] introduced a method MDS-PD (metric
multidimensional scaling algorithm using the Poincaré disk model) which is based
on a steepest decent method with hyperbolic line search. We adapted this software
for our experiments with hyperbolic space, and we review the method here; more de-
tails can be found in [12]. Complex coordinates are used to present the points of the
hyperbolic plane, making the Poincaré disk model a subset of the complex plane C:
D = {z ∈ C||z|< 1}. The objective function to be minimized is the total embedding
error

E = c
n

∑
j=1

n

∑
k= j+1

c jk
(
d jk−δ jk

)2
.

where c and c jk are constants, d jk is the hyperbolic distance between points z j and
zk (Equation 2), and δ jk denotes the dissimilarity/distance between points z j and zk in
the input dissimilarity/distance matrix. More specifically, we use the Sammon Stress
Criterion, in which c and c jk are fixed based on δ jk as follows:

E =
1

∑
n
j=1 ∑

n
k= j+1 δ jk

n

∑
j=1

n

∑
k= j+1

(
d jk−δ jk

)2

δ jk
(3)

This criterion does not favor preserving large distances over small ones. The algorithms
starts with a set of random points in the Poincaré disk. In each iteration, it moves each
of the points along the gradient direction of the energy function shown in Equation 3
with a Mobius transform until one of the stopping tolerances is met or the maximum
iteration number is reached.

4.1 Experiments on real and synthetic data
While much of tree-space looks locally like an Euclidean space, there are two local
features which are decidedly not Euclidean: corners and open books. A corner is point
concentration of negative curvature (see Fig. 1(b)), while an open book is a set of Eu-
clidean half-space attached together along their axes, or ”spine” (see Fig. 1(c)). These
two features, as well as the high dimension of the local Euclidean space, are the sources
of error for the low-distortion embedding. We generate synthetic datasets that isolate
the two features to determine how hyperbolic MDS (HMDS) and hyperbolic isomap
(HIsomap) treat them. We compare the results both qualitatively and quantitatively
with embeddings done with classical MDS and isomap. More specifically, the datasets
are CORNER 2D, in which 50 points are generated in each of the 5 quadrants around



MDS Isomap HMDS HIsomap
CORNER 3644.2 1224.9 64.2 119.7
3SHEETS 2D 71.4 98.9 76.3 44.0
3SHEETS 3D 44.0 189.54 54.1 68.2
5SHEETS 2D 551.9 567.4 87.8 76.1
5SHEETS 3D 2097.8 470.5 393.6 123.4
COPD 250 253.9 952.3 62.0 64.3

Table 6: Multiplicative distortion of the embeddings.

the origin; 3SHEETS 2D, in which 50 points are generated in each of 3 2-dimensional
sheets; 3SHEETS 3D, in which 50 points are generated in each of 3 3-dimensional
sheets; 5SHEETS 2D, in which 50 points are generated in each of 5 2-dimensional
sheets; 5SHEETS 3D, in which 50 points are in each of 5 3-dimensional sheets; and
COPD, in which the lung airway trees of 125 healthy patients and 125 patients with
COPD are randomly selected. Within each sheet or quadrant, the 50 points were gen-
erated by sampling from a symmetric normal distribution in the underlying Euclidean
space that is centered at the origin.

The multiplicative distortion for each embedding approach is summarized in Ta-
ble 6. The multiplicative distortion for a single distance between two points in the
dataset is original distance/embedded distance. The distortion for the whole dataset
is max distortion/min distortion, where max distortion is the maximum distortion
of any two points and min distortion is the minimum distortion for any two points.
HMDS and HIsomap perform the best for almost all of the datasets. The embedded
visualizations and the histograms for each dataset are found in Figures 7 and 8.

Qualitatively, for CORNER 2D, while all methods were able to group the points in
the same quadrant, only HMDS preserved the symmetry of the quadrants; we assume
that this is because in the hyperbolic plane it is possible for five lines to meet at right
angles, which is not possible in Euclidean space.

For the two-dimensional tree spaces 3SHEETS 2D and 5SHEETS 2D, all methods
also grouped the points by their respective sheets. The two Euclidean methods overlaid
all but two of the sheets, while the two hyperbolic methods kept the sheets distinct,
particularly in 3SHEETS 2D, better representing the true geometry. Despite increasing
the dimension only by one, for 3SHEETS 3D it was much harder for the methods to
separate the distinct sheets. While MDS performed the best quantitatively, this was not
the case qualitatively, where the two hyperbolic methods gave better sheet separation.
All methods had trouble representing the 5SHEETS 3D dataset. Finally, no methods
were able to visualize class separation in the COPD dataset.

The ideal histogram would place all of the distances in the column correspond-
ing to zero error. Although for the three-dimensional tree space 3SHEETS 3D and
5SHEETS 3D none of the visualizations provides much insight, the histograms show
that again HMDS gives the most accurate reduction to two dimensions.



5 Discussion and conclusion
We have considered two different approaches for quantifying and visualizing variance
in datasets of trees. In Sec. 3 the dataset trees were divided into nested subtrees, in order
to quantify the contribution of different subtrees in distinguishing two populations of
trees through either hypothesis testing or classification. These approaches were applied
to populations of airway trees from COPD patients and healthy individuals, where the
most discriminative subtrees were extracted for the different tasks. In Sec. 4 visualiza-
tion of population structure for datasets of trees was studied through multidimensional
scaling and isomap in a hyperbolic disc as opposed to in the Euclidean plane. The
choice of a hyperbolic visualization space was motivated by the fact that tree-space it-
self has singular points which are hyperbolic, and it thus seems likely that a hyperbolic
visualization space can give a more truthful rendering of the structure of the population
of trees than a Euclidean space. We demonstrate a quantitative and visual improvement
in dataset visualization on a set of synthetic datasets sampled from singular spaces rep-
resenting the types of singularities found in tree-space, as well as on a set of airway
trees.

These approaches supply a new set of tools, and give insight into new potential so-
lutions, for analysis of tree-structured data. Future work includes development of struc-
tured sparsity methods using subtrees where the correlation between different subtrees
is explicitly taken into account, as well as low-distortion embedding into more complex
non-Euclidean visualization spaces whose geometry is similar to that of tree-space.
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Table 7: The embedded datasets. For the CORNER, 3SHEETS 2D, 3SHEETS 3D,
5SHEETS 2D, and 5SHEETS 3D dataset embeddings, points have the same color if
they are located in the same quadrant or sheet. For the COPD dataset embeddings,
the class of healthy patients is colored in red, and the class of patients with COPD are
colored in blue.
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Table 8: The error histograms of the embedded datasets in Figure 7. Every pair of
points is binned according to the error in the embedding, which is the difference be-
tween the original distance between the pair of points, and the distance between them
in the embedding.


