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Geodesic atlas-based labeling of anatomical
trees: Application and evaluation on airways

extracted from CT
Aasa Feragen†, Jens Petersen†, Megan Owen, Pechin Lo, Laura Hohwü Thomsen, Mathilde Marie Winkler

Wille, Asger Dirksen, Marleen de Bruijne

Abstract—We present a fast and robust atlas-based algorithm for labeling airway trees, using geodesic distances in a geometric
tree-space. Possible branch label configurations for an unlabeled airway tree are evaluated using distances to a training set of labeled
airway trees. In tree-space, airway tree topology and geometry change continuously, giving a natural automatic handling of anatomical
differences and noise. A hierarchical approach makes the algorithm efficient, assigning labels from the trachea and downwards. Only
the airway centerline tree is used, which is relatively unaffected by pathology. The algorithm is evaluated on 80 segmented airway trees
from 40 subjects at two time points, labeled by 3 medical experts each, testing accuracy, reproducibility and robustness in patients
with Chronic Obstructive Pulmonary Disease (COPD). The accuracy of the algorithm is statistically similar to that of the experts and
not significantly correlated with COPD severity. The reproducibility of the algorithm is significantly better than that of the experts,
and negatively correlated with COPD severity. Evaluation of the algorithm on a longitudinal set of 8724 trees from a lung cancer
screening trial shows that the algorithm can be used in large scale studies with high reproducibility, and that the negative correlation of
reproducibility with COPD severity can be explained by missing branches, for instance due to segmentation problems in COPD patients.
We conclude that the algorithm is robust to COPD severity given equally complete airway trees, and comparable in performance to that
of experts in pulmonary medicine, emphasizing the suitability of the labeling algorithm for clinical use.

F

1 INTRODUCTION

Computed Tomography (CT) is an important tool in the
analysis of diseases affecting pulmonary airways. Using
image segmentation methods, three-dimensional models
of the airway surfaces can be constructed, and their
dimensions measured. Measurements such as lumen
diameter, airway wall thickness, and bifurcation angle
are, however, dependent on the location in which they
are made; e.g., it follows from [1] that the classification
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boundary and accuracy of using airway wall thickness
for COPD prediction is different in different locations
in the lung. As a consequence, it is crucial to determine
anatomically corresponding positions in different airway
trees in order to robustly compare measurements across
patients [2]. One way to solve this problem is to identify
the airway tree branches by their anatomical names,
and compare measurements in identically named airway
branches [1], [3], [4]. Identifying the anatomical names is
nontrivial, since the topology of the airway tree changes
from person to person, and the segmented trees have
additional differences introduced by noise, including
missing and spurious branches.

Several airway branch labeling algorithms have ap-
peared in the literature. Mori et al [5], [6] initially use
rule-based assignment of a pre-determined labeled tree
topology, later with multiple pre-determined topology
options [7]. Gu et al [8] label the lobe branches by
assuming a fixed tree topology and assigning labels
based on the (x, y, z) coordinates of bifurcations. These
methods are sensitive to topological variation in pop-
ulations of airway trees. Van Ginneken et al. [9], Mori
et al [10] and Lo et al. [11] assign branch labels us-
ing supervised learning on branch features, in some
cases [9], [11] constrained by assumptions on airway tree
topology. Among the features used are branch length,
radius, orientation, cross-sectional shape and bifurcation
angle. Branch radius is sensitive to diseases like asthma,
cystic fibrosis, tuberculosis and Chronic Obstructive Pul-
monary Disease (COPD) [3], [12]–[14]. Moreover, airway
branch length, shape and bifurcation angle are sensitive
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to anatomical differences in topology and, in particular,
missing branches in the airway segmentation. For in-
stance, if only one branch in a bifurcation is detected,
the result will be a longer branch with different shape
and different endpoint bifurcation angles. It is known
that fewer branches are typically detected in airway trees
from subjects with COPD [4], [12], leading to topological
irregularities. These segmentation problems will affect
any method which enforces constraints on airway tree
topology.

Anatomical tree labeling is closely related with ana-
tomical tree matching, or the problem of matching the
branches or bifurcations of one tree to those of another,
in the sense that matching an unlabeled tree to a labeled
one will generate a label transfer to the unlabeled tree.
Pisupati et al [15] use tree matching in airway trees
of dogs. Graham and Higgins [16] use a dynamical
programming approach to graph matching for matching
pairs of airway trees. Tschirren et al [17] and Kitaoka
et al [18] label airway trees using association graphs
for pairs of trees, which incorporate information from
both trees, such that maximal cliques in the association
graph induce branch matchings between the original
graphs. A similar approach is used by Metzen et al [19]
for matching both airway trees and vessel trees in the
liver, as well as by Bogunovic et al [20] for labeling
the Circle of Willis. While branch shape features go into
the construction of the association graph, the possible
branch matches are subject to strict constraints as the
matching is equivalent to identifying maximal isomor-
phic subtrees. In particular, the association graph model
is not able to take into account the way that arbitrarily
small changes in geometric branch features (e.g. branch
length) can lead to new topologies, as in Fig. 1.

Other, more geometric approaches, also appear:
Smeets et al. [21] match branches from lung vessel trees
using pairwise distances between bifurcations both in
3D Euclidean space and along the tree to generate dis-
tance matrix ”fingerprints”, which are matched. Bülow et
al. [22] match airway tree branches without connectivity
information, using only branch shape context. Kaftan
et al. [23], match tree paths rather than branches, thus
avoiding the difficulty with different tree-topological
structures, but also losing all information stored in the
topological structure. In particular, this model does not
generate branch labels, as the branch division is lost.

Ross et al. [24] employ a probabilistic approach, using
a hidden Markov tree model to infer labels of discretely
sampled points in the airway tree. Points within in-
dividual branches are labeled down to the lobar level
after which generations are assigned. The approach is
interesting in that it is able to use information on the
airway tree structure without being limited by a certain
assumed topology.

Feragen et al [25] label airways based on geodesics, or
shortest paths, in a space of trees. Their tree-space has no
known efficient algorithm for computation of geodesics,
making their method too computationally expensive to

label the whole airway tree. In this work we use a
more restrictive space of leaf-labeled trees [26], where
geodesics can be computed in polynomial time [27].

We present a novel atlas-based algorithm for auto-
matic airway branch labeling, based on geodesic dis-
tances in a space of leaf-labeled trees. The labeling
algorithm works by suggesting a set of branch label
configurations, each forming a suggested labeled airway
tree. These suggestions are compared using geodesic
distances from each suggested labeled tree to airway
trees within a training set labeled by clinical experts,
and the optimal suggested labeling is returned. Labels
are thus assigned automatically from the trachea and
downwards in a hierarchical fashion.

Fig. 1. Since tree-space is a path connected space,
any two trees are joined by a path in tree-space, corre-
sponding to a tree deformation along which tree topology
and branch geometry changes. The geodesic distance
between two trees is the length of the shortest path
connecting them. Note the topological transition in the
subtree spanned by the leaves C-E.

The tree-space framework is able to compute distances
between trees with different topologies, allowing for
flexibility in tree topology. This is possible because in
tree-space, tree topology and branch geometry are al-
lowed to change continuously. See Fig. 1 for an illustra-
tion. From a practical point of view, this allows us to
take advantage of the whole training set without being
restricted by topological airway tree differences.

The only feature used by the labeling algorithm is
the airway centerline tree, divided into branches. The
algorithm does not depend directly on the division of
the segmented airway tree into branches, but rather on
a subtree spanned by the labeled branches, as explained
in Section 2.3. This enables the algorithm to tackle struc-
tural noise such as false or missing branches, as opposed
to methods that work only with the originally segmented
branches. The hierarchical implementation makes the
algorithm sufficiently fast to be of practical use.

A thorough evaluation of the labeling algorithm is
made on a set of 80 segmented airway trees from 40
subjects scanned at two different time-points. Each air-
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way tree was labeled by 3 clinical experts. There are
subjects without COPD and subjects with different stages
of COPD, ranging from mild to severe. The evaluation
includes a comparison of accuracy and reproducibility
of the algorithm to that of the clinical experts, as well
as robustness of accuracy and reproducibility to disease
severity. Moreover, reproducibility and robustness of
reproducibility to COPD severity is also tested on a large
data set from a longitudinal lung cancer screening trial
using 8724 CT images from 1900 individuals.

A preliminary version of the work presented here
appeared in [28]. In comparison with the earlier paper,
changes have been made to the algorithm, making the
hierarchy less sensitive to missing RUL branches as
detailed in Section 2.5. The exposition has been extended
to give a far more comprehensive explanation of the
tree-space methodology used. Finally, the experimental
validation has been significantly extended. First, our
labeled data set has been doubled in size and is now
manually annotated by three clinical experts. Second,
an evaluation of reproducibility on a large longitudinal
study has been conducted, as well as a statistical anal-
ysis showing that correlation between increased COPD
severity and decreased labeling reproducibility is due to
segmentation problems in patients with COPD.

2 METHODS: AIRWAY BRANCH LABELING

The airway branch labels illustrated in Fig. 2 correspond
to the division of the lung into compartments. The
Trachea is the root branch that feeds the lungs. From
the trachea, the left and right main bronchi (LMB and
RMB) lead to the left and right lungs. Beneath the
LMB and RMB branches, the left and right upper lobe
(LUL, RUL), right middle lobe (R4+5), and the left and
right lower lobe (LLB, RLL) bronchi lead to the different
lobes. The Bronchus Intermedius (BronchInt) feeds the
middle and lower lobes in the right lung. Feeding the
subdividing segments within the lobes, the right- and
left segment branches numbered 1-10 (R1-R10, L1-L10) lead
to the segments, with up to 10 segments in each lung.
In the left lung, the branch L4+5 is a counterpart of
the right middle lobe branch R4+5. The L4+5 does not
lead to a physically separate lobe, but it nevertheless
feeds the segments L4-L5. The hierarchical subdivision
into two lungs, lobes within the lungs, and segments
within the lobes, introduces a natural hierarchy in the
labeled branches as well. Due to topological differences
and additional/missing branches in different subjects,
a number of intermediate branch names appear in the
literature, whose presence in a particular anatomical
airway tree depends on its topology. If the locations of all
segment branch labels are known, along with the airway
tree structure, then it is straight-forward to reconstruct
the remaining branch labels higher in the hierarchy. In
this sense, a leaf-labeled airway tree, where the leaf labels
are segment labels, is equivalent to a labeled airway tree.
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Fig. 2. Airway branch labels used by the labeling algo-
rithm.

2.1 The labeling algorithm: An overview

The input to the labeling algorithm is a connected cen-
terline tree extracted from an airway tree segmentation,
divided into branches by bifurcation points. The airway
segmentation, centerline extraction and bifurcation de-
tection algorithms used in our experiments are detailed
in Section 3.1.

Based on the extracted airway centerlines, each branch
is represented by 6 landmark points sampled equidis-
tantly along the branch centerline, translated so that
the first landmark point is placed at the origin. Thus,
ignoring the first origin landmark point, each branch
e is represented by a vector xe ∈ (R3)5 = R15. Each
airway tree is normalized by the person’s height as
an isotropic scaling parameter. The person’s height was
chosen over alternative normalization parameters such
as lung volume because height is unaffected by disease.

The general goal of the labeling algorithm is, for
an arbitrary unlabeled airway tree T , to optimally as-
sign the set of segment labels {L1, ..., L10, R1, ..., R10},
corresponding to the 20 segment bronchi, to branches
in the centerline tree. As outlined in Algorithm 1, the
basic labeling algorithm contains a labeling suggestion
step and a labeling evaluation step, after which an
optimal labeling is selected. In practice, for the sake of
computational efficiency, this algorithm is repeated in a
hierarchical fashion, assigning labels from the top and
downwards. This is detailed in Sec. 2.5.

Algorithm 1 Overview of the basic labeling algorithm
1: Input: Unlabeled tree T
2: Input: Training set of labeled trees {Ti|i ∈ I}
3: Generate a set L of suggested labelings L ∈ L
4: for suggested labelings L ∈ L do
5: TL ← T with suggested labeling L
6: Compute distances {d(TL, Ti)|i ∈ I}
7: Compute fL =

∑
i∈I d(TL, Ti)

8: end for
9: Output: Labeled tree TL = argminL∈LfL
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Fig. 3. From a configuration of leaf labels we extract
the subtree spanned by the labels and prune off the
rest, obtaining the subtree spanned by the labels, a leaf-
labeled tree which can be compared to the training trees.

Fig. 4. Each assigned label is backtraced to the branch
closest to the root that is not already part of the subtree
spanned by the other labels.

Algorithm 1 contains a label suggestion step (line 3)
and a label selection step (line 9). In the label sugges-
tion step, a series of potential label configurations are
suggested. This is explained in detail in Section 2.5. In
the labeling step, the optimal branch label assignment is
selected as the configuration that minimizes the sum of
distances to manually labeled trees from a training set.
The distance used is the geodesic distance in the space
of leaf-labeled trees, as detailed in Section 2.4 below.

2.2 Trees

By tree we mean a rooted tree, defined as a triple T =
(V,E, r) where V is a finite set of vertices, E ⊂ V ×
V is a set of edges so that the corresponding graph is
connected and has no cycles, and r is a designated root
vertex. Anatomical or biological transportation systems
often have a natural source node which can be used as a
root. For airway trees, the trachea provides a natural and
easy-to-identify root branch [29]. Given any edge e ∈ E,
any other edge ẽ ∈ E which sits on the path through the
tree from e to the root is said to be above e. If ẽ is above
e, then we say that e is below ẽ.

A labeling of T is a map L : X → E, which assigns
unique labels from a label set X to some but not
necessarily all edges. In this paper, we are particularly
interested in leaf-labeled trees. A leaf in T is an edge which
does not have any other edges below it. A leaf-labeled
tree on the leaf label set X is a tree endowed with a
bijective labeling L : X → El, where El ⊂ E are the leaf
edges in T . In particular, |X| must equal the number of
leaves in T .

2.3 From labeled airway trees to leaf-labeled trees

Given segmented airway trees, we wish to extract leaf-
labeled subtrees in such a way that particular sets of
branches play the roles of leaves; for instance, the fixed

set of leaf labels {L1, ..., L10, R1, ..., R10}. However, seg-
mented airway trees have variable size and usually,
many branches are detected below the segment level. In
order to study airway trees using a framework for leaf-
labeled trees we define, given any labeling L : X → E,
the subtree spanned by the labels as the tree obtained by
removing all edges in the tree which are not found on
the path from the root to an edge labeled by L, as in
Fig. 3. Consecutive edges which are joined by a vertex
of order 2 will be concatenated, as is the case with parent
branch of R9 and R10 in Fig. 3. When two edges e1 and
e2 are concatenated into an edge e, the shape vector xe
will be recomputed from the concatenation of the branch
centerlines corresponding to e1 and e2. After labeling,
each label is backtraced through the path to the root, as
in Fig. 4. We only consider admissible label configurations,
defined as labelings where the leaf labels will all be
attached to leaves in the subtree spanned by the labels.
This is equivalent to excluding labelings where two leaf
labels are assigned to two branches where one branch is
above the other.

For a tree T with a labeling L : X → E, we denote by
TL the subtree spanned by labels assigned by L.

2.4 Tree-space and tree-space distances

The tree-to-tree distances used in this paper are mea-
sured in a tree-space. This tree-space is a straight-forward
generalization of the phylogenetic tree-space defined
and studied in [26], where single-dimensional shape
vectors on the branches have been generalized to multi-
dimensional ones. Below, we give a brief description
of tree-space and its properties in order to give the
reader intuition for how tree-space works as a model
for anatomical trees. For the details of the mathematical
framework and the algorithm for computing geodesics,
we refer the reader to the original papers [26], [27].

2.4.1 Tree-space

Each point in tree-space is a leaf-labeled tree, with
leaves labeled by some fixed set X , for instance X =
{L1, ..., L10, R1, ..., R10}. Tree-space is a path connected
space, which means that any two trees can be joined
by a path in tree-space. Moving along such a path
corresponds to deforming the trees, as in Fig. 1. More-
over, in tree-space there will always be a unique shortest
path, called a geodesic, joining any given two trees. The
length of the geodesic defines a metric distance measure
between the two trees [26], called the geodesic distance,
which will be used by our algorithm.

Each set of trees having a given topology forms a tree-
space orthant, as illustrated in Figs. 5 and 6. An orthant
is a lower-dimensional Euclidean space (or, in the case
where edges are described by edge length, a positive
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(a) (b) (c)

Fig. 5. Tree-space is a union of orthants, each corresponding to a specific leaf-labeled tree topology. (a) Different
points in the orthant are trees with identical topology but different shapes. (b) Points at the boundary of an orthant are
points where one edge is described by a zero vector. Geometrically, that edge has been contracted. (c) Orthants with
different tree topologies meet at the boundaries where the contracted edges give rise to new, identical tree topologies.
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Fig. 6. (a) Tree-space is a proper subset of the Euclidean space (R15)S , and the distance between two trees T1 and
T2 is the length (measured in the Euclidean space) of the geodesic, or shortest path, in tree-space from T1 to T2. Note
that the geodesic from T ′1 to T ′2 is not a straight line, giving different topological transitions throughout the two paths
connecting T1 to T2, and T ′1 to T ′2. This is illustrated in (b), where trees are sampled along the two geodesic paths. We
illustrate the tree-space using edge length for edges rather than their 3D shape; this is done for illustrative purposes
only. The same behavior carries over to edges with shape-vector attributes. Furthermore, the 5 axes depicted above
each correspond to their own dimension, and have only been embedded into R3 for illustrative purposes.

orthant of a Euclidean space)1. Tree-space consists of a
set of orthants, one for each possible tree topology, glued
together to form a connected space, as in Figs. 5 and 6.
Tree-space geodesics are finite concatenations of straight-
line segments within single orthants, which are joined
at the orthant boundaries. The geodesic path formed by
joining the segments can either result in a straight path
across the orthant boundary (as for the geodesic from T1
to T2 in Fig. 6(a)), or can bend around a tree-space corner
(as for the path from T ′1 to T ′2 in Fig. 6(a)). In general,

1. Formally, an orthant is the part of Euclidean space where all
coordinates are nonnegative. When edges are described by their length,
as with phylogenetic trees, tree-space orthants are precisely such Eu-
clidean orthants; we call them positive orthants. In our paper, branches
can have negative 3D coordinates, making tree-space orthants larger
than Euclidean orthants. To keep the terminology consistent with
phylogenetic tree-space papers, we use the word ”orthant” for these
larger sub-spaces of tree-space.

geodesics are solutions to the problem

argmin

{
N−1∑
n=1

‖tn+1 − tn‖

}
(1)

where T1 = t1, T2 = tN , tn and tn+1 sit on the boundaries
of the same orthant, ‖·‖ is the Euclidean norm within the
orthant, and the minimization is over all possible such
sets T1 = t1, t2, . . . , TN = T2.

The algorithm [27] for computing the geodesic dis-
tance between two trees works by recursively determin-
ing the sequence of orthants containing the geodesic as
follows. If the trees are in the same orthant (i.e. if they
have the same topology), the algorithm terminates and
returns the Euclidean distance between the two trees
in the orthant. Otherwise, if the trees are in different
orthants, the algorithm starts by computing an initial
path connecting the two trees, which goes straight from
the first tree, to the origin, and back to the second
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Fig. 7. Tree edges are topologically identified with par-
titions of the leaf label set X, and a tree topology is
characterized uniquely by the partitions that define its
edges.

Fig. 8. Certain pairs of label set partitions represent edges
that cannot exist in a tree simultaneously. An example for
the leaf label set X = {R1, R2, R3} is an edge that splits
{R1, R2} off from the rest of the tree and an edge that
splits {R1, R3} off.

tree. The algorithm checks if this is the geodesic by
looking for an orthant such that modifying the current
path to go through this orthant instead of the origin
gives a shorter path, i.e., whether this orthant provides
a ”shortcut” which avoids the origin. If such an orthant
exists, we add it to our sequence and calculate the
geodesic through the three orthants. Again, we check if
this is the overall geodesic by checking each point where
the path changes orthants for a new orthant to add
into the orthant sequence, such that going through this
new orthant will give a shorter path. The new geodesic
through the expanded orthant sequence is computed,
and this process is repeated until no more orthants
can be added. The length of the geodesic through the
resulting orthant sequence is the geodesic through tree-
space. This algorithm is developed in [27] where details
and code can be found.2

2.4.2 Tree-space as a subset of Euclidean space
An alternative way to understand tree-space and its
geodesic distance between trees comes from the fact
that tree-space is naturally embedded as a subset of a
high-dimensional Euclidean space, which can be seen as
follows:

Each edge in the leaf-labeled tree can be identified
topologically by a partition of X into the leaves below
the edge, and the remaining leaves (including the root),

2. Code freely available from: http://vm1.cas.unc.edu/stat-or/
webspace/miscellaneous/provan/treespace/.

as in Fig. 7. Let S denote the set of all possible partitions
of X . Any leaf-labeled tree topology with leaf label set
X corresponds to a binary vector {0, 1}S , where each
coordinate s ∈ S that is set to 1 indicates that the
particular label set bipartition s identifies an edge in
the tree topology. Adding shape to the picture, a tree
will uniquely correspond to a vector in (R15)S , where
each consecutive set of 15 coordinates corresponds to a
possible partition s of X . If the edge associated with that
partition appears in the tree, then those 15 coordinates
will be its branch vector, and otherwise they are all 0.

Certain edges can never appear in a tree together.
An example is shown in Fig. 8, where an edge that
splits {R1, R2} off from the rest of the tree and an
edge that splits {R1, R3} off from the rest of the tree
cannot possibly appear in the same tree. This means that
tree-space is not all of (R15)S , but consists precisely of
those vectors in (R15)S that correspond to trees. Thus,
tree-space is a proper subset of Euclidean space. The
geodesic distance d(T, T ′) between two trees T and T ′

defined in [26] coincides with the length of the shortest
path between T and T ′ that remains fully within this
restricted subspace, length being measured in the am-
bient Euclidean space using the Euclidean metric. An
analytic formula for this distance d does not exist, but
as described above, a recursive algorithm exists and can
be computed recursively in polynomial time [27].

2.4.3 Example of tree-space geodesic
To return to a concrete example, consider Fig. 6, where
a concrete example is given of two geodesics for which
the endpoint trees (T1, T2) and (T ′1, T

′
2) have identical

topology, but the topological transitions taking place
throughout the geodesic from T1 to T2 are not the same
as those taking place in the geodesic from T ′1 to T ′2.

The length of the geodesic from T1 to T2 consists of
three line segments connected via two topological tran-
sitions where, in the first line segment, the green edge is
completely contracted from length 2 until it disappears,
while the orange edge is contracted from length 6 to
length 4. This line segment has length

√
22 + 22 = 2

√
2.

In the second line segment, the orange edge is further
contracted from length 4 until it disappears, while the
pink edge appears and grows from nothing to length 4
(the illustrated tree where the pink and orange edges
both have length 2 is an intermediate tree along the
line segment). The length of the second line segment is√
42 + 42 = 4

√
2. In the third and final line segment, the

pink edge continues to grow from length 4 to 6, and a
blue edge appears and grows to length 2. The length
of the third line segment is thus

√
22 + 22 = 2

√
2. The

complete length of the geodesic is the sum of the lengths
of the line segments, that is 8

√
2.

The geodesic from T ′1 to T ′2, on the other hand, consists
of two line segments connected by a single topological
transition. In the first line segment, the green and or-
ange edges are both contracted from lengths 6 and 1,
respectively, until they disappear. This line segment has
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length
√
62 + 12. In the second line segment, the blue and

pink edges appear and grow from nothing to lengths
6 and 1, respectively, giving a line segment of length√
62 + 12. Again, the length of the geodesic is the sum

of lengths of the line segments, which gives a total length
of 2
√
62 + 12.

In terms of the ambient Euclidean space, the geodesic
connecting T ′1 and T ′2 is not a straight line, because tree-
space does not fill out the whole ambient Euclidean
space. A straight line path from T ′1 to T ′2 in (R15)S

would have to pass through the orthant formed from the
partitions/axes AR|BCD and ACD|BR, so some inter-
mediate trees would have to simultaneously contain i) an
edge that splits the labels B,C and D off from A and the
root, as well as ii) an edge that splits the edges A,C and
D off from B and the root. Clearly, the partitions {A,R}
and {B,R} cannot both happen in the same tree (they
are incompatible); hence that orthant does not exist in
tree-space. This is how tree-space corners appear, which
geodesics have to pass around.

In Fig. 6, branch geometry is represented by branch
length for illustrative purposes. We remind the reader
that in our experiments, branch geometry is represented
by shape in the form of landmark points.

2.5 A hierarchical labeling algorithm

Ideally, we would search through the whole airway
tree T , test all admissible configurations TL of the 20
segment leaf labels and select the one that optimizes
line 9 in Algorithm 1. However, for an airway tree
with as few as 100 branches, the search space size is
on the order of 10020, which is too large to handle. In
order to ensure computational feasibility, we choose a
hierarchical subtree approach, where labels of different
generations are added subsequently, as described in
Fig. 9 and Algorithm 3. Here, more shallow branches
are treated as leaves in the first steps of the algorithm,
which works its way down to the segments. In each step
of the hierarchical label placement, the optimal branches
for the given set of labels is selected as those giving the
minimal sum of distances to a set of training trees.

In each step of the hierarchical labeling, a specific set
of descendants are assigned to a specific already labeled
branch, as described in Algorithm 2. The descendants
of each branch are determined by the hierarchy as in
Fig. 9. For instance, in line 5 of Algorithm 3, the LMB
branch has already been assigned, the subtree rooted
at LMB is extracted, and the algorithm attempts to
assign leaf labels X = {L6, LLB, LUL} in any possible
configuration spanning two generations below the LMB.
The choice of searching 3 generations in some cases and
2 in others is a tradeoff between having enough space in
the tree to assign all branches in a given step, and having
a small enough tree to limit the number of possible
configurations for the sake of computational speed. This
tradeoff depends on the number of labels assigned in a
step as well as the chance of having higher order nodes

in that particular subtree, as higher order nodes give
more branches per generation.

The optimal configuration L of the label set X is
selected based on geodesic distances to training trees.
For each leaf-labeled tree Ti in the training set and each
TL, compute the geodesic distance d(Ti, TL) between the
trees Ti and TL in the tree-space defined in Section 2.4.
A labeling of T with label set X is extracted by choosing
the labeled tree Tlabeled among the TL that satisfies:

Tlabeled = argmin
TL

∑
i∈I

d(Ti, TL). (2)

The step in line 6 of Algorithm 3 is different from the
others. Since the RUL branch is not always present, it is
problematic to root a hierarchy subtree at the RUL as is
done in [28]. Thus, rather than searching the tree below
the RUL branch, assigned in line 4, we search the tree
obtained from the subtree rooted at the parent of RUL
by removing the subtree rooted at BronchInt.

The choice of ”leaves” used at the different steps in the
hierarchy was made in order to minimize the number of
”leaves” used while only using ”leaves” that actually
appear in as many people as possible. In a different
application we would recommend a similar strategy.

3 EXPERIMENTAL METHODS

We evaluate three different aspects of labeling perfor-
mance. First, we evaluate labeling accuracy, defined as
the ability to assign labels to the same branches as clin-
ical experts. Second, we evaluate labeling reproducibil-
ity, defined as the ability to assign labels to the same
branches in airway trees extracted from repeated scans
of the same subject. Third, we evaluate the dependence
of accuracy and reproducibility on COPD diagnosis and
severity. In all three aspects, the performance of the
algorithm is compared to the average performance of
clinical experts.

3.1 Data

The data used in the experiments comes from the Danish
Lung Cancer Screening Trial [30]. It consists of low-dose
(120 kV and 40 mAs) pulmonary CT scans and lung
function measurements. The scans were obtained from
a Multi Detector CT scanner (16 rows Philips Mx 8000),
reconstructed using a hard algorithm (kernel D) with a
resolution of approximately 0.78mm × 0.78mm × 1mm.
The lung function measurements, used to determine
COPD severity, were performed using a computerized
system (Spirotrac IV, Vitalograph) according to recom-
mendations by the European Respiratory Society [31]
without the use of bronchodilation.

The airway lumen surface was extracted from the
images using the locally optimal path approach of [32],
which was then refined using the optimal surface ap-
proach of [33]. Afterwards centerlines were computed
by front propagation within the refined lumen surface
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Fig. 9. Hierarchical labeling: In each step, search through a subtree for an optimal alignment of a subset of labels,
obtaining a leaf-labeled subtree of the segmented airway tree similar to the trees shown in black. The real tree topology
may differ; the figure only illustrates the stepwise hierarchy.

Algorithm 2 The labeling made in each hierarchical iteration.
1: Input: Root label r, leaf label set X , tree T with root label assigned, number of search generations g, training

set {Ti|i ∈ I} of fully labeled trees.
2: # Generate leaf-labeled training trees:
3: for i ∈ I do
4: Ti ← subtree of Ti rooted at r
5: Ti ← subtree of Ti spanned by the labels X
6: end for
7: # Perform labeling:
8: T̃ ← subtree of T rooted at r
9: T̃ ← subtree of T̃ of depth g

10: Generate set L of all possible admissible labelings of T̃ with label set X , denoted L ∈ L.
11: for suggested labelings L ∈ L do
12: TL = subtree of T̃ spanned by the labels assigned by L
13: Compute distances {d(TL, Ti)|i ∈ I}
14: Compute fL =

∑
i∈I d(TL, Ti)

15: end for
16: Labeled subtree TX = argminL∈LfL
17: T ← original tree T with labels X transferred from TX .
18: Output: T

Algorithm 3 For computational speed, the labeling is split into a set of hierarchical subtree labeling steps.
1: Input: Unlabeled tree T.
2: Label the first branch in the airway tree as the trachea.
3: T← tree returned by Algorithm 2 with input r = Trachea, X = {LMB, RMB}, T = T, g = 3.
4: T← tree returned by Algorithm 2 with input r = RMB, X = {RUL, BronchInt}, T = T, g = 2.
5: T← tree returned by Algorithm 2 with input r = LMB, X = {L6, LLB, LUL}, T = T, g = 2.
6: T← tree returned by a modified3 version of Algorithm 2 with X = {R1, R2, R3}, T = T, g = 3 or 2.
7: T← tree returned by Algorithm 2 with input r = BronchInt, X = {R4, R5, RLL, R6}, T = T, g = 2.
8: T← tree returned by Algorithm 2 with input r = LLB, X = {L7, L8, L9, L10}, T = T, g = 2.
9: T← tree returned by Algorithm 2 with input r = LUL, X = {L1, L2, L3, L4+5}, T = T, g = 3.

10: T← tree returned by Algorithm 2 with input r = RLL, X = {R7, R8, R9, R10}, T = T, g = 3.
11: T← tree returned by Algorithm 2 with input r = L4+5, X = {L4, L5}, T = T, g = 2.
12: Output: Labeled tree T.

as described in [34]. The resulting centerlines were dis-
connected at bifurcations and so Dijkstra’s algorithm
was used to connect them along shortest paths within
an inverted distance transform of the refined lumen
surface. The airway extraction was manually validated
on 32 CT scans all from different subjects randomly
chosen from the Danish Lung Cancer Screening Trial.

The software used was developed for the EXACT’09
airway challenge [34]. The average branch count was
188.6±60.8 and tree length (excluding trachea and main
bronchi) was 231.9±81.0 cm, of which only 2.22±2.04%
was false. The method has previously been shown [32]
to compare favorably with one of the best methods from
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the EXACT’09 airway challenge [34].
A data set of 80 airway tree centerlines from 40 sub-

jects scanned at two time-points with intervals of 5 years,
were manually assigned segment labels L1 - L10 and R1
- R10 by two experts in pulmonary medicine (LHT and
AD) and one in radiology (MMWW). The labels were
assigned according to [35] and [36]. The experts were
allowed to assign the same label to multiple branches in
cases where they were unsure. The manual labeling was
done using in-house developed software, simultaneously
showing the segmented airway and centerline, which
can be rotated, panned and zoomed, as well as a CT
cross-section perpendicular to and centered on any given
point of the airway. The remaining labels seen in Fig. 2
were deduced from the segment labels.

COPD severity was defined according to the GOLD
standard [37], from the averaged lung function at both
time-points. Out of the 40 subjects, there were 9 subjects
with no airflow limitation, and 11 with mild, 11 with
moderate, and 9 with severe COPD. We will denote the
groups as GOLD 0, GOLD 1, GOLD 2, and GOLD 3,
respectively.

The algorithm was further tested in a large longi-
tudinal data set including all the subjects from the
Danish Lung Cancer Screening Trial [30] who had at
least two usable scans. For this data set lung CT image
registration [38] was used to automatically determine
reproducibility, as described in Section 4.3, and so it
was important that the images could be registered well.
A scan was therefore deemed non-usable if the lungs
were not entirely contained within the image or if bowel
air was erroneously included within lung segmentations
(lung segmentation method and manual validation are
described in [39]). This resulted in the inclusion of 1900
subjects of which, based on average lung function mea-
surements over all time-points, 975 belonged to GOLD
0, 495 belonged to GOLD 1, 391 belonged to GOLD
2, and 38 belonged to GOLD 3. There was a single
subject with very severe COPD (what would otherwise
be GOLD 4), which was included in the GOLD 3 group.
Each of these subjects had an average of 4.6±0.7 usable
scans approximately evenly distributed over a period of
5 years.

3.2 Implementation
The labeling algorithm was implemented in MATLAB,
using tree distance computations implemented in Java4.
For the annotated dataset, the airway trees had 181
branches on average, and the whole labeling took
roughly 10 minutes per tree running on a laptop with
a single 2.40 GHz processor using no more than 3 GB
RAM per labeling.

3. In the modified version, rather than use the subtree rooted at
RUL, we use the subtree obtained from the subtree rooted at the
parent of RUL by removing the subtree rooted at BronchInt, as also
discussed in the main text.

4. Code freely available from http://vm1.cas.unc.edu/stat-or/
webspace/miscellaneous/provan/treespace/.

Accuracy Reproducibility Labeled airways
Label Automatic Expert Automatic Expert Automatic Expert

R1 89.2% 87.9% 95% 91.1% 80.0 80.0
R2 87.5% 84.2% 97.5% 90% 80.0 80.0
R3 87.6% 87.2% 97.5% 86.7% 80.0 80.0
R4 90.4% 88.7% 92.5% 86.4% 80.0 79.3
R5 86.9% 84.3% 90% 82.1% 80.0 79.0
R6 91.8% 93.3% 97.5% 91.5% 80.0 80.0
R7 77.7% 79.0% 84.6% 85.2% 76.0 79.7
R8 72.8% 75.8% 69.2% 79.2% 76.0 80.0
R9 63.2% 67.5% 53.8% 55.7% 76.0 80.0

R10 59.1% 64.3% 51.3% 55.8% 76.0 80.0
L1 64.0% 54.4% 75% 58.9% 79.9 79.7
L2 65.8% 60.1% 70% 62.2% 79.9 79.7
L3 66.0% 59.3% 75% 64.2% 79.9 80.0
L4 69.4% 78.3% 72.5% 80.7% 79.9 80.0
L5 73.2% 84.6% 70% 86.7% 79.9 80.0
L6 99.6% 99.2% 100% 99.2% 80.0 80.0
L7 62.8% 53.8% 82.5% 63.6% 80.0 77.3
L8 54.9% 48.6% 87.5% 57.1% 80.0 79.7
L9 53.4% 58.3% 72.5% 62.2% 80.0 80.0

L10 58.3% 57.1% 80% 62.5% 80.0 80.0
Trachea 100.0% 100.0% 100.0% 100.0% 80.0 80.0

LMB 100.0% 100% 100% 100% 80.0 80.0
LUL 100.0% 100% 97.5% 97.5% 80.0 80.0

LB1+2 62.9% 50% 70.6% 65.3% 61.8 57.0
LB4+5 92.3% 89.6% 95% 91.7% 79.9 78.7
LLB 99.2% 98.3% 100% 98.3% 80.0 79.3
RMB 100.0% 100% 100% 100% 80.0 80.0
RUL 97.4% 95% 100% 100% 78.0 76.0

BronchInt 99.9% 99.7% 100% 100% 80.0 80.0
RB4+5 95.8% 95.4% 95% 95% 80.0 78.0
RLL 93.3% 96.7% 95% 96.7% 80.0 79.7

LB1+2+3 92.0% 81.7% 94.6% 89.9% 74.9 69.0
Segmental 73.7 73.3 80.8 75.0

average ±4.8% ±9.7% ±16.3% ±10.2% 79.2 79.7
Total 81.5 80.4 86.4 82.4

average ±3.5% ±7.1% ±13.1% ±7.2% 78.7 78.5

TABLE 1
The mean accuracy of the algorithm was computed from
10 repetitions of 10-fold cross validation, and the mean
accuracy of an expert was averaged over all three pairs

of experts. The third and fourth columns contain the
mean reproducibility of the algorithm and an expert,
respectively. The mean number of airways in which a

given label was assigned, was averaged over 10
cross-validation runs or three experts, respectively.

Labeling experiments on the annotated dataset were
performed using 10-fold cross validation, where both
scans of any individual were always contained in the
same fold. Thus, for each test set fold of 8 airway trees
from 4 patients, the training set was made up of 72
airway trees from 36 patients. Each tree was labeled
separately by the three medical experts, but sometimes
the medical experts would, when in doubt, place the
same label on two different branches. In these cases
two leaf-labeled training trees would be generated, one
for each option. In other cases, some labels were not
assigned by the expert, in which case the corresponding
training subtree would not be generated. This resulted
in 231-280 training airway trees from the 80 scans, with
different numbers at different steps of the hierarchy.

3.3 Evaluation criteria
3.3.1 Labeling accuracy
The accuracy of the automatic labeling, defined as its
ability to agree with a clinical expert, was assessed
using 10 labeling runs of 10-fold cross validation with
randomized folds. For each airway, the average success
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rate was computed out of the number of labels assigned
by either algorithm or expert (meaning that if neither
the algorithm nor the expert assign a given label, then
this label does not contribute to the success rate of that
airway tree at all).

It is not obvious how labeling accuracy should be
assessed. In some cases where experts were not certain,
or judged that an anatomical branch had been split into
two branches by the segmentation algorithm, they would
assign the same segment label to multiple branches (the
three experts did this in 34, 12 and 5 of the 80 airway
trees, respectively). In other cases branches were missing,
either anatomically or from the segmentation, so that
some labels were not assigned (the three experts did this
in 10, 1 and 4 of the 80 airway trees, respectively). Miss-
ing label assignments happened both in expert and auto-
matic labelings. Sometimes branches would be missing
in the airway tree, making label assignments impossible.
Other times, the topology of the airway made certain
non-segment labels impossible. Thus, Table 1 contains
average counts for how many times labels were assigned
by the algorithm and the experts, respectively.

In order to fairly assess all cases, we gave, for the ith

airway tree and each label x ∈ X = {L1, ..., L10, R1,
..., R10}, the assignment by method M1 a correctness
percentage si(x,M1,M2) with respect to method M2. M1

could be either an expert or the automatic labeling, and
M2 was always an expert. The correctness percentage
was defined as follows: In the ith tree Ti, let M1(Ti, x)
denote the set of branches assigned label x by method
M1 and M2(Ti, x) the set of branches assigned label x by
method M2. Define the correctness si(x,M1,M2) of label
x using method M1 with respect to method M2 in the
ith airway tree as:

si(x,M1,M2) = 100 · 2 · |M1(Ti, x) ∩M2(Ti, x)|
|M1(Ti, x)|+ |M2(Ti, x)|

%,

We assume cases where the label was not assigned by
either method, that is |M1(Ti, x)| = |M2(Ti, x)| = 0, to be
due to missing branches and thus leave them out of the
total summary shown in Table 1.

3.3.2 Labeling reproducibility

In order to test scan-rescan reproducibility of the expert
and automatically assigned labels, the two CT scans of
each subject were registered using deformable image
registration as described in [38], and the labeled air-
way branches were manually investigated for possible
matches in the resulting common coordinate system. Let
T 1
i and T 2

i be two trees corresponding to the ith subject’s
airway at time-points 1 and 2, and let M(T 1

i , x) ⊆ E1
i

and M(T 2
i , x) ⊆ E2

i be sets of branches assigned label
x by the method M in T 1

i and T 2
i , respectively. Denote

by R
(
M(T 1

i , x),M(T 2
i , x)

)
the matched subset of these

branches.
We define the reproducibility of label x using the

method M within the trees T 1
i and T 2

i of subject i

ri(x,M, T 1
i , T

2
i ) = 100 ·

2 · |R
(
M(T 1

i , x),M(T 2
i , x)

)
|

|M(T 1
i , x)|+ |M(T 2

i , x)|
%.

To avoid evaluating effects of missing branches due
to segmentation problems, cases where the label was
not assigned in either time-point, that is |M(T 1

i , x)| =
|M(T 2

i , x)| = 0 are left out of the total summary. The
same holds for cases where only one time-point was
labeled with x, which without loss of generality can be
assumed to be T 1

i , but only if matching branches did not
exist in the other time-point, that is R(M(T 1

i , x), T
2
i ) = ∅.

3.3.3 Labeling reproducibility on large longitudinal
dataset

Reproducibility of the automatic approach on the larger
data set was tested by labeling all 8724 scans using
the manually labeled airway trees as a training set, in
which the results for the 40 subjects that had manual
annotations were computed in a leave-one-subject-out
fashion. All scans of each subject were registered [38] and
branches appearing in multiple images were matched,
in a similar fashion to what was described in the pre-
vious section. However, rather than manually detecting
matched branches, which would be very time consuming
for a data set of this size (8724 trees), matching was done
automatically. The details of this automatic matching
approach have previously been published in [40].

It is not obvious how labeling reproducibility should
be defined in a subject with more than two time-points.
As an example, consider a case where three out of five
time-points agree on one assignment of the label x, and
the remaining two time-points agree on another. Taking
such cases into account, we define reproducibility of
assigning the label x in terms of percentage agreement
with the majority labeling (if two labelings are both
majority, one of them is just selected).

To define reproducibility analytically, let T 1
i , . . . , T

n
i

denote the airway trees of subject i at n different time-
points, and let M(T 1

i , x), . . .M(Tn
i , x) be the branches

assigned label x by method M in each time-point. In
addition let the set of time-points where the assignment
of the label x matches the assignment in time-point j be:

Ni(M,x, j) ={
k ∈ {1, . . . , n} | R

(
M(T j

i , x),M(T k
i , x)

)
6= ∅
}
.

A time point where the majority labeling occurs is then
given by:

jmax(x,M) = argmax
j∈{1,...,n}

|Ni(x, j,M)|.

To avoid evaluating effects of missing branches due to
segmentation problems, time-points k ∈ {1, . . . n} are left
out if x has not been assigned, that is M(T k

i , x) = ∅,
and none of the other branches match the branch la-
beled with x in a majority labeled time-point, that is
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R
(
M(T

jmax(x,M)

i , x), T k
i

)
= ∅. The remaining time-points

are denoted by Pi(x,M):

Pi(x,M) =
{
k ∈ {1, . . . , n} | R

(
M(T

jmax(x,M)

i , x), T k
i

)
6= ∅

or M(T k
i , x) 6= ∅

}
.

We then define reproducibility of a label x in subject i
by method M as the percentage of time-points agreeing
with the majority labeling out of the total amount of
included time-points:

ri(x,M) = 100 ·
|Ni(x, jmax(x,M),M)|

|Pi(x,M)|
%,

where |Ni(M,x, jmax(x,M))| > 1, otherwise ri(x,M) = 0.
Cases with less than two included time-points, that is
|Pi(x,M)| < 2, are left out. Note that in the case of two
time-points, this definition of reproducibility is the same
as the one defined in Section 4.2.

4 RESULTS

Fig. 10 shows two labeling results visualized; examples
of both rare and more common topology. In the case
with rare topology, the labels L1, L2, L3, L10 and L1+2
did not overlap with expert labels; R1 and R3 overlapped
with one expert; R7, R9, R10, L7, L8, and L9 overlapped
with two experts; and the remaining 19 labels had perfect
overlap. In the case with more common topology, the la-
bels L7, L8, and L10 overlapped with one expert; L9 and
RLL overlapped with two experts; and the remaining 27
labels had perfect overlap.

4.1 Labeling accuracy

Table 1 shows a summary of the results. On average, the
automatic labeling agreement with an expert was 73.7±
4.8% on the segment branches, and 81.5± 3.5% overall.
This is not significantly different from the average expert
agreement with an expert, which was 73.3±9.7% on the
segment labels, and 80.4 ± 7.1% overall (p = 0.94 and
p = 0.77 in Mann-Whitney U-tests).

Fig. 11 shows labeling accuracy stratified by COPD
severity. Spearman’s correlation test shows no significant
correlation between the average agreement with an ex-
pert and the presence and severity of COPD (ρ = −0.18,
p = 0.11 on all labels, ρ = −0.20, p = 0.069 on segment
labels). Similarly, there is no correlation between the
average agreement between experts, and presence and
severity of COPD (ρ = −0.12, p = 0.45 on all labels,
ρ = −0.085, p = 0.60 on segment labels).

4.2 Labeling reproducibility

Table 1 shows a summary of the results.
On average, the reproducibility of the automatic la-

beling was 80.8 ± 16.3% on the segment labels, and
86.4±13.1% overall, which is significantly better than the
reproducibility of the experts, which was 75.1±14.8% on

the segment labels, and 82.4 ± 10.6% overall (p = 0.021
and p = 0.022 in Mann-Whitney U-tests).

Fig. 11 shows labeling reproducibility stratified by
COPD severity. Spearman’s correlation test shows sig-
nificant correlation between reproducibility of the au-
tomatic approach and severity of COPD (ρ = −0.34,
p = 0.031 on all labels; ρ = −0.36, p = 0.024 on segment
labels). Spearman’s correlation test shows, however, no
significant correlation between the average reproducibil-
ity of the expert labeling and the severity of COPD
(ρ = −0.085, p = 0.604 on all labels; ρ = −0.049,
p = 0.764 on segment labels).

4.3 Reproducibility on large longitudinal data set
Fig. 12 shows a summary of the results.

On average, the reproducibility of the automatic label-
ing on the large longitudinal data set was 82.5 ± 12.0%
on the segment labels, and 86.9± 9.8% overall.

There was a significant correlation between the repro-
ducibility and severity of COPD (ρ = −0.158, p < 0.001
on all labels; ρ = −0.163, p < 0.001 on segment labels).
Airway segmentations can be less complete in more
diseased subjects [4], [12], and we also observed a signif-
icant correlation between number of extracted branches
and severity of COPD (ρ = −0.444, p < 0.001) and be-
tween number of extracted branches and reproducibility
(ρ = 0.287, p < 0.001 on all labels; ρ = 0.308, p < 0.001
on segment labels). Fig. 13 shows reproducibility plotted
against number of segmented branches. To investigate
whether the algorithm was truly sensitive to disease and
not just missing branches, we generated a normalized
reproducibility by subtracting the mean predicted re-
producibility, predicted from the number of segmented
branches using a locally weighted mean (Loess Curve)
also shown in Fig. 13, from the actual reproducibility.
This normalized reproducibility did not significantly
correlate with disease (ρ = −0.043, p = 0.059 on all
labels; ρ = −0.032, p = 0.166 on segment labels).

5 DISCUSSION

We have presented a novel atlas-based algorithm for
assigning anatomical branch labels in airway trees ex-
tracted from CT. Through detailed experimental vali-
dation we show that the performance of the algorithm
is as good as the performance of the clinical experts.
In particular, the accuracy and reproducibility of the
algorithm is over 90% on the non-segment branches as
well as on the L6 and R6 branches, and for many of the
branches even over 95%. The labeling is fast, uses little
memory, and easily runs on a standard laptop.

We have chosen to use the geodesic tree-space distance
between pairs of leaf-labeled trees. In principle, any
other distance between leaf-labeled trees could have
been used in its place, e.g. the weighted Robinson-
Foulds metric [41] which is a related distance measure in
the same tree-space. The geodesic distance is attractive
because, in addition to the fact that polynomial time
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Fig. 10. Two labeling results: the left figure shows the result of labeling a subject with a tracheal bronchus, an example
of rare topology, which was observed only once in the data set. Errors can be seen in the segments of the upper
lobes, however, most branches are still correctly assigned. The right figure shows the result of labeling a subject with
a more typical branching structure, in which there is only minor disagreement with the experts (1 or 2 experts out of
all 3 disagreed with the assigned segment labels of the left lower lobe and RLL).

algorithms are available, tree-space equipped with the
geodesic distance allows for statistical tree-shape analy-
sis of the airway trees [42]. The strong performance of
the labeling thus also works as a validation of the ability
of the geodesic metric to represent tree-shape differences
in a way which is suitable for analysis of airway trees.

The labeling selection step of the labeling algorithm
as shown in line 16 of Algorithm 2 selects the labeling
of a new tree which minimizes the sum of distances to a
training set of expert-labeled trees. This might introduce
a bias of the labeling towards a ”median tree”, which
could be problematic if labeled trees follow a multi-
modal distribution within tree-space. Preliminary exper-
iments, using the sum of distances to k nearest expert-
labeled trees, did not result in significantly different
results, which indicates this possible bias is of little
consequence.

We have chosen not to combine the three expert label-
ings into a single consensus labeling. While a consensus
would be valuable if it could be used as a ground
truth for evaluation, it might be dangerous to interpret
a consensus labeling as such a ground truth. Experts
may have good reasons to disagree on a specific label
configuration, due to variation in airway structure. We
express this uncertainty within the reference standard
by using the three expert labelings as independent refer-
ences. Our accuracy scores thus reflect not only whether
the automatic labeling agrees with the dominant expert
label, but also whether we are within the range of normal
variation in expert labelings.

5.1 Robustness and applicability

The labeling algorithm attains statistically similar accu-
racy and higher reproducibility than the experts, and
performs robustly in patients suffering from COPD.
These qualities make the algorithm useful for clinical
applications. One such application is analysis of airway
dimensions measured from CT in studies of subjects
with airway diseases such as COPD. One problem in
performing such analysis is the variability introduced
by including branches from different locations of the
airway tree. Comparison of identically labeled airways
in different subjects [1], [3], [4] should decrease variation
caused by measurement location and thus increase the
ability of the measurement to capture signs of abnor-
malities. The labeling algorithm could also be applied to
study the distribution of abnormalities within the lung
in a group of patients, by lobe or segment. Compar-
ison of measurements does not have to be limited to
labeled branches, as branches in sub-trees of the labeled
branches can also be included, e.g. through comparison
of average measurements in generations relative to each
specific label [1], [4]. However, such an approach could
be problematic if not all branches of each generation are
found [13].

The labeling algorithm only uses centerline shape as
input, which in many respects makes it robust to external
factors such as disease. However, the hierarchical scheme
of Fig. 9 does make the labeling algorithm sensitive to
missing branches and may cause difficulties with rare
topologies. This could be improved by a more refined
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Fig. 11. Average labeling accuracy (left) and reproducibility (right) for segment labels (light blue) and all labels
(dark blue), stratified by COPD severity for the algorithm (top) and experts (bottom). Each ∗ corresponds to
accuracy/reproducibility for one subject. The lines interpolate mean accuracies and reproducibilities for each GOLD
group.

hierarchical labeling scheme, particularly one informed
by an analysis of seen topologies, or as discussed below,
of the airway subtrees where the experts performed bet-
ter. In cases with less severe disease, it is straightforward
to add additional measurements such as lumen diameter
into the distance function, which could lead to increased
performance.

As seen in Fig. 10 the method can deal with previ-
ously unseen topology. Besides cases with rare anatomy,
this property is also relevant due to the large natural
anatomical variation and the cases of segmentation or
centerline errors, such as spurious branches. In our
expert-labeled dataset, the leaf-labeled trees with exactly
20 segment branches extracted from the three experts’
manually labeled trees give rise to 137 different topolo-
gies as illustrated in Fig. 14. Of these topologies, 73
only appear a single time, and a few are shared by
a good number of airway trees (the 11 most common
topologies are shared by a total of 84 trees). The large
number of observed topologies is likely due to the many
possible combinations of different topologies found in
the different lobes; we expect that many of these globally
different topologies share large parts of their topolog-

ical structure. This topological variation is one of the
challenges that the tree-shape model is particularly well
suited to handle, as it allows distances to be computed
between topologically different trees. In particular, this
allows us to use the entire training set when labeling an
unseen tree, in spite of the unseen tree being topologi-
cally different from many or even all of the training trees.
This advantage is illustrated by our strong performance
in spite of the topological diversity of our dataset.

It is noteworthy that the experts and the algorithm
perform well in different parts of the airway tree. In par-
ticular, the algorithm is far more reproducible than the
experts in the left upper and lower lobes (L1-L3 and L7-
L10) (70%-87.5% versus 57.1%-64.2%). These branches
are also the hardest to label according to expert accuracy
(< 60.1%). It is possible that biological variation of shape
and topology confuses the experts, making their labels
more random, which would lead to both low accuracy
and reproducibility. The algorithm might either be more
tolerant of biological variation or more consistent in the
types of errors made. On the other hand, the experts
perform better than the algorithm in the left middle and
right lower lobes (L4-L5 and R7-R10). These branches
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belong to the subtrees of LB4+5 and RLL, which are the
least accurately found branches of the subset of branches
used as steps in the hierarchical approach. Some amount
of error is therefore probably due to the hierarchical
search strategy. It is possible that better results could be
obtained by for instance searching for L4-L5 and R7-R10
label configurations within subtrees depending on more
than one choice of the LB4+5 and RLL branches.

It is interesting to compare the estimated reproducibil-
ity in the small and large data sets. In general the trends
are the same. For instance in both data sets R6 and L6 are
among the most reproducibly assigned segment labels
and lower lobe segment labels are in general less repro-
ducibly assigned than upper and middle lobe segment

labels. The mean reproducibilities of the two data sets are
also almost identical. It should be noted, however, that
the automatic matching method [40] requires an accurate
registration and unlike with the manual matching the
overall topology and shape of the tree is not taken
into account. Because of this the true reproducibility is
probably underestimated in the larger data set. However,
the larger data set also has relatively fewer severe COPD
cases, which should mean the reproducibility is higher
because of more completely segmented airway trees.
Despite this, the similarity of the results indicate that the
performance of the algorithm generalizes to new (albeit
similar) data.

5.2 Labeling performance and COPD stage
Our experiments on the annotated dataset show that
labeling reproducibility decreases significantly with in-
creased COPD severity, while labeling accuracy does
not. The difference in results may be caused by the
mathematical definition of accuracy and reproducibility.

Labeling accuracy measures the ability of a method to
agree with a human observer on the same segmented
airway tree. If the underlying labeling ”algorithm” used
by the method and the human observer are identical,
accuracy will be perfect and there will be no depen-
dence on COPD severity even if both are physiologically
incorrect. Reproducibility, on the other hand, measures
the ability of one method to identically label segmented
airway trees from two different scans of the same subject.
If one of the segmentations is missing branches that
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Fig. 13. Reproducibility of all labels left and segment labels right as a function of the number of segmented branches.
Colors indicate GOLD group, with GOLD 0 in green, GOLD 1 in blue, GOLD 2 in yellow, and GOLD 3 in pink. The
black line is a locally weighted mean (Loess Curve) with 95% confidence intervals.

are labeled by the other, then reproducibility cannot
possibly be perfect. Thus, since the number of segmented
branches depends on COPD level, it is expected that
reproducibility depends on COPD level as well, while
this is not necessarily true for accuracy.

This is supported by our reproducibility experiments
on the large longitudinal data set. Here, reproducibility
does again depend on COPD level. However, there is
also a very clear correlation between reproducibility and
the number of branches detected by the segmentation
algorithm. When the effect of branch number is taken
into account by subtracting the expected reproducibility
based on number of branches, the correlation between
reproducibility and COPD level disappears. We conclude
that the correlation between COPD level and repro-
ducibility is not an artifact of the labeling algorithm di-
rectly, but a result of segmentation problems. This is very
natural when many branches close to the true named
branches are missing, and it has several consequences:
if the named branch is missing, then any attempt to
assign the corresponding label will fail, and if one but
not both children of a named branch is missing, then
the branch will appear longer in the segmentation than
it should, making it harder to assign labels based on
branch features such as shape.

Of course, one solution to the dependence on segmen-
tation quality and, indirectly, disease, is to develop better
segmentation algorithms. A more pragmatic approach,
however, could be to introduce label probabilities based
on geodesic airway tree distances, giving an option of
assigning fewer labels when higher accuracy is needed,
in a similar way as done in [11]. This could also be used
to decrease the false positive rate on difficult branches.

5.3 Applicability to other segmentation algorithms
and data

Our experiments are performed on airway segmenta-
tions of high quality. A relevant question is whether the
algorithm generalizes to other scans and segmentation
algorithms, both in its current trained form and retrained
on new data. We expect the trained algorithm to be
robust to common differences in the output of segmen-
tation algorithms such as differences in surface shape, as
the only branch shape feature used is 5 landmark points
sampled along the centerline shape. The robustness of
the algorithm in the presence of disease is a positive
indicator for robustness to differences in branch shape
segmentation.

Potential errors in alternative segmentations include
missing and spurious branches. In Sec. 5.2 we have
found that a somewhat decreased labeling performance
in COPD can be explained by fewer detected branches in
subjects with COPD. This indicates that the algorithm is
somewhat sensitive to missing segmental branches. On
the other hand, we would expect it to be relatively robust
to spurious branches. Spurious branches are removed
during the process generating the subtree spanned by
the labels, which means there is limited effect on the
training trees. There might be an effect on the test tree,
but this effect is significantly reduced by both the subtree
spanned by the labels and the backpropagation of labels
to the most shallow possible parent.

5.4 Relation to alternative methods

We note that higher labeling accuracy percentages than
ours are reported in the literature, 97.1%, 90% and 83%
on all branch labels in [17, high dose CT], [9] and
[11]; and 77% on segment labels [11]. There are several
reasons for this. First, as noted above, we specifically aim
to evaluate our performance on patients with disease,
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and our dataset consists of 77.5% COPD patients, while
experiments found in the literature include much fewer,
if any, subjects with an airway disease. A lower perfor-
mance on our dataset is thus expected, since our ex-
periments prove that labeling performance significantly
depends on disease when segmentation problems are not
accounted for.

Second, we aim to evaluate our ability to assign 20
segment labels. In comparison, both [11] and [9] use
fewer than 20 segment labels (16 and 19, respectively)
and more intermediate (easier) labels (13 as opposed to
our 12), which presumably gives higher overall perfor-
mance summaries. We note in particular that [11] and
[9] leave out the segment label sets {L1-L2, L7-L8} and
{L7}, respectively, which are also found challenging in
our experiments.

Third, we wanted our evaluation to realistically reflect
how well we can expect to perform on data which has
never been labeled by an expert. To achieve this, we
did not reject any assigned labelings, as opposed to [17]
and [11], which aim to avoid performing uncertain label-
ings. In particular, the 97.1% success rate [17] is among
branches that have been labeled identically by three
experts, which means that difficult labeling problems are
weeded out of the experiment. Such an evaluation is only
possible if the airway tree has already been labeled by
three experts, and similar accuracies can naturally not be
expected on unseen data, such as in clinical applications.
In [11], an estimate is made of the probability of the
label assignment, and here, a threshold can be applied
to choose not to assign labels when certainty is low.

On average (including erroneous labelings), we assign
98.4% of 32 used labels, whereas [17], [9] and [11] assign
only 71%, 93%, and 83% of the 29, 32, and 32 used
labels, respectively. For segment labels specifically, we
assign 94.9% of 20 used segment labels, whereas [11]
assigns 77% of the 16 segment labels used (our numbers
are averaged over the 10 cross-validation runs). This
variation in experimental setup makes it impossible to
compare performance in a fair manner, because results
on unassigned labels cannot be taken into account.

What we can conclude is that the proposed algorithm
performs as well as or better than medical experts in
terms of labeling accuracy and reproducibility. This is
the best result we could possibly have hoped for given
that our method is trained on labeling performed by
medical experts. These conclusions are confirmed by our
large-scale evaluation of reproducibility. Moreover, we
quantify the dependence on performance on COPD level
and show that any negative correlation between labeling
performance and disease can be explained by segmen-
tation error. To the best of our knowledge, no previous
work has tested neither reproducibility nor dependence
on disease, nor performed large-scale evaluations.

6 CONCLUSION
We present a new atlas-based algorithm for anatomical
branch labeling of airway trees, based on geodesic tree-

space distances between airway trees. Using the dis-
tances, the algorithm evaluates how well a suggested
branch labeling fits with a training set of labeled airway
trees, and chooses the optimal labeling. The labeling
performance is robust in patients with COPD, and is
comparable in performance to that of experts in pul-
monary medicine and radiology. As the algorithm only
uses branch centerlines and tree topology, we expect it to
generalize to other data sets consisting of similarly com-
plete segmentations of human adults. Its reproducibility
and robustness in patients with COPD emphasizes its
suitability for use in clinical studies of localized CT-
based airway measurements.
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