
DISTANCE COMPUTATION IN THE SPACE OF

PHYLOGENETIC TREES

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Megan Anne Owen

August 2008

c© 2008 Megan Anne Owen

ALL RIGHTS RESERVED

DISTANCE COMPUTATION IN THE SPACE OF PHYLOGENETIC TREES

Megan Anne Owen, Ph.D.

Cornell University 2008

A phylogenetic tree represents the evolutionary history of a set of organisms. There

are many different methods to construct phylogenetic trees from biological data.

To either compare one such algorithm with another, or to find the likelihood that

a certain tree is generated from the data, researchers need to be able to compute

the distance between trees. In 2001, Billera, Holmes, and Vogtmann introduced a

space of phylogenetic trees, and defined the distance between two trees to be the

length of the shortest path between them in that space.

We use the combinatorial and geometric properties of the tree space to develop

two algorithms for computing this geodesic distance. In doing so, we show that

the possible shortest paths between two trees can be compactly represented by a

partially ordered set. We calculate the shortest distance between the start and

target trees for each potential path by converting the problem into one of finding

the shortest path through a certain subspace of Euclidean space. In particular, we

show there is a linear time algorithm for finding the shortest path between a point

in the all positive orthant and a point in the all negative orthant of Rk contained

in the subspace of Rk consisting of all orthants with the first i coordinates non-

positive and the remaining coordinates non-negative for 0 ≤ i ≤ k. This case is

of interest, because the general problem of finding a shortest path through higher

dimensional Euclidean space with obstacles is NP-hard. The resulting algorithms

for computing the geodesic distance appear to be the best available to date.

BIOGRAPHICAL SKETCH

Megan Anne Owen was born and raised in Ottawa, Canada. She attended high

school at Lisgar Collegiate Institute, and graduated in 1999. Megan received the

Grace Adelia Ashbaugh scholarship, a Chancellor’s scholarship, to attend Queen’s

University in Kingston, Canada. She graduated in 2003 with a Bachelors of Sci-

ence degree in Mathematics and Engineering, Computing and Communications

option. In August 2003, Megan started the Ph.D. program at the Center for Ap-

plied Mathematics at Cornell University in Ithaca, New York. She received her

Masters in Applied Mathematics in January 2007. She will be starting a post-

doctoral fellowship in the Algebraic Methods in Biology and Statistics program at

the Statistical and Applied Mathematical Sciences Institute (SAMSI) in Raleigh,

North Carolina in September, 2008.

iii

To Uncle Bill and Aunt Lucille.

iv

ACKNOWLEDGEMENTS

First, I thank my advisor, Louis Billera, for his excellent guidance and constant

encouragement. He was exceptionally generous with his time and support. I

also thank my committee members: Karen Vogtmann, particularly for sharing her

insights about the tree space, and David Shmoys, particularly for his career advice.

I am grateful to Sergio Servetto for his support during my first years at Cornell,

and I will always remember his enthusiasm for research. Dolores Pendell ensured

that my path through graduate school was as smooth as possible, for which I

express my gratitude. Finally, I thank Ron Hirschorn for first suggesting that I

pursue a Ph.D.

I thank my parents, Annette and Arthur, who have loved and supported me in

so many ways at every stage of my academic career, and Dave, for being the best

brother I could ask for.

Despite the distance, Alisa, Shan, Sang Mi, and Yasmin have always been there

for me, and I thank them for their wonderful friendship. I am grateful to all of

my friends here in Ithaca, who provided distractions from work or encouragement,

as needed, and I especially thank Lauren, Yashoda, Jill, An-Swol, Ron, Christina,

Sam, Mia, Joe, Ruth, Paul, Emilia, and the other students in CAM. Finally, I

thank Filip for sharing so much of the last five years with me, for his unwavering

encouragement, and for making me smile when I needed it the most.

I gratefully acknowledge the partial support of this work by the NSF grant

DMS-0555268, and a Cornell Graduate School Fellowship.

v

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vi
List of Figures . vii

1 Introduction 1
1.1 Partially Ordered Sets . 9

2 Tree Space and Geodesic Distance 12
2.1 Tree Space . 14
2.2 Geodesic Distance . 15
2.3 The Essential Problem . 17

3 Combinatorics of Path Spaces 19
3.1 The Incompatibility and Path Partially Ordered Sets 20
3.2 Path Spaces . 25

4 Geodesics in Path Spaces 38
4.1 Two Equivalent Euclidean Space Problems 38
4.2 A Touring Problem and Solution 47

4.2.1 PathSpaceGeo: A Linear Algorithm for Computing Path
Space Geodesics . 55

4.3 Alternative Approaches . 57

5 Algorithms 60
5.1 Theoretical Considerations . 60

5.1.1 Decomposing Trees with Common Edges 61
5.1.2 Local Geodesic Property . 68

5.2 Algorithms . 72
5.2.1 GeodeMaps-Dynamic: a Dynamic Programming Algorithm 72
5.2.2 GeodeMaps-Divide: a Divide And Conquer Algorithm . . 75

5.3 Conclusion . 79

A Algorithm Details 80
A.1 PathSpaceGeo . 80
A.2 GeodeMaps-Dynamic . 81
A.3 GeodeMaps-Divide . 81

Bibliography 84

vi

LIST OF FIGURES

1.1 An early phylogenetic tree by Haeckel [20]. 2
1.2 An NNI operation that interchanges the subtrees B and C. 6
1.3 An SPR operation that prunes and regrafts the subtree B. 6
1.4 The Hasse diagram of B3. 10

2.1 The split induced by the edge e3. 13
2.2 Two orthants in T4. 15
2.3 Both edge length and tree topology determine the geodesic. 16

3.1 Two trees, their incompatibility poset, and their path poset. 22
3.2 Two trees, their incompatibility poset, and their ungraded path

poset. 25
3.3 A family of trees whose path poset is exponential in the number of

leaves. 37

4.1 An isometric map between a path space and V (R2). 42

5.1 Forming the trees T̃A
i and T̃B

i from T̃i for i ∈ {1, 2}. 66
5.2 An example illustrating the path space geodesic property. 71
5.3 An example illustrating the dynamic programming approach. . . . 74
5.4 An example illustrating the first step of GeodeMaps-Divide. . . 77
5.5 A family of trees for which GeodeMaps-Divide has an exponen-

tial runtime. 78

vii

CHAPTER 1

INTRODUCTION

Phylogenetic trees are used throughout biology to understand the evolutionary

history of organisms ranging from primates to the HIV virus. A phylogenetic tree

depicts how a set of organisms, called taxa, evolved from a single common ancestor.

The leaves of a phylogenetic tree represent existing species, while the internal

nodes represent their ancestors. (See Figure 1.1.) We have only our knowledge of

contemporary species and incomplete historical records, such as fossils, to use in

reconstructing phylogenetic trees. Nevertheless, the discovery of DNA has led to

a profusion of phylogenetic reconstruction methods based on the resulting genetic

sequence data. Usually, reconstruction methods are evaluated by comparing the

phylogenetic trees produced using a quantitative distance measure. We would also

like to have a statistical framework to better evaluate the generated trees. The

tree space of Billera, Holmes, and Vogtmann [3] and its corresponding geodesic

distance measure address both of these issues. This thesis presents two algorithms

for computing this geodesic distance.

A common use of phylogenetic trees is understanding the evolutionary history

of a collection of organisms [27], but phylogenetic trees are also employed in other

areas of biology. For example, knowledge of how a virus, such as HIV, evolves can

be used to predict the virus’ response of drug-resistant mutations to a vaccine or

new drug therapy [38]. Additionally, since HIV is extremely genetically diverse,

viruses from different hosts with the same HIV strain can have significantly dif-

ferent genomes. Therefore, a vaccine derived from the genome of one particular

host may not be effective against other versions of the genome. Phylogenetic tech-

niques, however, allow us to find a common ancestor with a better model genome

1

Figure 1.1: An early phylogenetic tree by Haeckel [20].

2

from which to develop a vaccine ([19], [35]). Phylogenetics can also aid in allocat-

ing limited conservation resources. More specifically, conserving a species with no

extant close relatives will maintain more phylogenetic diversity than conserving a

species closely related to other species not in danger of extinction. Vane-Wright et

al. [54] introduced one of the first phylogenetic diversity measures calculated us-

ing the phylogenetic relationships between different species. Lehman [30] applied

a version of this measure to conserving Madagascar lemurs. Another example of

the usefulness of phylogenetics is found in the prediction of gene function, which

is often done by matching an unknown with a known gene having a high similarity

measure. However, using similarity measures without considering the evolution-

ary processes that lead to similar genes can give misleading results [14]. Finally,

in determining the correlation between any two biological variables, the phylo-

genetic relations between the species must be taken into account, as this affects

the independence of the data [17].

Phylogenetic trees are also used outside of biology, by equating the mistakes

and changes humans make as they transmit knowledge with genetic mutations.

For example, Barbrook et al. [2] applied phylogenetic analysis to the errors scribes

made as they recopied The Canterbury Tales to reconstruct a potential copying

history. Spencer et al. [47] had volunteers recopy artificial manuscripts, and com-

pared the phylogenetic trees produced from this simulated data to the real one.

They concluded that phylogenetic methods can be applied in such contexts. Phylo-

genetic methods can also be used to study the evolution of languages. Rexová et

al. [39] did this by equating changes in words with mutations, while Dunn et al.

[12] used changes in the grammars. Finally, cultural evolution, such as the gain

and loss of cattle in East Africa, can also be studied using phylogenetic methods

(see [32] and its references).

3

Since Charles Darwin first proposed that the evolutionary history of all living

organisms can be represented as a phylogenetic tree, there has been the question

of what this tree is and how to construct it. In the past, phylogenetic trees were

constructed by considering the physical characteristics organisms had in common.

Today, the trees are usually constructed from genetic data, such as DNA, RNA,

or amino acid sequences corresponding to each taxon. Alternatively, large phylo-

genetic trees can be constructed by combining trees on smaller, overlapping sets

of taxa to form a supertree.

There are numerous methods for inferring phylogenetic trees from genetic data.

For example, distance methods use the pairwise distance scores between the gene-

tic sequences to construct a tree exhibiting, if possible, these distances as path

lengths between leaves. An early distance method is the Unweighted Pair Group

Method with Arithmetic Mean (UPGMA) algorithm ([13], Section 7.3), while one

of the most popular is the Neighbour-joining algorithm([44], [51]). Besides the dis-

tance methods, there are some other widely-used reconstruction algorithms, each

with their own advantages and disadvantages. For example, Maximum Likelihood

[15] finds the tree which generated the data with maximum likelihood, but it is

very computationally intensive. Maximum Parsimony [18] produces the tree which

explains the data with the fewest mutations. Quartet puzzling [50] uses maximum

likelihood methods to construct quartets, which are subtrees with 4 leaves, and

then combines the quartets into a final tree using majority voting. A Bayesian

approach has also been taken for tree reconstruction. The most popular program

is MrBayes ([25],[43]), which uses Markov chain Monte Carlo (MCMC) methods

and Metropolis coupled MCMC methods to estimate the posterior probabilities of

the trees. For more information on tree reconstruction, refer to [13] or [53], and

their references.

4

Not only are there a variety of tree reconstruction algorithms, but such factors

as the underlying tree shape and rate of mutation in the DNA sequences used

can affect the accuracy of the algorithms. For example, Hendy and Penny [22]

showed that if the underlying tree has very unequal branch lengths, then with

reasonable assumptions about the evolutionary process, parsimony methods may

not converge to the correct tree as the data size increases. Kuhner and Felsen-

stein [28] showed that 5 algorithms, including parsimony, maximum likelihood,

and neighbour-joining, were all biased when DNA sequences evolved at different

rates at different sites, which occurs in nature. Thus, researchers are interested in

comparing the trees generated through different simulations, and use a distance

measure to quantify the differences between the trees, such as in [28]. To facilitate

these comparisons, it is important that the inter-tree distance can be computed in

a reasonable time.

Numerous distance measures have been defined on the set of phylogenetic trees

with the purpose of quantitatively comparing the trees. These measures are usually

metrics. Many of these distances are based on some minimal operation, which

changes one tree into another. In these cases, the distance between two trees is

defined as the minimum number of operations needed to transform the first tree

into the second tree. The most widely known of these distances is the Nearest

Neighbour Interchange (NNI) distance ([40], [56]) for unrooted trees. The NNI

operation swaps two adjacent subtrees, which are joined by one edge, as shown

in Figure 1.2. If the two trees are rooted, the NNI distance becomes the rotation

distance [46]. A generalization of the NNI distance is the subtree prune and regraft

(SPR) distance, which was first introduced in [21], as the subtree transfer distance.

For the basic operation for the SPR distance, a subtree is detached, or pruned,

from the tree by cutting an edge and reattached to the middle of a different edge,

5

A

DC

B A

DB

C

Figure 1.2: An NNI operation that interchanges the subtrees B and C.

A

D

C

B

0

A

D

C

B

0

Figure 1.3: An SPR operation that prunes and regrafts the subtree B.

as shown in Figure 1.3. These distances are biologically meaningful ([56], [21]),

but the NNI distance was proven to be NP-hard to compute in [9], and the SPR

distance for rooted trees was proven to be NP-hard to compute in [5].

The most commonly used distance is the Robinson-Foulds distance [42], which

can be computed in linear time [10]. This distance can also be used to compare

non-binary trees. The Robinson-Foulds distance between two trees is the sum of

the edges that are in the first tree but not the second tree, and the edges that

are in the second tree but not the first tree. In other words, the distance is the

cardinality of the symmetric difference between the edge-sets. This distance was

originally derived by finding the minimal number operations needed to transform

one tree into another, where an operation was either the contractions of an edge or

the expansion of a node into two nodes joined by an edge. There are several varia-

tions of the Robinson-Foulds distance, including one that incorporates the weights

6

of the edges [41]. There are a number of advantages to using the Robinson-Foulds

distance, including its quick runtime [36]. However, this distance is not biologi-

cally motivated [42]. The NNI and SPR distances have a biological interpretation,

but cannot be computed quickly and thus are rarely used in practice. For these

distance, there is, in general, more than one minimal sequence of operations that

will transform the starting tree into the target tree.

In response to the need for a distance measure between phylogenetic trees that

naturally incorporates both the tree topology and the lengths of the edges, Billera

et al. introduced the geodesic distance [3]. This distance measure is derived from

the tree space, Tn, which contains all phylogenetic trees with n leaves. Tn is formed

from a set of Euclidean regions, called orthants, one for each topologically different

tree. Two regions are connected if their corresponding trees are considered to be

neighbours. Each phylogenetic tree with n leaves is represented as a point within

this space. There is a unique shortest path, called the geodesic, between each pair

of trees. The length of this path is our distance metric.

Furthermore, the properties of the geodesic distance and corresponding tree

space have some interesting statistical implications. For example, the uniqueness

of the geodesic means that there is a well-defined mid-point tree for each pair of

trees. Successively computing these mid-points could be used to find the centroid

of a set of trees, and this could be interpreted as a consensus tree [3]. Biologists

are also very interested in the likelihood of the trees they generate. Traditionally,

bootstrap values are calculated for each edge of the tree [16]. However, a more

sophisticated approach is desired, and one option is a probability distribution on

the trees based on the inter-tree distance measure [24]. Furthermore, a property

of Tn guarantees the existence of convex hulls [3], from which confidence intervals

7

could be developed. Researchers in areas outside of biology are also interested in

comparing phylogenetic trees in a similar fashion [47]. Thus, the tree space and

geodesic distance provide a statistical framework for studying phylogenetic trees.

Unfortunately, [3] did not give a computationally feasible algorithm for computing

the geodesic distance. In this thesis, we present two such algorithms.

Contributions

The primary contributions of this thesis are two algorithms for computing the

geodesic distance between two phylogenetic trees. These algorithms appear to

be significantly faster than the only explicit algorithm published to date. Fur-

thermore, two main ideas were developed to construct these algorithms. Firstly,

the candidate shortest paths between trees can be represented as an easily con-

structible partially ordered set, giving information about the combinatorics of the

tree space. Secondly, we can find the length of each candidate shortest path by

translating the problem into one of finding the shortest path through a subspace of

a lower dimensional Euclidean space. The solution to this new problem is a linear

algorithm for a special case of the shortest Euclidean path problem in Rn with

obstacles. Since the general problem is NP-hard for dimensions greater than 2,

this result is also of interest to computational geometers. These two ideas can be

combined using dynamic programming or divide and conquer methods to signifi-

cantly reduce the search space, and thus make this distance computation practical

for some biological data sets of interest.

The remainder of this thesis is organized as follows. The following section

contains the necessary background. In Chapter 2, we describe the tree space and

the geodesic distance between phylogenetic trees. Chapter 3 explains how to select

8

a set of subspaces of Tn such that at least one contains the geodesic between the two

trees in question. Chapter 4 explains how to calculate the shortest path through

each selected subspace in linear time with respect to the number of leaves. It

also contains a section on alternative approaches in the literature to computing

the geodesic distance. Two algorithms for computing the geodesic distance are

presented in Chapter 5.

1.1 Partially Ordered Sets

A partially ordered set, or poset, is a set P and a binary relation ≤, which is

reflective, antisymmetric, and transitive. This means that for any elements x, y, z ∈

P , x ≤ x (reflectivity), x ≤ y and y ≤ x imply that x = y (antisymmetry), and

x ≤ y and y ≤ z imply x ≤ z (transitivity). We will only consider partially

ordered sets whose elements are subsets, and thus the binary relation is always

inclusion. In this case, for any sets A,B ∈ P , A ≤ B if and only if A ⊆ B. For

example, the set of all subsets of S = {1, 2, 3} ordered by inclusion is a poset,

which is called the Boolean lattice and denoted B3, as shown in Figure 1.4. In

this poset, {1} ≤ {1, 2}, for example, since {1} ⊆ {1, 2}. However, there is no

relation between {1, 2} and {2, 3}, since neither is a subset of the other. Contrast

this with a totally ordered set, such as the integers, in which any two elements can

be compared. We say that x < y is a cover relation, or that y covers x if there

does not exist any other z ∈ P such that x < z < y. Intuitively, y is the smallest

element of P greater than x. We often represent partially ordered sets using a

Hasse diagram, which is a graph whose vertices are the elements of P . There is an

edge between two vertices x and y in the Hasse diagram if there is a cover relation

between x and y. Figure 1.4 contains the Hasse diagram of B3. See Chapter 3 of

9

∅

{1} {2} {3}

{1, 2} {2, 3} {1, 3}

{1, 2, 3}

Figure 1.4: The Hasse diagram of B3.

[48] for a more thorough exposition of partially ordered sets.

A preposet or quasi-ordered set is a set P and binary relation ≤ that is only

reflective and transitive. This means that a poset is an antisymmetric preposet.

See [48, Exercise 1] for more details.

A subposet Q of a poset P is some subset of the elements in P with the induced

ordering. In other words, x ≤ y in Q if and only if x ≤ y in P . An interval [x, y] of

a poset P is the subposet which contains an element z ∈ P if and only if x ≤ z ≤ y

in P .

A chain is a totally ordered subset of a poset. For example, in B3, {1} ≤

{1, 2} ≤ {1, 2, 3} and {3} are chains. The number of elements in a chain is the

length of the chain. In the previous example, the first chain has length 3, while

the second has length 1. A chain is maximal when no other elements from P can

be added to that subset. So ∅ ≤ {1} ≤ {1, 2} ≤ {1, 2, 3} is a maximal chain in

B3. A poset is graded when all of its maximal chains have the same length. For

example, B3 is graded.

A partially ordered set is a lattice if any two elements x, y ∈ P have a unique

least upper bound, x∨y, called the join, and a unique greatest lower bound, x∧y,

10

called the meet. In B3, for example, {1, 2} ∨ {2, 3} = {1, 2, 3} and {2} ∧ ∅ = ∅.

B3 is also a lattice.

A subposet I ⊆ P is an order ideal if for any x ∈ I and y ≤ x, then y ∈ I. The

order ideal generated by {1, 3} is {∅, {1}, {3}, {1, 3}}. The lattice of order ideals,

J(P), is the poset formed by ordering the order ideals of a poset P by inclusion.

In [4], Birkhoff defines X 7→ X to be a closure operator on a set I if for every

subset X ⊂ I, it is extensive (X ⊂ X), idempotent (X = X), and isotone (if

X ⊂ Y , then X ⊂ Y).

Conventions

We will use the following notational conventions:

1. If f is a tree edge, then we will often denote the single-element subset {f}

by f ; so, for example, we will write O(f) to mean O({f}).

2. The symbol ⊂ indicates a strict subset relationship, or (. Similarly, ⊃

indicates a strict superset relationship, or).

11

CHAPTER 2

TREE SPACE AND GEODESIC DISTANCE

In this chapter, we describe the tree space and the geodesic distance. For further

details, see [3]. A phylogenetic tree T is a rooted, binary tree, whose leaves are in a

bijection with a set of labels X representing different organisms. For the remainder

of this thesis, let X = {1, ..., n}. We will often treat the root as a leaf, called 0.

The interior nodes of the phylogenetic tree represent ancestral organisms.

Definition 2.0.1. A split A|B of a tree T is a partition of X ∪ {0} into two

non-empty sets A and B, where X is the leaf-set of T and 0 is its root.

Each split of T corresponds to one of the edges of T , in that one block of

the partition consists of all the leaves descending from that edge, while the other

block consists of the remaining leaves and the root. We can also say that a split is

induced by an edge in T . For example, in the tree in Figure 2.1, the split induced

by the edge e3 partitions the leaves into the sets {2, 3} and {0, 1, 4, 5}. An internal

split is induced by an internal edge of the tree, while a trivial split is induced by

a pendant edge of the tree that ends in a leaf. We will refer to internal splits as

splits, and trivial splits by their full name. A split of type n is a partition of the

set {0, 1, ..., n} into two blocks, each containing at least two elements, and can be

considered to be an internal edge in a tree with n leaves. Let ET be the set of

(internal) splits of the tree T . If e is a split in T , then let T/e be the tree T with

the edge inducing e contracted.

Definition 2.0.2. Two splits e = X|X ′ and e′ = Y |Y ′ are compatible if one of

X ∩ Y , X ∩ Y ′, X ′ ∩ Y and X ′ ∩ Y ′ is empty.

Intuitively, two splits are compatible if their inducing edges can exist in

12

the same phylogenetic tree. For example, in the tree in Figure 2.1, the split

e3 = {2, 3}|{0, 1, 4, 5} is compatible with the split e2 = {2, 3, 4}|{0, 1, 5}, because

{2, 3} ∩ {0, 1, 5} = ∅. However, e3 is incompatible with f = {1, 2}|{0, 3, 4, 5}.

Definition 2.0.3. Two sets of mutually compatible splits of type n, A and B, are

compatible if every split is A is compatible with every split in B.

Each edge, and hence split, e ∈ T , is also associated with a non-negative length

|e|T . For example, this length could represent an estimate of the number of DNA

mutations that occurred between speciation events. Two splits are considered to

be the same if they have identical partitions, regardless of their lengths. For any

A ⊆ ET , let ‖A‖ =
√∑

e∈A |e|2T .

Within the phylogenetics community, the term split is usually used instead of

edge. This emphasizes that we are employing a very specific definition for the edge

of a tree, and avoids confusion with the more common definition from graph theory.

In general, we will use split when emphasizing the combinatorial properties, and

edge when emphasizing the metric properties, such as length. Billera et al. [3]

referred to the splits as edges.

2

4

3

1
5

e1

e3

e2

0

Figure 2.1: The split induced by the edge e3.

13

2.1 Tree Space

The space of phylogenetic trees, Tn, was first defined by Billera et al. [3]. This

space contains all phylogenetic trees with n leaves. It contains both binary and

degenerate trees, which are trees with at least one internal vertex of degree greater

than 3. In this space, each tree topology with n leaves is associated with a Eu-

clidean region, called an orthant. The points in the orthant represent trees with

the same topology, but different edge lengths. These orthants are attached, or

glued together, to form the tree space. We now give a more detailed description.

Any set of n− 2 compatible splits corresponds to a unique rooted phylogenetic

tree topology ([45, Theorem 3.1.4]; original proof in [7]). For any such split set ET

corresponding to the tree T , associate each split with a vector such that the n− 2

vectors are mutually orthogonal. The cone formed by these vectors is the orthant

associated with the topology of T . Recall that the k-dimensional (nonnegative)

orthant is the non-negative part of Rk, and is denoted Rk
+. The positive orthant is

the positive part of Rk and is denoted Rk
++. An orthant’s boundary faces are (k−1)-

dimensional orthants. A point (x1, ..., xn−2) in Rn−2
+ represents the tree containing

the edge associated with the i-axis that has length xi, for all 1 ≤ i ≤ n − 2, as

illustrated in Figure 2.2. If xi = 0, then the tree is on a face of the orthant. In this

case, we will often treat the tree as if it does not contain the edge associated with

the i-axis. Notice that the trees on the faces of each orthant have at least one edge

of length 0. Furthermore, two orthants can share the same boundary face, and

thus are attached. For example, in Figure 2.2, the trees T1 and T ′1 are represented

as two distinct points in the same orthant, because they have the same topology,

but different edge lengths. T0 has only one edge, e1, and thus is a point on the e1

axis.

14

e2 e3

0

e2e1

1 2 3 4

0

e1

0

21
3 4

e1
e3

0

1 2
3

4

e1
= geodesic

T1 T2

T0

e1’
e2’

21
43

0

T1’

Figure 2.2: Two orthants in T4.

For any set A of compatible splits with lengths, let T (A) represent the tree

containing exactly the edges that induce the splits in A. The lengths of the edges

in T (A) correspond to their respective lengths in A. Let O(A) be the orthant

with the lowest dimension that contains T (A). For any non-negative number t, let

t · A represent the set of splits A whose lengths have all been multiplied by t. If

A and B are two sets of mutually compatible splits of type n, such that A ∪ B

is also a set of mutually compatible splits, then we define the binary operator +

on the orthants of Tn by O(A) + O(B) = O(A ∪ B). For any union of disjoint

orthants, ∪k
i=0O(Ai), where B is a set of mutually compatible splits of type n such

that B and Ai are compatible sets for all 0 ≤ i ≤ k, define
(
∪k

i=0O(Ai)
)

+O(B) =

∪k
i=0 (O(Ai) +O(B)) = ∪k

i=0O(Ai ∪ B). If A ∩ B = ∅, and we wish to emphasize

this, we will use the direct sum notation ⊕.

2.2 Geodesic Distance

Let T1 and T2 be two trees in Tn. Billera et al. [3] defined the geodesic distance,

d(T1, T2), between T1 and T2 to be the length of the geodesic, or locally shortest

15

path, between T1 and T2 in Tn. In [3, Lemma 4.1], Billera et al. prove that Tn is

a CAT(0) space, or has non-positive curvature [6]. This implies that the geodesic

between any two trees in Tn is unique. If the two trees are in the same orthant,

then the geodesic distance between them is the Euclidean distance between the

points corresponding to those trees. The length of a path that traverses several

orthants is the sum of the Euclidean length of the intersection of the path with

each orthant.

For example, in Figure 2.2, the geodesic between the trees T1 and T2 is repre-

sented by the dashed line. Figure 2.3 depicts 5 of the 10 orthants in T4. This figure

also illustrates that the edge lengths, in addition to the tree topologies, determine

through which intermediate orthants the geodesic will pass. In this figure, the

trees T1 and T ′1 have the same topology, as do T2 and T ′2. However, the geodesic

from T1 to T2 is the straight line between them and passes through a third orthant,

while the geodesic from T ′1 to T ′2 goes through the origin of the tree space.

T2

e2e1

1 2 3 4

0

e1

e3

0

1 2
3

4

e4

e3

0

1

2 3

4

e4

e5

0

1
2 3

4

e5

e5

e2

0

1

2
3 4

e4
e3

e1

e2

T1’T2’

T1

= geodesic

Figure 2.3: Both edge length and tree topology determine the geodesic.

16

2.3 The Essential Problem

The problem of finding the geodesic between two arbitrary trees in Tn can be

reduced in polynomial time to the problem of finding the geodesic between two

trees with no edges in common. This is the problem that will be considered in

Chapters 3 and 4. Furthermore, we can easily include the lengths of the pendant

edges in our distance calculations, if desired. This section contains the relevant

results from Billera et al. [3] and Vogtmann [55].

If the trees T1 and T2 in Tn share an edge e, then all trees on the geodesic

between T1 and T2 contain e [3, Corollary 4.2]. Furthermore, Billera et al. point

out that the geodesic from T1 to T2 can be recovered by following the geodesic from

T1/e to T2/e while rescaling the length of e linearly from |e|T1 to |e|T2 . Making this

explicit gives the following lemma.

Lemma 2.3.1. Let T1 and T2 be trees in Tn sharing a common edge e. Then

d(T1, T2) =
√
d(T1/e, T2/e)2 + (|e|T1 − |e|T2)

2.

Proof. By [3, Corollary 4.2], the split induced by the edge e is in all trees on the

geodesic between T1 and T2. Thus e is compatible with the splits represented by

the orthants through which the geodesic from T1/e to T2/e passes. Let the space

formed by these orthants be S, and note that it is orthogonal to the ray in Tn

associated with the split e. The geodesic is contained in the product space of the ray

associated with e and S. More specifically, it can be found by taking the geodesic

between T1/e and T2/e in S, and scaling the length of e linearly as this geodesic

is traversed. This implies that d(T1, T2) =
√
d(T1/e, T2/e)2 + (|e|T1 − |e|T2)

2.

Vogtmann [55] showed how to explicitly calculate the distance of the geodesic

17

between T1 and T2 using the distances of the geodesics between the subtrees formed

by deleting e from T1 and T2. Her result is restated as Corollary 5.1.6, for which

we give an alternate proof using the more general Theorem 5.1.5. Thus, we can

reduce the problem to finding the geodesic between two trees with no common

edges. For Chapters 3 and 4, we will assume that the trees in questions have no

common edges.

In defining the tree space Tn and its associated distance, Billera et al. did

not include the lengths of the edges ending in leaves. As remarked in [3], to

include these lengths, we should consider the product space Tn × Rn
+ and the

shortest distances between the trees in this space, which we will denote dl(T1, T2).

We can consider all the pendant edges to be common edges in both T1 and T2

in Tn × Rn
+, and thus can apply Lemma 2.3.1 for each such edge. Therefore,

if the length of the edge to leaf i in tree T is |li|T for all 1 ≤ i ≤ n, then

dl(T1, T2) =
√
d(T1, T2)2 +

∑n
i=1 (|li|T1 − |li|T2)

2. This means that mathematically,

the geometry and associated distance of Tn ×Rn
+ is not any more interesting than

the geometry and associated distance of Tn, and thus we restrict ourselves to

d(T1, T2). Biologically, dl is a more significant distance that d, because it uses all

of the information contained in the phylogenetic trees.

18

CHAPTER 3

COMBINATORICS OF PATH SPACES

In this chapter, we use the combinatorics of the tree space to give a succinct

representation of the possible orthant sequences through which the geodesic from

T1 to T2 could pass. The algorithms given in Chapter 5 use this representation

to reduce the number of distance calculations required to compute the geodesic

distance.

The geodesic between two trees, T1 and T2, in Tn lies in some sequence of

orthants having certain properties. We will call any orthant sequence having these

properties a path space. Furthermore, the geodesic lies in some maximal path

space, where the maximal path spaces are those path spaces not contained in

any other path space. We will show that the maximal path spaces are in one-

to-one correspondence with the maximal chains in a certain partially ordered set.

This partially ordered set and another one used in its construction are introduced

in Section 1 of this chapter. Some of their properties are also explored there.

In Section 2, we formally define path spaces, before characterizing the maximal

path spaces. This chapter concludes with the maximal path space correspondence

theorem.

For the remainder of this chapter and in Chapter 4, assume that T1 and T2 are

two trees in Tn with no shared edges. That is, ET1 ∩ ET2 = ∅.

19

3.1 The Incompatibility and Path Partially Ordered Sets

In this section, we will define two partially ordered sets (posets). One of these

will be defined in terms of a preposet, or quasi-ordered set. The definitions of a

partially ordered set and a preposet are given in Section 1.1. The incompatibility

poset depicts the incompatibilities between splits in T1 and T2, while the path

poset represents possible orthant sequences the geodesic could take between the

orthants containing T1 and T2. These partially ordered sets will be defined using

the two following split sets related to split compatibility.

Definition 3.1.1. Let A and B be two sets of mutually compatible splits of type

n, such that A ∩B = ∅. Define the compatibility set of A in B, CB(A), to be the

set of splits in B that are compatible with all the splits in A.

For simplicity, we will use a set of mutually compatible splits and the tree

containing exactly those splits interchangeably in this context. Therefore, for any

set of mutually compatible splits A not contained in the tree T , we will usually

write CT (A) instead of CET
(A). If B and D are two sets of mutually compatible

splits of type n such that B ⊆ D, and T is some other set of mutually compatible

splits of type n such that D ∩ T = ∅, then CT (D) ⊆ CT (B). Intuitively, CT (B) is

the set of splits in T that could be added to T (B), the tree consisting of exactly

the edges inducing the splits in B.

Definition 3.1.2. Let A and B be two sets of mutually compatible splits of type

n, such that A ∩ B = ∅. Define the crossing set of A in B, XB(A), to be the set

containing exactly those splits in B which are incompatible with at least one split

in A.

As with the compatibility set, if A is a set of mutually compatible splits not

20

contained in T , then we may write XT (A) instead of XET
(A). Intuitively, XT (A)

represents the splits which we must drop, or remove, from T in order to add all

the splits in A to the remaining tree. If B is another set of mutually compatible

splits not in T , then the crossing set has the two following properties:

1. if A ⊆ B, then XT (A) ⊆ XT (B) (monotonicity); and

2. CT (A) and XT (A) partition ET (partitioning).

We will now define the incompatibility preposet, and use that to define the

incompatibility poset.

Definition 3.1.3. Let T1 and T2 be two trees in Tn with no common edges. Define

the incompatibility preposet, P̃ (T1, T2), to be the preposet containing the elements

of ET2 , ordered by inclusion of their crossing sets.

So, for any f, f ′ ∈ ET2 , f ≤ f ′ in P̃ (T1, T2) if and only if XT1(f) ⊆ XT1(f
′).

Equivalently, ordering the elements of ET2 by reverse inclusion of their compatibil-

ity sets in T1 gives the same preposet. For any preposet Q and for any x, y ∈ Q,

define x ∼ y if and only if x ≤ y and y ≤ x. One can show that ∼ is an

equivalence relation. In particular, this means that if f ∼ f ′ in P̃ (T1, T2), then

XT1(f) = XT1(f
′). Therefore, all the edges in an equivalence class have the same

crossing set, which we define to the be the crossing set of that equivalence class.

Definition 3.1.4. Let T1 and T2 be two trees in Tn with no common edges. Define

the incompatibility poset, P (T1, T2), to be the equivalence classes defined by ∼ in

the preposet P̃ (T1, T2) ordered by inclusion of their crossing sets.

21

Generally, we will be informal, and treat the incompatibility poset as if it were

the elements of ET2 ordered by inclusion of their crossing sets. When we refer to

two elements of P (T1, T2) being equivalent, we mean that formally they are in the

same equivalence class in the preposet P̃ (T1, T2). An example of an incompatibility

poset is given in Figure 3.1(c).

2

4

3

1

5

e1

e3

e2

0

(a) Tree T1.

1 2 3 4

5f3f2

f1

0

(b) Tree T2.

f2 - {e1, e2, e3}

f3 - {e3}f1 - {e1}

(c) P (T1, T2)

∅

f1 f3

f1f3

f2 = f1f2f3

(d) K(T1, T2)

Figure 3.1: Two trees, their incompatibility poset, and their path poset.

Definition 3.1.5. Let T1 and T2 be two trees in Tn with no common edges. Define

an operator taking subsets in ET2 to subsets in ET2 , such that for any A ⊆ ET2 ,

A 7→ A = {f ∈ ET2 : XT1(f) ⊆ XT1(A)}.

Note that by definition, XT1(A) = XT1(A).

Refer to Section 1.1 for the definition of a closure operator.

Lemma 3.1.6. A 7→ A is a closure operator on ET2.

Proof. This proof follows directly from the definitions. First, for any A ⊆ ET2

and for any f ∈ A, XT1(f) ⊆ XT1(A) by the monotonicity of crossing sets, which

implies A ⊆ Ā. Second, for any A and B such that A ⊆ B ⊆ ET2 and for any

22

f ∈ A, then XT1(f) ⊆ XT1(A) ⊆ XT1(B) by definition of this operator and the

monotonicity of crossing sets. Therefore, f ∈ B, and hence A ⊆ B. Finally, for

any A ⊆ ET2 , A ⊆ A by (1), and hence A ⊆ A by (2). For any f ∈ A, XT1(f) ⊆

XT1(A) = XT1(A), by definition. Therefore, f ∈ A, and hence A = A.

Definition 3.1.7. Define the path poset of T1 to T2, K(T1, T2), to be the closed

sets of ET2 ordered by inclusion.

The path poset is bounded below by ∅, and above by ET2 . It represents the

possible orthant sequences containing the geodesic between T1 and T2, since we

will show that the maximal chains in K(T1, T2) correspond to the maximal path

spaces between T1 and T2. The next section works towards this conclusion, while

the rest of this section gives a partial characterization of K(T1, T2). Among other

things, we show that the path poset is a subposet of the lattice of order ideals of

P (T1, T2), but that it is not necessarily graded. An example of a path poset is

given in Figure 3.1(d). For simplicity, we will often just write the elements of the

set under the closure operator, such as f1f3 instead of {f1, f3}.

Proposition 3.1.8. Let A,B ⊆ ET2. Then in K(T1, T2), A ∧B = A ∩B.

Proof. Since the elements of K(T1, T2) are ordered by inclusion, A∧B is the largest

closed set of ET2 that is contained in A ∩ B. We will now prove that A ∩ B is a

closed set, and hence that A ∧B = A ∩B.

Now A ∩B ⊆ (A ∩B) by definition of closure.

To show the other inclusion, consider any f ∈ A ∩B. Then XT1(f) ⊆ XT1(A∩

B). Since (A∩B) ⊆ A,B, the monotonicity of crossing sets implies that XT1(A∩

B) ⊆ XT1(A), XT1(B), or XT1(A ∩ B) ⊆ XT1(A) ∩ XT1(B). This implies f is in

23

both A and B, which in turn implies f ∈ A ∩ B. Therefore, A ∧ B = A ∩ B as

desired.

Proposition 3.1.9. Let A,B ⊆ ET2. Then in K(T1, T2), A ∨B = A ∪B.

Proof. Since K(T1, T2) is ordered by inclusion, A ∨ B is the smallest closed set

containing both A and B, or A ∪B. Thus for any f ∈ A ∨ B, XT1(f) ⊆ XT1(A ∪

B) = XT1(A) ∪XT1(B). Furthermore,

XT1(A) ∪XT1(B) = XT1(A) ∪XT1(B) = XT1(A ∪B)

by the definition of the closure operator. Thus f ∈ A ∨ B implies XT1(f) ⊆

XT1(A∪B), or f ∈ A ∪B. Analogously, f ∈ A ∪B implies XT1(f) ⊆ XT1(A∪B) =

XT1(A) ∪ XT1(B) = XT1(A ∪ B), as shown above, or f ∈ A ∨ B. Therefore,

A ∨B = (A ∪B).

Since every pair of elements in K(T1, T2) has a meet and a join, the path poset

is a lattice. Recall that an order ideal and the lattice of order ideals were defined

in Section 1.1.

Lemma 3.1.10. Every closed set A ⊆ ET2 is an order ideal in P (T1, T2).

Proof. For any A ⊆ ET2 , for every f ∈ A and f ′ ≤ f in P (T1, T2), XT1(f
′) ⊆

XT1(f) ⊆ XT1(A), by definition of P (T1, T2) and the closure. This implies f ′ ∈ A.

Hence A is an order ideal.

Proposition 3.1.11. K(T1, T2) is isomorphic to a subposet of the lattice of order

ideals of P (T1, T2).

Proof. This follows directly from Lemma 3.1.10, since K(T1, T2) and the lattice of

order ideals of P (T1, T2) are both ordered by inclusion.

24

Although the path poset is a lattice, it is not necessarily graded. Figure 3.2(d)

gives an example of such a path poset.

3

1

4

2

e1

e2

0

7

6e4

e3

5

e3

(a) Tree T1.

4

3

5

2f3

f1

0

6 7

f4

f2 1

f5

(b) Tree T2.

f3 - {e1, e2}

f5 - {e2, e3,

e4, e5}

f4 - {e2, e3, e4} f1 - {e1, e3}

f2 - {e1, e3, e4}

(c) Incompatibility poset P (T1, T2).

f̄1

∅

f̄4 f̄3

f1f3

f2f4 = f3f4 = f2f3

f̄2f̄5

ET2

(d) Path poset K(T1, T2).

Figure 3.2: Two trees, their incompatibility poset, and their ungraded path
poset.

3.2 Path Spaces

In this section, we will introduce path spaces, which are sequences of orthants

connecting the orthant containing T1 and the orthant containing T2. The geodesic

is contained in a path space. Next we will characterize all maximal path spaces,

which are those path spaces not contained in any other path space. Finally, we

25

show that the maximal path spaces are in one-to-one correspondence with the

maximal chains in K(T1, T2).

Definition 3.2.1. For trees T1 and T2 with no common edges, let ET1 = E0 ⊃

E1 ⊃ ... ⊃ Ek−1 ⊃ Ek = ∅, and ∅ = F0 ⊂ F1 ⊂ ... ⊂ Fk−1 ⊂ Fk = ET2 be sets of

edges such that Ei and Fi are compatible for all 0 ≤ i ≤ k. Then ∪k
i=0O(Ei ∪ Fi)

is a path space between T1 and T2.

Note that in the definition of a path space, the inclusions are strict. A path

space is a subspace of Tn consisting of the closed orthants corresponding to the

trees with interior edges Ei ∪ Fi for all 0 ≤ i ≤ k. To simplify notation, we will

use Oi = O(Ei ∪ Fi) and O′i = O(E ′i ∪ F ′i). Then the notation for a path space

S = ∪k
i=0O(Ei ∪Fi) becomes S = ∪k

i=0Oi. The intersection of the orthants Oi and

Oi+1 is the orthant O(Ei+1∪Fi). If we think of the ith step as the one transforming

the tree with interior edges Ei−1 ∪ Fi−1 into the tree with interior edges Ei ∪ Fi,

then at this step we remove the edges Ei−1\Ei and add the edges Fi\Fi−1.

A path space is maximal if it is not contained in any other path space. Since

[3, Proposition 4.1] tells us that the geodesic is contained in some path space, it

must also be contained in some maximal path space. The remainder of this section

progresses towards the conclusion that the maximal path spaces are in one-to-one

correspondence with the maximal chains in the path poset.

First, we characterize maximal path spaces using compatibility of edges.

Theorem 3.2.2. The maximal path spaces are exactly those path spaces ∪k
i=0Oi

such that:

1. for all 0 ≤ i ≤ k, if e ∈ ET1 is compatible with all edges in Fi, then e ∈ Ei.

Equivalently, Ei = CT1(Fi).

26

2. for all 0 ≤ i ≤ k, if f ∈ ET2 is compatible with all edges in Ei, then f ∈ Fi.

Equivalently, Fi = CT2(Ei).

3. for all 1 ≤ i ≤ k, the edges in Fi\Fi−1 are minimal and equivalent elements

in the incompatibility poset P (T (Ei−1), T (ET2\Fi−1))

For the third condition, recall that formally, we defined the elements of the

incompatibility poset P (T (Ei−1), T (ET2\Fi−1)) to be the equivalence classes in

the pre-poset P̃ (T (Ei−1), T (ET2\Fi−1)). Furthermore, specifying informally that

the edges Fi\Fi−1 are equivalent means that, formally, these edges are in the same

equivalence class in P̃ (T (Ei−1), T (ET2\Fi−1)). Refer to Section 1.1, Definition 3.1.3

and Definition 3.1.4 for more details.

Intuitively, this characterization of maximal path spaces ensures that each or-

thant in the path space has as large a dimension as possible. We do this by, at

each step, choosing to add in some edges F that are incompatible with a minimal

subset of the remaining edges, Ei−1 (Condition 3). We drop exactly the subset of

edges in Ei−1 that are incompatible with F (Condition 1) and add any other edges

from T2 that we can without dropping additional edges from T1 (Condition 2).

Notice that Conditions 2 and 3 imply that if f ∈ Fi\Fi−1, then any other edge f ′

equivalent with f is also in Fi\Fi−1, and these are precisely the edges in Fi\Fi−1.

In contrast, an arbitrary path space has Ei ⊆ CT1(Fi) and Fi ⊆ CT2(Ei), but not

necessarily equality.

Before giving a formal proof of Theorem 3.2.2, we relax the conditions of a path

space to define a relaxed path space and then show that a relaxed path space is

always also a path space.

Definition 3.2.3. For trees T1 and T2 with no common edges, let ET1 = E0 ⊇

E1 ⊇ ... ⊇ Ek−1 ⊇ Ek = ∅, and ∅ = F0 ⊆ F1 ⊆ ... ⊆ Fk−1 ⊆ Fk = ET2 be sets

27

of edges such that Ei and Fi are compatible for all 0 ≤ i ≤ k. Then ∪k
i=0Oi is a

relaxed path space between T1 and T2.

Notice that the only difference between a relaxed path space and a path space

is that the inclusions do not have to be strict. We now show that any relaxed path

space can be expressed as a path space.

Lemma 3.2.4. Let S = ∪k
i=0Oi be a relaxed path space. Then S is also a path

space.

Proof. If S = ∪k
i=0Oi is a relaxed path space, then one of the following cases holds:

• Case 1: For some 0 ≤ j < k, Ej = Ej+1 and Fj = Fj+1.

Then Oj = Oj+1, and so S =
(
∪j−1

i=0Oi

)
∪
(
∪k

i=j+1Oi

)
.

• Case 2: For some 0 ≤ j < k, Ej ⊃ Ej+1 and Fj = Fj+1.

Then Oj ⊃ Oj+1, and so S =
(
∪j

i=0Oi

)
∪
(
∪k

i=j+2Oi

)
.

• Case 3: For some 0 ≤ j < k, Ej = Ej+1 and Fj ⊂ Fj+1.

Then Oj ⊂ Oj+1, and so S =
(
∪j−1

i=0Oi

)
∪
(
∪k

i=j+1Oi

)
.

This implies that if S is a relaxed path space, then for some 0 ≤ i ≤ k, we can

remove Ei and Fi from the sequences of supersets and subsets without changing

the orthants in Tn specified by S. Reindex the remaining supersets and subsets in

the sequences so that their indices are consecutive from 0 to k − 1. Redefine k to

be k− 1. While one of the above three cases still holds, repeat this process. Since

0 ≤ k < ∞ and we reduce k by one at each step, we cannot repeat this process

indefinitely. Therefore, for some k, Cases 1, 2, and 3 will not hold for S, and so for

all 0 ≤ j < k, Ej ⊃ Ej+1 and Fj ⊂ Fj+1. This implies that S is a path space.

28

We now give a formal proof of Theorem 3.2.2.

Proof of Theorem 3.2.2. LetM be the set of path spaces described in the theorem.

We will first show, by contradiction, that all path spaces in M are maximal.

Suppose not. Then there exists some M = ∪k
i=0Oi ∈ M that is strictly contained

in the path space S ′ = ∪k′
i=0O′i. Now suppose the j-th orthant of M is contained

in the l-th orthant of S ′, or Oj ⊂ O′l. Since T1 and T2 have no edges in common,

Ej ∩ F ′l = Fj ∩ E ′l = ∅. This implies that Ej ⊆ E ′l and Fj ⊆ F ′l .

Then F ′l ⊆ CT2(E
′
l) ⊆ CT2(Ej) = Fj, where the last equality follows from

Condition 2 on the path spaces in M. Hence, F ′l = Fj. This implies E ′l ⊆

CT1(F
′
l) = CT1(Fj) = Ej, where the last equality follows from Condition 1. There-

fore, E ′l = Ej, and hence Oj = O′l.

Therefore, no orthant in S ′ can strictly contain an orthant from M , and so S ′ is

exactly the orthants forming M as well as at least one other orthant. Let j be the

smallest index such that the orthant Oj−1 is in M and S ′, but O′j,O′j+1, ...,O′j+l−1

are not in M and Oj = O′j+l. Since O′j is an orthant distinct from those in

M , Ej−1 = E ′j−1 ⊃ E ′j ⊃ E ′j+l = Ej and Fj−1 = F ′j−1 ⊂ F ′j ⊂ F ′j+l = Fj.

The crossing set in Ej−1 of the edges added as we transition from Oj−1 to O′j is

contained in the set of edges dropped at this transition, which are Ej−1\E ′j. That

is XEj−1
(F ′j\Fj−1) ⊆ Ej−1\E ′j ⊂ Ej−1\Ej. But Conditions 1 and 3 imply that the

crossing set of any element f ∈ Fj\Fj−1 is exactly the edges dropped at the j-th

step, or XEj−1
(f) = Ej−1\Ej. In particular, for every f ∈ F ′j\Fj−1 ⊂ Fj\Fj−1, we

have XEj−1
(f) = Ej−1\Ej. This implies that XEj−1

(F ′j\Fj−1) = Ej−1\Ej, which

contradicts the strict inclusion that we just showed. Therefore, no path space in

M is contained in another path space.

29

Let S = ∪k
i=0Oi be some path space that is not in M. We will now prove that

S is contained in another path space, S ′, and hence is not maximal.

Since S /∈M, at least one of the three conditions does not hold.

• Case 1: There exists a 0 ≤ j ≤ k such that E ′ = CT1(Fj)\Ej is not empty.

That is, Condition 1 of Theorem 3.2.2 does not hold.

In this case, the edges E ′ could be dropped at the (j − 1)-th step instead of

an earlier one. We will now construct a space where this happens, and show

that it is a path space. Define S ′ = ∪k
i=0O′i, where

O′i =

Oi +O(E ′) if 0 ≤ i ≤ j

Oi if j < i ≤ k

Since Oi ⊆ O′i for all i 6= j and Oj ⊂ Oj + O(E ′), we have S ⊂ S ′. It

remains to show that S ′ is a path space. By definition, E ′ is compatible with

Fj ⊃ Fj−1 ⊃ ... ⊃ F0, so E ′i and F ′i = Fi are compatible for all 0 ≤ i ≤ j.

The orthants remain unchanged for j < i ≤ k. Also, since

ET1 = (E0 ∪ E ′) ⊇ (E1 ∪ E ′) ⊇ ... ⊇ (Ej ∪ E ′) ⊃ Ej+1 ⊃ ... ⊃ Ek = ∅,

then we have

ET1 = E ′0 ⊇ E ′1 ⊇ ... ⊇ E ′j ⊃ ... ⊃ E ′k = ∅.

Then S ′ is a relaxed path space, and hence a path space by Lemma 3.2.4.

Therefore, S is strictly contained in the path space S ′, and is not a maximal

path space.

• Case 2: There exists 0 ≤ j ≤ k such that F ′ = CT2(Ej)\Fj is not empty.

That is, Condition 2 of Theorem 3.2.2 does not hold.

In this case, the edges F ′ could be added to the tree at the j-th step, instead

30

of a later step. We will now construct a space where this happens, and show

that it is a path space. Define S ′ = ∪k
i=0O′i, where

O′i =

Oi if 0 ≤ i < j

Oi +O(F ′) if j ≤ i ≤ k

Since Oi ⊆ O′i for all i 6= j and Oj ⊂ Oj + O(F ′), we have S ⊂ S ′. It

remains to show that S ′ is a path space. By definition, F ′ is compatible with

Ej ⊃ Ej+1 ⊃ ... ⊃ Ek, so F ′i and E ′i = Ei are compatible for all i ≥ j. The

orthants remained unchanged for 0 ≤ i < j. Since F0 ⊂ F1 ⊂ ...Fj−1 ⊂

(Fj ∪ F ′) ⊆ (Fj−1 ∪ F ′) ⊆ ... ⊆ (Fk ∪ F ′), we have F ′0 ⊆ F ′1 ⊆ ... ⊆ Fk. Then

S ′ is a relaxed path space, and hence a path space by Lemma 3.2.4. Thus,

S is not a maximal path space.

• Case 3: Neither Case 1 nor Case 2 holds, and, for some 1 ≤ j ≤ k, there

exists f ∈ Fj\Fj−1 such that g < f in P (T (Ej−1), T (ET2\Fj−1)) for some

minimal element g in P (T (Ej−1), T (ET2\Fj−1)). That is, Conditions 1 and

2 of Theorem 3.2.2 hold, but Condition 3 does not hold. In this case, we

could insert a step in which we add edge g, but not f , which we add during

the next step. The corresponding space contains one more distinct orthant

than S does, and we will now construct it and show that it is a path space.

Define S ′ = ∪k+1
i=0O′i, where

O′i =

Oi if 0 ≤ i < j

O
((
Ei−1\XEi−1

(g)
)
∪ Fi−1 ∪ g

)
if i =j

Oi−1 if j < i ≤ k − 1

We will first show that O′j is neither contained in nor contains any orthant

from S. We must have XEj−1
(g) 6= ∅, or else g ∈ CT2(Ej−1)\Fj−1, im-

plying Case 2 holds, which is a contradiction. This implies that Ej−1 ⊃

31

Ej−1\XEj−1
(g), or E ′j−1 ⊃ E ′j. Since g < f in P (T (Ej−1), T (ET2\Fj−1)), we

have that XEj−1
(g) ⊂ XEj−1

(f). To add f at step j, we must drop any edges

in Ej−1 that are incompatible with f , which implies XEj−1
(f) ⊆ Ej−1\Ej.

This, along with the previous statement, implies that XEj−1
(g) ⊂ Ej−1\Ej.

In turn, this implies that Ej ⊂ Ej−1\XEj−1
(g), or E ′j+1 ⊂ E ′j. Therefore, we

have shown that E ′j−1 ⊃ E ′j ⊃ E ′j+1, as desired.

Since g ∈ ET2\Fj−1, we have that F ′j−1 = Fj−1 ⊂ Fj−1 ∪ g = F ′j , and hence

it remains to show that F ′j ⊂ F ′j+1. First, we will show that g ∈ Fj. Since

g < f ,

XEj−1
(g) ⊂ XEj−1

(f) ⊆ XEj−1
(Fj\Fj−1) ⊆ XEj−1

(Fj) ⊆ Ej−1\Ej.

This implies that g ∈ CT2(Ej) = Fj by Condition 2. Next we will show that

F ′j = Fj−1 ∪ g ⊆ Fj = F ′j+1. For any f ′ ∈ Fj−1 ∪ g,

XT1(f
′) ⊆ XT1(Fj−1) ∪XT1(g) ⊆ XT1(Fj)

by definition of closure and g ∈ Fj. This implies that XT1(f
′)∩CT1(Fj) = ∅,

or XT1(f
′) ∩ Ej = ∅ by Condition 1. Then f ′ ∈ CT1(Ej) = Fj, as desired.

Furthermore, XEj−1
(Fj−1 ∪ g) = XEj−1

(Fj−1) ∪ XEj−1
(g) = ∅ ∪ XEj−1

(g) ⊂

XEj−1
(f), and thus f /∈ Fj−1 ∪ g by definition of the closure operator. So

f ∈ Fj\Fj−1 ∪ g, and hence F ′j ⊂ F ′j+1. Therefore, F ′j−1 ⊂ F ′j ⊂ Fj+1.

It remains to show that the edges in O′j are mutually compatible. By

the definitions, CT1(Fj−1 ∪ g) = CT1(Fj−1) ∩ CT1(g) ⊇ Ej−1\XT1(g) ⊇

Ej−1\XEj−1
(g), and hence the edges of O′j are mutually compatible. All

other requirements follow from the facts that O′i = Oi if 0 ≤ i < j and

O′i = Oi−1 if j < i ≤ k, and that S is a path space. Therefore, S ′ is a path

space that strictly contains S, so S is not maximal.

32

Corollary 3.2.5. In a maximal path space ∪k
i=0Oi, for all 1 ≤ i ≤ k, each edge in

Fi\Fi−1 is incompatible with each edge in Ei−1\Ei.

Proof. We need to show that XEi−1
(f) = Ei−1\Ei for any f ∈ Fi\Fi−1. Condition 3

of Theorem 3.2.2 implies XEi−1
(f) = XEi−1

(f ′) for any f, f ′ ∈ Fi\Fi−1. Condition

1 implies Ei = CT2(Fi), which means that the edges dropped at the i-th step are

exactly those edges in Ei−1 that are incompatible with edges in Fi\Fi−1. Combining

this with the first implication, we see that XEi−1
(f) = Ei−1\Ei for all edges f ∈

Fi\Fi−1, as desired.

Theorem 3.2.6. There is a 1-1 correspondence between maximal path spaces from

T1 to T2 and maximal chains in K(T1, T2).

The correspondence between elements of K(T1, T2) and orthants in Tn is given

by g(A) = O(E ∪ F), where E = CT1(A) and F = A for any A ∈ K(T1, T2). The

correspondence between maximal chains in K(T1, T2) and maximal path spaces

from T1 to T2 is given by the map h(A0 < A1 < ... < Ak) = ∪k
i=0g(Ai), where

A0 < A1 < ... < Ak is a maximal chain. The fact that Ai < Ai+1 is a cover relation

in a maximal chain ensures that ∪k
i=0g(Ai) is a maximal path space.

Proof of Theorem 3.2.6. We first define the map g from the elements of K(T1, T2),

which are closed sets of ET2 , to orthants in Tn. Let g : K(T1, T2) → Tn be given

by g(A) = O(CT1(A) ∪ A) for any A ∈ K(T1, T2). Notice that g is one-to-one,

because if A 6= A′, then XT1(A) 6= XT1(A
′), and hence CT1(A) 6= CT1(A

′) by the

partitioning property of crossing sets. Define

h(A0 < A1 < ... < Ak) = ∪k
i=0g(Ai),

33

for any chain A0 < ... < Ak in K(T1, T2). We will now show that h maps maximal

chains in K(T1, T2) to maximal path spaces.

Let ∅ = A0 < A1 < ... < Ak = ET2 be a maximal chain in K(T1, T2). For every

0 ≤ i ≤ k, let Fi = Ai and Ei = CT1(Ai). We now show that ∪k
i=0Oi is a path space.

Since Fi = Ai for all i and K(T1, T2) is the closed sets of ET2 ordered by inclusion,

then ∅ = F0 ⊂ F1 ⊂ ... ⊂ Fk = E(T2). We now show that the Ei’s have the

desired properties. First, E0 = CT1(A0) = CT1(∅) = ET1 . Also, Ek = CT1(Ak) =

CT1(ET2) = ∅ since every edge in T1 is incompatible with at least one edge in T2,

otherwise a tree could contain more than n−2 edges, which is a contradiction. For

all 0 ≤ i < k, Ai ⊂ Ai+1, so XT1(Ai) ⊆ XT1(Ai+1). If XT1(Ai) = XT1(Ai+1), then

Ai+1 ⊆ Āi = Ai by definition of the closure operator and since Ai is a closed set

for all i. This is a contradiction, and therefore, XT1(Ai) ⊂ XT1(Ai+1). This implies

Ei = CT1(Ai) ⊃ CT1(Ai+1) = Ei+1, and hence ET1 = E0 ⊃ E1 ⊃ ... ⊃ Ek = ∅.

Finally, for all 0 ≤ i ≤ k, Ei is compatible with Fi by definition. Therefore,

∪k
i=0O(Ei ∪ Fi) is a path space.

We will now show that ∪k
i=0Oi satisfies the 3 conditions of Theorem 3.2.2, and

hence is maximal. Since Ei = CT1(Fi), Condition 1 is met. Clearly, Fi ⊆ CT2(Ei).

For any f ∈ CT2(Ei), XT1(f) ∩ Ei = ∅. Since XT1(Ai) and CT1(Ai) partition ET1

and Ei = CT1(Ai), then XT1(f) ⊆ XT1(Ai). So by definition f ∈ Āi = Ai = Fi.

Therefore, Fi ⊇ CT2(Ei) as well, and hence Condition 2 holds.

To show Condition 3, suppose that for some 1 ≤ i ≤ k there exists f ∈

Fi\Fi−1 such that g < f in P (T (Ei−1), T (ET2\Fi−1)) for some minimal element g

in P (T (Ei−1), T (ET2\Fi−1)). Then XT1(g) ⊂ XT1(f), so f /∈ Fi−1 ∪ g. This implies

Ai−1 = Fi−1 < Fi−1 ∪ g < Fi−1 ∪ g ∪ f ≤ Fi = Ai,

and hence Ai < Ai−1 is not a cover relation, which is a contradiction. Therefore,

34

Condition 3 also holds, and ∪k
i=0Oi is a maximal path space.

So as claimed, if A0 < A1 < ... < Ak is a maximal chain, then h(A0 < ... < Ak)

is a maximal path space. It remains to show that h is a bijection. For any maximal

path space ∪k
i=0Oi, Fi < Fi+1 is a cover relation for all 0 ≤ i < k since for any

f ∈ Fi+1\Fi, Fi ∪ f = Fi+1 by Condition 3 of Theorem 3.2.2. This implies that

∅ = F0 < F1 < ... < Fk = E(T2) is a maximal chain in K(T1, T2) such that

h(F0 < F1 < ... < Fk) = ∪k
i=0Oi, and hence h is onto. We have that h is one-

to-one, because g is one-to-one. Therefore, h is a bijection, which establishes the

correspondence.

This theorem also suggests a method for constructing the path poset. For any

element A in K(T1, T2), let OA = O(CT1(A) ∪A) be the corresponding orthant in

Tn, as given in the above proof. Each maximal chain in K(T1, T2) that contains A

corresponds to a maximal path space in Tn that contains OA. This implies that

we can find the elements that cover A by finding the orthants that follow OA in

these maximal path spaces. Let F be a set of splits that are minimal, equivalent

elements in P (T (CT1(A)), T (ET2\A)). Then by Condition 3 of Theorem 3.2.2,

F is the set of splits added as we transition from OA to the next orthant, and

by Corollary 3.2.5 E = XCT1
(A)(F) is the set of splits dropped. Consequently,

O ((CT1(A)\E) ∪ (A ∪ F)) = O (CT1(A ∪ F) ∪ (A ∪ F)) is an orthant that follows

OA in at least one maximal path space, and hence A ∪ F covers A in K(T1, T2).

Therefore, we can start constructing K(T1, T2) by using P (T1, T2) to find all the

elements that cover ∅. For each such element A, derive P (T (CT1(A)), T (ET2\A))

from P (T1, T2), and use it to deduce the elements covering A. Repeat this process

to generate K(T1, T2).

For example, in Figure 3.1(c), P (T1, T2) has two minimal elements, f1 and

35

f3. This implies that in K(T1, T2), ∅ is covered by exactly two elements, f1 and

f3. To find the covers of f1, we must find the minimal elements of the poset

P (T ({e2, e3}), T ({f2, f3}). The only minimal element is f3, and hence the only

cover of f1 is f1 ∪ f3 = f1f3. Similarly, to find the covers of f3, we must find

the minimal elements of the poset P (T ({e1, e2}), T ({f1, f2}). The only minimal

element is f1, and hence the only cover of f3 is also f1 ∪ f3 = f1, f3. Finally, we

find the cover of f1, f3 by finding the minimal element of P (T (e2), T (f2)). This is

e2, and hence gives us the element f2 ∪ f1, f3 = f2 = ET2 as the cover.

We have shown that the maximal path spaces between T1 and T2 are in one-to-

one correspondence with the maximal chains in K(T1, T2). To count the number

of maximal path spaces, we can count the number of maximal chains in K(T1, T2).

This number is bounded by the number of maximal chains in J(P), the lattice

of order ideals. Stanley [48] showed that enumerating maximal chains in J(P) is

equivalent to enumerating lattice paths in a particular Euclidean space. If Q and

R are two posets, then Q+R is the poset that is the disjoint union of Q and R. If

every element of P is contained in Q = Q1 +Q2 + ...+Ql, where Qi is a chain in P

and |Qi| = ni for all i, then the number of maximal chains in J(P) is bounded by

the number of maximal chains in J(Q), which is
(

n1+n2+...+nl

n1,n2,...,nl

)
= n!

n1!n2!···nl!
. Since

there are certain partition posets P (T1, T2) such that J(P) = K(T1, T2), this bound

can be tight.

For example, for any even positive integer n, consider the trees T1 and T2 in

Figures 3.3(a) and 3.3(b), which each have some even number of leaves n. The

incompatibility poset P (T1, T2) is given in Figure 3.3(c), and from it, we can see

that each order ideal is a distinct closed set. Thus J(P) = K(T1, T2). Let W be

the set of minimal elements. Then |W | = n−2
2

, and we can select these minimal

36

0

1 32
5
4

6

nn-1
n-2n-3

e1 e2
e3 e4

en-4
en-2

en-3

(a) Tree T1.

0

1
2

6

3

7

n

n-1n-2

4 5

f1
f3

fn-3

f2
f4

f6
fn-2

(b) Tree T2.

f1-{e2}

f2-{e1, e2}

f3-{e4} fn-2-{en-2}

f4-
{e2, e3, e4}

f6-
{e4, e5, e6}

fn-2-
{en-2, en-3, en-4}

(c) Incompatibility poset P (T1, T2).

Figure 3.3: A family of trees whose path poset is exponential in the number
of leaves.

elements in any order to begin constructing a maximal path space. In particular, if

we select a minimal element, the remaining minimal elements will still be minimal

elements in the new incompatibility poset. Therefore, each subset of W is a distinct

closed set, and hence an element in K(T1, T2). This implies there are at least 2
n−2

2

element in K(T1, T2). Thus the size of an arbitrary path poset can be exponential

in the number of leaves, and hence contain an exponential number of maximal

chains. However, we will show in Chapter 5 that, in general, we do not need to

consider each maximal chain.

37

CHAPTER 4

GEODESICS IN PATH SPACES

Given a path space, this chapter shows how to find the locally shortest path, or

path space geodesic, between T1 and T2 within that space in linear time. We do

this by transforming the problem into two equivalent problems in Euclidean space.

The first equivalent problem is the Euclidean shortest-path problem with obstacles

([33] and references), and the second is the touring problem [11]. In the Euclidean

shortest-path problem with obstacles, we are given two points in a Euclidean space

containing obstacles, and wish to find the shortest path between the points that

does not intersect any of the obstacles. Often conditions are put on the obstacles,

such as requiring them to be convex polytopes. The touring problem asks for

the shortest path through Euclidean space that visits a sequence of regions in the

prescribed order. The path is considered to have visited a region if it intersects

some point in that region.

4.1 Two Equivalent Euclidean Space Problems

The problem of finding the locally shortest path between two trees T1 and T2 in a

path space can be transformed into the problem of finding the shortest path be-

tween two points within a specific subset of Euclidean space. In turn, this problem

can be viewed as either an obstacle-avoiding Euclidean shortest-path problem, or

as a touring problem. Both of these problems have been studied within computa-

tional geometry.

Definition 4.1.1. Given two trees T1 and T2 with no common edges and a path

space S = ∪k
i=0O(Ei ∪ Fi) between them, define the path space geodesic between

38

T1 and T2 through the path space S to be the shortest path between T1 and T2

contained in S. Let dS(T1, T2) be the length of this path.

We will now show that the path space geodesic between T1 and T2 through a

path space containing k + 1 orthants is contained in a subspace of Tn isometric

to a subset of a lower or equal dimension Euclidean space, V (Rk). V (Rk) is the

subset of Rk consisting of the non-negative orthant, the non-positive orthant, and

for all 1 ≤ i < k, the orthant whose first i coordinates are non-positive and the

remaining coordinates are non-negative. For 0 ≤ i ≤ k, let Vi be the i-th orthant

in V (Rk), so that

Vi = {(x1, ..., xk) ∈ Rk : xj ≤ 0 if j ≤ i and xj ≥ 0 if j > i}.

Then V0 is the non-negative orthant, and Vk is the non-positive orthant.

We will need the following properties of path space geodesics, and hence also

geodesics. Analogous properties were proven by Vogtmann [55] for geodesics.

Proposition 4.1.2. The path space geodesic is a straight line in each orthant that

it traverses.

Proof. If this were not the case, we could replace the path within each orthant

with a straight line, which enters and exits the orthant at the same points as the

original path, to get a shorter path.

Proposition 4.1.3. Travelling along the path space geodesic, the length of each

non-zero edge changes at a constant rate with respect to geodesic arc length.

Proof. By Proposition 4.1.2, the path space geodesic passes through each orthant

as a line. Thus each edge must shrink or grow at a constant rate with respect

39

to the other edges within each orthant. These rates can differ between orthants.

Consequently, the path space geodesic only bends at the boundary between two

or more orthants. So it suffices to consider the situation in which the geodesic

goes through the interiors of the two adjacent orthants Oi = O(Ei ∪ Fi) and

Oi+1 = O(Ei+1 ∪Fi+1), and bends in the intersection of these two orthants. Let a

be the point at which the geodesic enters Oi, and let b be the point at which the

geodesic leaves Oi+1.

The edges Ei\Ei+1 are dropped and the edges Fi+1\Fi are added as the geodesic

moves from Oi to Oi+1. This implies the edges Ei\Ei+1 and Fi+1\Fi all have length

0 in the intersection O(Ei+1 ∪ Fi).

Letm = |Ei+1∪Fi|, the dimension ofOi∩Oi+1. Consider the subset S = Ha∪Hb

of Oi ∪ Oi+1, where Ha is the affine hull of a ∪ (Oi ∩ Oi+1) intersected with Oi

and Hb is the affine hull of b ∪ (Oi ∩ Oi+1) intersected with Oi+1. This subset

can be isometrically mapped into two orthants in Rm+1 as follows. For each tree

T ∈ S ∩ Oi, let the first m − 1 coordinates be given by the projection of T onto

Oi∩Oi+1. Let the m-th coordinate be the length of the projection of T orthogonal

to Oi∩Oi+1. More specifically, let the edges in Ei+1∪Fi be e1, e2, ..., em. Then we

map T to the point (|e1|T , |e2|T ,, |em|T , s) in Rm+1, where s =
√∑

e∈Ei\Ei+1
|e|2T .

Similarly, for each tree T ∈ S ∩ Oi+1, let the first m − 1 coordinates be given by

the projection of T onto Oi∩Oi+1. Let the m-th coordinate be the negative of the

length of the projection of T orthogonal to Oi ∩ Oi+1. In other words, we map T

to the point (|e1|T , |e2|T ,, |em|T ,−s) in Rm+1, where s =
√∑

e∈Fi+1\Fi
|e|2T .

We have mapped S into Euclidean space, and hence the shortest path between

the image of a and the image of b is the straight line between them. Along this

line, each edge e1, ..., em changes at the same rate with respect to the geodesic arc

40

length. Since we can make this argument for each pair of consecutive orthants, we

have proven this proposition.

Corollary 4.1.4. Let T be a tree on the path space geodesic between T1 and T2

through the path space Q = ∪k
i=0O(Ei∪Fi). Suppose T ∈ Oi. Then if 1 ≤ j ≤ i, we

have |f1|T
|f1|T2

= |f2|T
|f2|T2

for any f1, f2 ∈ Fj\Fj−1, and if i < j ≤ k, we have |e1|T
|e1|T1

= |e2|T
|e2|T1

for any e1, e2 ∈ Ej−1\Ej.

Proof. Proposition 4.1.3 implies that the length of each edge in T1 shrinks at a

constant rate until it reaches 0 as we travel along the path space geodesic, and the

length of each edge in T2 grows at a constant rate from 0 starting at some point

along the path space geodesic. Since for any 1 ≤ j ≤ k, the edges Ej−1\Ej reach

length 0 at the same point along the path space geodesic, each edge in Ej−1\Ej

must be changing at a constant rate with respect to the lengths of the other edges

in Ej−1\Ej. Similarly, since the edges Fj\Fj−1 start growing from 0 at the same

point along the path space geodesic, each edge in Fj\Fj−1 is changing at a constant

rate with respect to the lengths of the other edges in Fj\Fj−1.

These propositions about the path space geodesic imply that once we decide

when such a set of edges will be 0, we know what length each edge must be at

any given point on the geodesic. This implies that we have one degree of freedom

for each set of edges dropped, or alternatively for each set of edges added, which

occurs at each transition between orthants. For this reason, the path space geodesic

lies in a space of dimension equal to the number of transitions between orthants.

Therefore, each path space geodesic lives in a space isometric to V (Rk). For

example, in Figure 4.1(a), the path space Q consists of the orthants {e1, e2, e3},

{f1, f2, e3}, and {f1, f2, f3}. We apply Theorem 4.1.5 to see that the geodesic

through Q is contained in the shaded region of R2 shown in Figure 4.1(b).

41

B1

A1

e3

(
√

e2
1

+ e2
2
, e3)

(−
√

f2
1

+ f2
2
,−f3) (−

√

f2
1

+ f2
2
, e3)

B1

A1

(e1,e2,e3)

(-f1,-f2,e3)

e2

e1

e3

(-f1,-f2,-f3)

(0,0,e3)

(-f1,-f2,0)

= geodesic

f3 f2

f1

(a) Part of T5.

B1

A1

e3

(
√

e2
1

+ e2
2
, e3)

(−
√

f2
1

+ f2
2
,−f3) (−

√

f2
1

+ f2
2
, e3)

B1

A1

(e1,e2,e3)

(-f1,-f2,e3)

e2

e1

e3

(-f1,-f2,-f3)

(0,0,e3)

(-f1,-f2,0)

= geodesic

f3 f2

f1

(b) The problem isometrically mapped to
V (R2).

Figure 4.1: An isometric map between a path space and V (R2).

Theorem 4.1.5. Let Q = ∪k
i=0O(Ei ∪ Fi) be a path space between T1 and T2, two

trees in Tn with no common edges. Then the path space geodesic between T1 and

T2 through Q is contained in a space isometric to V (Rk).

Proof. For all 1 ≤ j ≤ k, let Aj = Ej−1\Ej and let Bj = Fj\Fj−1. Then {Aj}kj=1

and {Bj}kj=1 are partitions of ET1 and ET2 respectively. Recall that Oi = O(Ei∪Fi)

for 0 ≤ i ≤ n. By Corollary 4.1.4, any tree T ′ ∈ Q on the path space geodesic

satisfies the following property for each 1 ≤ j ≤ k:

1. if T ′ ∈ Oi and j ≤ i, then there exists a cj = cj(T
′) ≥ 0, depending on T ′,

such that
|f |T ′
|f |T2

= cj for all f ∈ Bj,

2. if T ′ ∈ Oi and j > i, then there exists a dj = dj(T
′) ≥ 0, depending on T ′,

such that
|e|T ′
|e|T1

= dj for all e ∈ Aj.

42

Let Q′ ⊂ Tn be the set of trees satisfying this property. For all 0 ≤ i ≤ n, define

hi : Q′ ∩ Oi → Vi by

hi(T
′) = hi(T (c1 ·B1 ∪ ... ∪ ci ·Bi ∪ di+1 · Ai+1 ∪ ... ∪ dk · Ak))

= (−c1||B1||, ...,−ci||Bi||, di+1||Ai+1||, ..., dk||Ak||).

We claim that hi is a bijection from Q′ ∩ Oi to the orthant Vi in V (Rk). The

orthant Oi contains trees with N = |B1|+ |B2|+ ...+ |Bi|+ |Ai+1|++ |Ak| edges,

and hence is an N -dimensional orthant. All trees in Oi contain exactly the edges

{B1, ..., Bi, Ai+1, ..., Ak}, so without loss of generality we can assign each edge to a

coordinate axes so that the edges in B1 are assigned to coordinates 1 to |B1|, the

edges in B2 are assigned to coordinates |B1|+1 to |B1|+ |B2|, the edges in Ai+1 are

assigned to the coordinates |B1|+|B2|+...+|Bi|+1 to |B1|+|B2|+...+|Bi|+|Ai+1|,

etc. Let ej be the edge assigned to the j-th coordinate. By abuse of notation, for

all 1 ≤ j ≤ i, let Bj be the N -dimensional vector with a 0 in every coordinate

except those corresponding to the edges in Bj, whose values are the lengths of their

respective edges in T2. Similarly, for all i < j ≤ k, let Aj be the N -dimensional

vector with a 0 in every coordinate except those corresponding to the edges in Aj,

whose values are the lengths of their respective edges in T1. For example, B1 is

the N -dimensional vector (|e1|T2 , |e2|T2 , ..., |e|B1||T2 , 0, ..., 0).

Then Q′ ∩Oi is generated by the vectors
{

B1

‖B1‖ ,
B2

‖B2‖ , ...,
Bi

‖Bi‖
, Ai+1

‖Ai+1‖
, .., Ak

‖Ak‖

}
.

Since these generating vectors are pairwise orthogonal, they are independent, and

hence Q′ ∩ Oi is a k-dimensional orthant contained in Oi. Furthermore, for all

1 ≤ j ≤ i,
Bj

‖Bj‖
corresponds to the tree

T

(
0 ·B1, ..., 0 ·Bj−1,

1

‖Bj‖
·Bj, 0 ·Bj+1, ..., 0 ·Bi, 0 · Ai+1, ..., 0 · Ak

)
,

43

and for all i < j ≤ k,
Aj

‖Aj‖
corresponds to the tree

T

(
0 ·B1, ..., 0 ·Bi, 0 · Ai+1, ..., 0 · Aj−1,

1

‖Aj‖
· Aj, 0 · Aj+1, ..., 0 · Ak

)
.

For all 1 ≤ j ≤ k, let uj be the k-dimensional unit vector with a 1 in the j-th

coordinate. Then for all 1 ≤ j ≤ i,

hi

(
Bj

‖Bj‖

)
= hi

(
T

(
0 ·B1, ..., 0 ·Bj−1,

1

‖Bj‖
·Bj, 0 ·Bj+1, ..., 0 ·Bi, 0 · Ai+1, ..., 0 · Ak

))
= − 1

‖Bj‖
· ‖Bj‖uj

= −uj.

Similarly, for all i < j ≤ k,

hi

(
Aj

‖Aj‖

)
= hi

(
T

(
0 ·B1, ..., 0 ·Bi, 0 · Ai+1, ..., 0 · Aj−1,

1

‖Aj‖
· Aj, 0 · Aj+1, ..., 0 · Ak

))
=

1

‖Aj‖
· ‖Aj‖uj

= uj.

Since the basis of Vi is {−u1, ...,−ui,ui+1, ...,uk}, hi is mapping each basis element

of Q′∩Qi to a unique basis element of Vi. Therefore, hi is a linear transformation,

whose corresponding matrix is the identity matrix. Therefore, hi is a bijection

between Q′∩Qi and Vi for all i. Furthermore, since the determinant of the matrix

of hi is 1, hi is also an isometry. So Q′ is piecewise linearly isometric to V (Rk).

For all 0 ≤ i ≤ n, the inverse of hi is gi : Vi → Q′ defined by

gi(−x1, ...− xi, xi+1, ..., xk) = T ′,

where xj ≥ 0 for all 1 ≤ j ≤ k and T ′ is the tree with edges Ei ∪ Fi with lengths

|xj |
‖Bj‖
· |e|T2 if e ∈ Bj for 1 ≤ j ≤ i and

|xj |
‖Aj‖
· |e|T1 if e ∈ Aj for i < j ≤ k.

44

Notice that if T ′ ∈ Q′ ∩ Oi ∩ Oi+1, then hi(T
′) = hi+1(T

′), since the lengths

of all the edges in Ai+1 and Bi+1 are 0. Therefore, we can define h : Q′ → V (Rk)

to be h(T ′) = hi(T
′) if T ′ ∈ Oi ∩ Q′, and then h is well-defined. We can define

g : V (Rk)→ Q′ by setting

g(−x1, ...− xi, xi+1, ..., xk) = gi(−x1, ...− xi, xi+1, ..., xk),

for all 1 ≤ i ≤ k and for all xj ≥ 0 for all 1 ≤ j ≤ k. Then g is also well-defined

and the inverse of h. So we can map any geodesic q in Q′ into V (Rk) by applying

h to each point on q to get path p. Notice that since each hi and gi is distance

preserving, p is the same length as q. We claim p is a geodesic in V (Rk). To

prove this, suppose not. Then let p′ be the geodesic in V (Rk) between the same

endpoints as path p. Then p′ is strictly shorter than p. Use g to map p′ back to Q′

to get q′. Again distance is preserved, so q′ is strictly shorter than q. But q was

a geodesic, and hence the shortest path between those two endpoints in Q′ so we

have a contradiction. Therefore, the geodesic between T1 and T2 in Q is isometric

to the geodesic between A = (‖A1‖, ..., ‖Ak‖) and B = (−‖B1‖, ...,−‖Bk‖) in

V (Rk).

Thus we have shown that finding the shortest path between two trees within a

path space with k + 1 orthants is equivalent to finding the shortest path between

a point A in the positive orthant and a point B in the negative orthant of V (Rk).

This problem can be transformed into an obstacle-avoiding Euclidean shortest path

problem by letting A and B be points in Rk, and letting the orthants which are

not in V (Rk) be obstacles.

Alternatively, we can formulate this problem as a touring problem. Let

Pi = {(x1, ..., xk) ∈ Rk : xj ≤ 0 if j < i; xj = 0 if j = i; xj ≥ 0 if j > i}

45

for all 1 ≤ i ≤ k. Then Pi is the boundary between the i-th and (i + 1)-st

orthants in V (Rk). This implies that finding a shortest path between A and B in

V (Rk) is equivalent to finding the shortest path from A to B in Rk that passes

through P1, P2, ..., Pk in that order. Since, without loss of generality, each Pi can

be considered to be the finite region bounded by the box with vertices including

the start and end points and containing the origin, this is an k-dimensional version

of the touring polygons problem [11]. In the touring problem, we are looking for

a shortest, ordered path. We find a linear algorithm that solves the problem of

finding the shortest path from A to B in V (Rk) in the next section.

The Euclidean shortest-path problem with obstacles has many applications,

such as robot movement, and hence has a rich history. There are also many

variations on the problem, such as using a different metric or only requiring an

approximation of the shortest distance. See [33] for an extensive survey. The lower

bounds on the obstacle-avoiding Euclidean shortest-path problem in the plane are

O(n + h log h) running time and O(n) space, where n is the number of vertices

in the obstacle polygons and h is the number of holes in the polygonal domain.

Hershberger and Suri [23] have almost achieved those bounds using an algorithm

based on the continuous Dijkstra method with O(n log n) time and O(n log n)

space. Canny and Reif [8] showed that the general Euclidean shortest-path prob-

lem with obstacles is NP-hard in R3, and hence also in higher dimensions. There

has also been a little research on finding the conditions that make the Euclidean

shortest-path problem polynomial in higher dimensions. Notably, [34] showed that

the problem in NP-hard in R3 even when the obstacles are restricted to disjoint

axis-aligned boxes. The touring problem, as introduced in [11], is a more recent

problem. For k disjoint, convex polygons in the plane with n vertices in total, the

touring problem can be solved in O (kn log(n/k)) time. If the polygons are noncon-

46

vex, then the problem is NP-hard [11]. For convex bodies bounded by hyperplanes

or hyperspheres in high-dimensional Euclidean space, [37] gave a polynomial time

solution by formulating the problem as a second order cone problem.

4.2 A Touring Problem and Solution

This section is devoted to solving the problem of finding the geodesic between

A and B in V (Rk), using the equivalent touring problem formulation. We first

establish when the line AB is, in fact, the shortest path. We then introduce the

concept of a locally shortest ordered path, and prove a condition that all such paths

must satisfy. Repeatedly applying this condition gives us the linear algorithm for

finding the shortest, ordered path from A to B.

The following lemma establishes when the geodesic from A to B is a straight

line.

Lemma 4.2.1. Let A = (a1, ..., ak) and B = (−b1, ...,−bk) be points with ai, bi ≥ 0

for all 1 ≤ i ≤ k. Then the line AB passes through the regions P1, P2, ..., Pk in that

order and has distance AB =
√∑k

i=1(ai + bi)2 if and only if a1

b1
≤ a2

b2
≤ ... ≤ ak

bk
.

Proof. Parametrize the line AB with respect to the variable t, so that t = 0 at A

and t = 1 at B, to get (x1, ..., xk) = (a1, ..., ak) + t(−a1 − b1, ...,−ak − bk). AB

intersects Pi when xi = 0, so set xi = 0 and solve for t to find that this intersection

occurs at time ti = ai

ai+bi
. For AB to cross P1, P2, ..., Pk in that order, we need

t1 ≤ t2 ≤ ... ≤ tk or a1

a1+b1
≤ a2

a2+b2
≤ ... ≤ ak

ak+bk
. Since for any 1 ≤ i, j ≤ k, ai

ai+bi
≤

aj

aj+bj
is equivalent to ai

bi
≤ aj

bj
by cross multiplication, we get the desired condition.

In this case, by the Euclidean distance formula, AB =
√∑k

i=1(ai + bi)2.

47

By the equivalence of the problems, a1

b1
≤ a2

b2
≤ ... ≤ ak

bk
is also the condition

that guarantees that AB is contained in V (Rk). In general, we will not have a1

b1
≤

a2

b2
≤ ... ≤ ak

bk
. However, we can keep reducing the problem to lower dimensional

spaces until this is true. More specifically, we will define a locally shortest ordered

path. We will then show that if a1

b1
≤ a2

b2
≤ ... ≤ ak

bk
does not hold, then all locally

shortest ordered paths are in a subspace of Rk isometric to Rk−1. We repeat this

step until the ratios in the new lower dimension space do form a non-descending

sequence. We then show there is only one locally shortest ordered path in this

space, which is thus the globally shortest ordered path. Converting this path back

to the original space solves our problem.

To start, we define a locally shortest ordered path. An ε-neighbourhood of a

path is all points in Rk within ε > 0 of at least one point on that path. A locally

shortest ordered path, q, is a path from A to B which passes through P1, ..., Pk in

that order, and for which there exists some ε > 0 such that there is no shorter path

q′ from A to B contained in the ε-neighbourhood of q that also passes through

P1, ..., Pk in that order. For all i, let pi be the first point at which the locally

shortest ordered path under consideration intersects Pi. The following properties

follow from this definition.

1. For all 1 ≤ i ≤ k − 1, any locally shortest ordered path is a straight line,

possibly of length 0, between pi and pi+1. If not, then we could replace that

segment by the straight line from pi to pi+1 and have a shorter path.

2. For all 1 ≤ i ≤ k, any locally shortest ordered path, q, intersects each Pi at

exactly one point, pi. This follows directly from property 1.

3. For all 1 ≤ i ≤ k, if pi 6= pj for all 1 ≤ j ≤ k, j 6= i, then a locally shortest

ordered path q is a line in the neighbourhood of pi, and does not bend at pi.

48

If not, then we can choose a small enough ball B in Rk around pi such that

the ball does not intersect Pi−1 nor Pi+1. Replace the section of q in B with

a line between where q enters B and where q exits B. This gives a shorter

path.

The following is a corollary to Theorem 4.1.5. If a locally shortest ordered path goes

through Pj∩Pj+1∩...∩Pj+l, then this means that the edges Ej−1\Ej+l = ∪j+l
i=jAi all

shrink to length 0 at the same point on the path, and the edges Fj+l\Fj−1 = ∪j+l
i=jBi

all start growing from length 0 at that same point. As reasoned in the previous

section, this implies that the locally shortest ordered path has only one degree of

freedom with regards to these edges (the point on the path at which these edges all

have length 0) instead of l + 1 degrees of freedom. Therefore, this locally shortest

ordered path exists in a lower dimensional space of Rk.

Corollary 4.2.2. Consider a locally shortest, ordered path from A = (a1, a2, ..., ak)

to B = (−b1,−b2, ...,−bk) through P1, ..., Pk. Let {Mj}mj=1 be any ordered partition

of [k] such that i, l ∈Mj implies pi = pl. Then this path is contained in a subspace

of Rk isometric to V (Rm).

Proof. Suppose i, i+1 are in the same block in partition {Mj}mj=1. Then pi = pi+1,

and so as we travel along the pre-image of the path in tree space, the tree loses

edges Ai and Ai+1 simultaneously, and gains edges Bi and Bi+1 simultaneously.

Hence, this path is in the path space O0 ∪
(
∪m

j=1O
(
(∩i∈Mj

Ei) ∪ (∪i∈Mj
Fi)
))

. By

applying Theorem 4.1.5 we get the desired result.

The following lemma gives a simple constraint on locally shortest ordered paths.

We will apply this constraint inductively to get the globally shortest ordered path.

49

Lemma 4.2.3. Let A = (a1, a2, ..., ak) and B = (−b1,−b2, ...,−bk) with ai, bi ≥ 0

for all 1 ≤ i ≤ k be points in Rk. Consider the locally shortest paths from A to B

that pass through P1, P2, ..., Pk in that order. If a1

b1
≤ a2

b2
≤ ... ≤ ai

bi
> ai+1

bi+1
, then any

such path passes through the intersection of Pi and Pi+1.

We first give a sketch of the proof, followed by the full proof. We assume

pi 6= pi+1 for some locally shortest ordered path, q, and prove this lemma by

contradiction. In the first case, q is a straight line through pi+1. This, along

with a1

b1
≤ a2

b2
≤ ... ≤ ai

bi
and properties of locally shortest ordered paths, implies

that the first i + 1 coordinates of q decrease at constant rates. We can use their

parametrizations with respect to time to show that q passes through Pi before Pi+1

only if ai

bi
< ai+1

bi+1
. In the second case, q bends at pi+1. Since a bend can only occur

when q passes through the intersection of two or more Pi’s, and since pi 6= pi+1, we

have that pi+1 = pi+2 = ... = pi+J for some J ≥ 2. Since the (i+ 2)-nd to (i+ J)-

th coordinates are 0 at the same point, q is contained in a subspace isometric to

Rk−(J−2). We now find the conditions that there is not a shorter path from A to a

point Y on q just after pi+1. The only possibility for this path is the line AY . By

the triangle inequality, it will always be shorter, but it may not pass through Pi+1

and Pi+2 in that order. This happens when

qPJ
l=2 a2

i+lqPJ
l=2 b2i+l

< ai+1

bi+1
. We again use the

parametrizations of the coordinates with respect to time to show q passes through

Pi before Pi+1 ∩ ... ∩ Pi+J only if ai

bi
<

qPJ
l=1 a2

i+l√PJ
l=1(−bi+l)2

. This implies ai

bi
< ai+1

bi+1
. This

is not the case, so we have a contradiction, and hence pi = pi+1.

The following lemma will be used at the end of the proof of Lemma 4.2.3.

Lemma 4.2.4. Let a, b, c, d be positive real numbers such that a
b
> c

d
. Then a

b
>

√
a2+c2√
b2+d2 .

50

Proof. This result follows from basic algebra:

a

b
>
c

d

ad > bc

a2d2 + a2b2 > b2c2 + a2b2

a2(b2 + d2) > b2(a2 + c2)

a

b
>

√
a2 + c2√
b2 + d2

Proof of Lemma 4.2.3. Suppose that a1

b1
≤ a2

b2
≤ ... ≤ ai

bi
and consider some lo-

cally shortest path such that pi 6= pi+1. Let this locally shortest path start at

A at time t0 = 0, end at B at time tk+1 = 1, and pass through Pj at point

pj = (pj,1, pj,2, ..., pj,k) at time tj, for all 1 ≤ j ≤ k. Because the path is locally

shortest, it must be a line from pi to pi+1. Furthermore, because a1

b1
≤ a2

b2
≤ ... ≤ ai

bi
,

the line from A to pi passes through P1, ..., Pi in that order. The path would not be

locally shortest if it bent at pi, so it must be a straight line from A to pi+1. Thus,

the i-th coordinate changes linearly from ai to −bi, and from the parametrization

of this, we get ti+1 =
ai−pi+1,i

ai+bi
.

Case 1: pi+1,i+2 6= 0 (That is, the locally shortest ordered path does not bend

at pi+1.)

In this case, pi+1,i+1 = 0 = ai+1 + ti+1(−bi+1 − ai+1), which implies ti+1 =

ai+1

ai+1+bi+1
. Equating this value of ti+1 with the one found above, and solving for

pi+1,i, we get pi+1,i = ai − ai+1(ai+bi)
ai+1+bi+1

. The definition of Pi+1 and the assumption

pi 6= pi+1 implies that pi+1,i < 0. Hence, ai <
ai+1(ai+bi)
ai+1+bi+1

, which can be rearranged

to show ai

bi
< ai+1

bi+1
.

51

Case 2: pi+1,i+2 = 0 (That is, the locally shortest ordered path bends at pi+1,

and pi+1 = pi+2.)

Let J ≥ 2 be the largest integer such that pi+J = pi+1, but pi+J+1 6= pi+1.

Apply Corollary 4.2.2 using the partition {1}, {2}, ..., {i}, {i + 1}, {i + 2, ..., i +

J}, {i + J + 1}, ..., {k} to reduce the space by J − 2 dimensions. A and B are

mapped to Ã = (ã1, ..., ãk−(J−2)) and B̃ = (−b̃1, ...,−b̃k−(J−2)), respectively, in the

lower dimension space, where:

ãj =

aj if j ≤ i+ 1√∑J

l=2 a
2
i+l if j = i+ 2

aj+J−2 if j > i+ 2

and

b̃j =

bj if j ≤ i+ 1√∑J

l=2 b
2
i+l if j = i+ 2

bj+J−2 if j > i+ 2

Let k̃ = k − (J − 2). Let p̃j be the image of pj in Rek under the above mapping if

j ≤ i + 2 and the image of pj+J−2 if j > i + 2. Let P̃j = {(x1, ..., xek) ∈ Rek : xl ≤

0 if l < j; xl = 0 if l = j; xl ≥ 0 if l > j}. So P̃j is the boundary between the j-th

and (j + 1)-st orthants in the lower dimension space Rek.

Let Y = (y1, y2, ..., yek) be a point ε > 0 past p̃i+1 on this locally shortest

ordered path. We want to compare the path q1 : Ãp̃i+1 + p̃i+1Y to the path

q2 : ÃY , assuming they both take tY time to traverse. By the triangle inequality,

q2 is shorter than q1. If q2 intersects P̃1, P̃2, ..., P̃i+1, P̃i+2 in this order, then q1

cannot be a locally shortest ordered path, by definition. But this would be a

52

contradiction, so we want to find the condition such that this does not occur. The

j-th coordinate, for 1 ≤ j ≤ i + 1, decreases linearly from ãj to yj in either path.

Therefore, each of the first i + 1 coordinates reach 0 at the same time in both

paths. So since q1 crosses P1, ..., Pi+1 in that order, q2 also crosses P̃1, ..., P̃i+1 in

that order. So it remains to find the condition such that q2 crosses P̃i+2 before

P̃i+1.

Let si+1 and si+2 be the times ÃY intersects P̃i+1 and P̃i+2 respectively. Then

0 = ãj + sj(yj − ãj) rearranges to sj =
eajeaj−yj

for j ∈ {i + 1, i + 2}. So si+2 < si+1

when eai+1eai+2
> yi+1

yi+2
. But yi+1

yi+2
=

ebi+1ebi+2
, since the (i + 1)-st and (i + 2)-nd coordinates

are 0 at the same time. Each coordinate decreases linearly, so their ratio remains

constant as time increases until it becomes
ebi+1ebi+2

at B. So if q1 is a locally shortest

ordered path, then eai+1ebi+1
> eai+2ebi+2

. In Rk, this translates into the condition that

ai+1

bi+1
>

qPJ
l=2 a2

i+lqPJ
l=2 b2i+l

.

The remaining analysis is in Rk. If the locally shortest ordered path is a straight

line through pi+1, then we make the same argument as in case 1. Otherwise, since

the path does not bend at pi, the i-th coordinate changes linearly from ai to −bi.

We use this parametrization to find ti+2 = ti+1 =
ai−pi+1,i

ai+bi
.

Furthermore, the (i + 1)-st to (i + J)-th coordinates decrease at the same

rate from A to pi+1 and at the same, but possibly different than the first,

rate from pi+1 to B. Therefore, we can apply Corollary 4.2.2 to the partition

{{1}, {2}, ..., {i}, {i+ 1, i+ 2, ..., i+ J}, {i+ J + 1}, ..., {k}} to isometrically map

the locally shortest ordered path into Rm−(J−1). Let ã =
√∑J

l=1 a
2
i+l, and let

b̃ =
√∑J

l=1(−bi+l)2. Then in Rm−(J−1), the (i + 1)-st coordinate of the lo-

cally shortest ordered path changes at a constant rate from ã to −b̃. Solving

0 = ã + ti+1(−b̃ − ã) for ti+1 gives ti+1 = eaea+eb . Equate the two expressions for

53

ti+1 to get pi+1,i = ai − (ai+bi)eaea+eb . By definition of Pi+1, pi+1,i < 0. This im-

plies ai

bi
< eaeb =

qPJ
l=1 a2

i+l√PJ
l=1(−bi+l)2

. We showed above that

qPJ
l=2 a2

i+lqPJ
l=2 b2i+l

< ai+1

bi+1
, so by

Lemma 4.2.4,

qPJ
l=1 a2

i+lqPJ
l=1 b2i+l

< ai+1

bi+1
, and thus ai

bi
< ai+1

bi+1
.

So in both cases, ai

bi
< ai+1

bi+1
. But this is a contradiction, and hence pi = pi+1.

By repeatedly applying this lemma, we find the lower dimensional space that

all the locally shortest ordered paths lie in. In this space, the ratios derived from

the coordinates of the images of A and B form a non-descending sequence.

Theorem 4.2.5. Let A = (a1, a2, ..., ak) and B = (−b1,−b2, ...,−bk) with ai, bi ≥ 0

for all 1 ≤ i ≤ k be points in Rk. Alternate between applying Lemma 4.2.3 and

Corollary 4.2.2 until there is a non-descending sequence of ratios ea1eb1 ≤ ea2eb2 ≤ ... ≤
eamebm

, where ãi and b̃i are the coordinates in the lower dimensional space. There is a

unique shortest path between Ã = (ã1,, ãm) and B̃ = (−b̃1, ...,−b̃m) in V (Rm),

with distance

√∑m
i=1(ãi + b̃i)2. This is the length of the shortest ordered path

between A and B in V (Rk).

Proof. For the smallest i such that ai

bi
> ai+1

bi+1
, Lemma 4.2.3 implies that pi = pi+1

in all locally shortest ordered paths in Rk. Thus, we can apply Corollary 4.2.2

using the partition {{1}, {2}, ..., {i− 1}, {i, i+ 1}, {i+ 2}, ..., {m}} to reduce the

space containing all locally shortest ordered paths by one dimension. Repeat the

previous two steps until the ratio sequence in the lower dimensional space is non-

descending. Let ea1eb1 ≤ ea2eb2 ≤ ... ≤ eamebm
be this ratio sequence. By Lemma 4.2.1, the

geodesic between Ã and B̃ is a straight line, and hence unique. Furthermore, its

length is

√∑m
i=1(ãi + b̃i)2. Since we mapped from V (Rk) to V (Rm) by repeated

isometries, both the length of the path and the order it passes through P1, ..., Pm,

or their images, remain the same. The straight line is the only locally shortest

54

ordered path in Rm, so its pre-image is the only locally shortest ordered path in

Rk and thus must be the globally shortest path.

Therefore, we have shown how to find the shortest path through V (Rk) from

a point in the positive orthant to a point in the negative orthant. Equivalently,

we have shown how to find the shortest tour that passes through P1, ..., Pk in Rk.

The following subsection presents the corresponding linear algorithm. Note that in

Theorem 4.2.5, one could alternatively show that V (Rk) is a CAT(0) space, which

implies that there is a unique locally shortest path between any two points in this

space.

4.2.1 PathSpaceGeo: A Linear Algorithm for Computing

Path Space Geodesics

Theorem 4.2.5 can be translated into a linear algorithm called PathSpaceGeo for

computing the path space geodesic between T1 and T2 in any path space. We will

now present this algorithm and prove that it has linear complexity. Pseudo-code

can be found in Section A.1 of the Appendix.

Let S = ∪k
i=0Ok be a path space between the trees T1 and T2. For all

1 ≤ i ≤ k, let ai = ‖Ei−1\Ei‖ and let bi = ‖Fi\Fi−1‖. Consider the ratio se-

quence
{

a1

b1
, a2

b2
, ..., ak

bk

}
. Starting with the ratio pair

{
a1

b1
, a2

b2

}
, we compare consec-

utive ratios. If the first ratio in the pair, ai

bi
is greater than the second, ai+1

bi+1
, then

we combine the two ratios by replacing them by

√
a2

i +a2
i+1√

b2i +b2i+1

in the ratio sequence.

We must then compare this new, combined ratio with the previous ratio in the

sequence, and combine these two ratios if they are descending. Again the newly

55

combined ratio must be compared with the ratio before it in the sequence, and so

on. Once the last combined ratio is greater or equal to the previous one in the se-

quence, we can again start moving forward through the ratio sequence, comparing

consecutive ratios. The algorithm ends when it reaches the end of the ratio se-

quence, and the ratios form a non-descending ratio sequence. If the ratio sequence

is
{ea1eb1 , ea2eb2 , ..., eamebm

}
, then PathSpaceGeo returns the distance

√∑m
i=1(ãi + b̃i)2.

We will also sometimes refer to PathSpaceGeo as taking a ratio sequence{
a1

b1
, a2

b2
, ..., ak

bk

}
as its input, or two coordinates, one in the positive orthant of Rk

and one in the negative orthant of Rk. In these cases, we simply skip the first step

that translates the path space into a ratio sequence. In the pseudo-code given in

Section A.1 of the Appendix, we use the two coordinates in Rk as the input.

Theorem 4.2.6. PathSpaceGeo has complexity Θ(k), where k+1 is the number

of orthants in the path space between T1 and T2.

Proof. We first show the complexity is O(k). Combining two ratios reduces the

number of ratios by 1, so this operation is done at most k − 1 = O(k) times. It

remains to count the number of comparisons between ratios. Each ratio is involved

in a comparison when it is first encountered in the sequence. There are k− 1 such

comparisons. All other comparisons occur after a combination of ratios, to ensure

that the new combined ratio is greater or equal to its preceding ratio. Since

there are at most k − 1 combinations, there are at most k − 1 such comparisons.

Therefore, PathSpaceGeo has complexity O(k). Any algorithm must make k−1

comparisons to ensure the ratios are in non-descending order, so the complexity is

Ω(k), and thus this bound is tight.

Thus we have presented a linear time algorithm for finding the shortest path

56

through V (Rk). This lets us quickly calculate the length of the shortest path

through a maximal path space.

4.3 Alternative Approaches

Several other people have investigated the question of computing the geodesic

distance. The most closely related work is by Staple [49] and Kupczok et al. [29],

who developed algorithms to compute the geodesic distance based on the notes of

Vogtmann [55]. Ingram [26] studied the tree space and geodesic distance measure,

but did not present an algorithm. Amenta et al. [1] developed a
√

2-approximation

algorithm for the geodesic distance.

Vogtmann [55] first developed the idea of embedding a subspace of Tn in Eu-

clidean space. If T1 and T2 are two trees in Tn with no common edges, then she

proved that each edge in T1 could be matched with a different edge in T2 such

that each pair of matched edges is incompatible. She next associated each edge in

T1 with the negative part of an axis in Rn−2, and the matching edge in T2 with

the positive part of that same axis. Thus each orthant in Rn−2 corresponds to the

subset of the edges in T1 and T2 associated with its axes. However, if the edges

in that subset are not mutually compatible, then the orthant does not exist in Tn,

and is called an illegal orthant in Rn−2. Billera et al. [3] showed that the geodesic

is contained in the subspace of Tn corresponding to the legal orthants. Thus, the

problem of computing the geodesic distance in Tn has now been reduced to find-

ing the shortest path from a point in the negative orthant of Rn−2 to a point in

the positive orthant of Rn−2 that does not enter an illegal orthant. Notice that

Vogtmann has simultaneously embedded exactly the orthants corresponding to the

57

elements of K(T1, T2) in Rn−2. In contrast, for any maximal chain in K(T1, T2), the

map given in Theorem 4.1.5 embeds only a subspace the orthants corresponding

to elements of that chain in Rk, where k+1 is the number of elements in the chain.

Next Vogtmann parametrized the geodesic with respect to scaled arc length,

which she called time, to obtain γ(t), where γ(0) = T1 and γ(1) = T2 and the

parametrization has constant speed. Consider the embedding of two adjacent

orthants, O(Ei∪Fi) and O(Ei+1∪Fi+1), in Rn−2. As the geodesic transitions from

O(Ei ∪ Fi) to O(Ei+1 ∪ Fi+1), the edges E = Ei\Ei+1 are dropped and the edges

F = Fi+1\Fi are added. Vogtmann also showed that if the geodesic does travel

from O(Ei∪Fi) to O(Ei+1∪Fi+1), then it must do so at time t = ‖E‖
‖E‖+‖F‖ . Based on

this, Vogtmann suggests the following algorithm. For each path space, calculate

the times at which the geodesic must make the transitions between consecutive

orthants. If these times form an increasing sequence, then the geodesic may travel

through exactly the interiors of the orthants in this path space. Compare the

lengths of the paths with increasing transition times to find the shortest path,

which is the geodesic.

The algorithms given by Staple [49] and Kupczok et al. [29] are improvements

on Vogtmann’s algorithm. Common edges between the trees are treated in the

same manner as in the previously presented algorithms. Staple [49] constructs the

path spaces by exhaustively considering all subsets of the remaining edges to be

dropped from the starting tree and all subsets of the remaining edges that can be

added from the target tree at each iteration. If the transition times are found to

be out of order as a path space is being constructed, the algorithm moves on to

the next path space. There is no explicit computation of complexity in [49], but

it is exponential in the number of different splits in the two trees.

58

Kupczok et al. [29] encode the path spaces as a directed acyclic graph (DAG)

in their algorithm GeoMeTree. The nodes in the DAG are correspond to the

elements of the path poset, however, there are additional edges in the DAG. Each

edge in the DAG can be labelled with the corresponding transition time between

the two orthants represented by the endpoints of the edge. This algorithm is also

exponential in the number of different splits in the two trees.

Amenta et al. [1] presented upper and lower bounds for the geodesic distance,

and showed that these bounds differ by at most a
√

2 multiplicative factor. The

lower bound for the geodesic distance is found by computing the Euclidean distance

between the images of T1 and T2 in Rn−2, using the map of Vogtmann which was

described above. The upper bound is found by computing the length of the path

from T1 to a certain tree containing exactly the splits ET1 ∩ ET2 to T2.

Ingram [26] investigated both the combinatorial and geometric properties of

the tree space. Among other things, he examined what the split compatibility

relations can tell us about the two trees, and explored other metrics on the tree

space.

59

CHAPTER 5

ALGORITHMS

In Chapter 3, we showed how to represent all of the maximal path spaces, one of

which must contain the geodesic, as maximal chains in the path poset. In Chapter

4, we showed how to find the path space geodesic through a maximal path space.

These two elements suggest a simple algorithm. Using the path poset, run through

the set of maximal path spaces. For each maximal path space, compute the path

space geodesic. The shortest path space geodesic is the geodesic. Unfortunately, as

we showed in Chapter 3, there can be an exponential number of nodes in the path

poset, and hence an exponential number of maximal chains. However, it turns out

that the geodesic distance can be considered locally shortest with respect to the

path poset, which we will prove in the first section. This allows us to present two

successively better algorithms in the second section. The first is based on dynamic

programming techniques, and the second on divide and conquer techniques. We

will present experimental data showing that the first two algorithms are practical

on biological data of some interest.

5.1 Theoretical Considerations

For Chapters 3 and 4, we considered the problem of finding the geodesic between

two trees with no edges in common. In practice, however, a pair of trees will have

many edges in common. As mentioned in Section 2.3, if two trees have a common

edge, then we can compute the geodesic between them in polynomial time using the

geodesics between the pairs of subtrees formed by removing the common edge from

each original tree. We will now prove this, and give the corresponding algorithm.

60

Additionally, we will prove a property useful for computing geodesics in the path

poset. This property justifies the use of dynamic programming and divide and

conquer techniques in our algorithms in the next section.

5.1.1 Decomposing Trees with Common Edges

In Chapter 2, we stated that if two trees have an edge in common, then this edge

can be deleted to produce two pairs of subtrees, each corresponding to a geodesic

distance subproblem. If a pair of subtrees still has edges in common, we can de-

compose the problem again. When a pair of subtrees can no longer be decomposed,

we compute the geodesic between them using the algorithms presented in the sec-

ond half of this chapter. After introducing some necessary definitions, this section

gives a proof that the geodesic between the original trees can be derived from the

geodesics found in the subproblem.

Definition 5.1.1. Let S = ∪k
i=0Oi be a path space between T1 and T2, two trees

in Tn with no common edges. Define the carrier of the path space geodesic through

S between T1 and T2 to be the path space Q = ∪l
i=0Oc(i) ⊆ S such that the path

space geodesic through S traverses the relative interiors of Oc(0), Oc(1), ..., Oc(l),

where the function c : {0, 1, ..., l} → {0, ..., k} takes i to c(i) if the i-th orthant is

Q is the c(i)-th orthant in S.

For any path space S = ∪k
i=0Oi, the carrier of the path space geodesic must

contain O0 and Ok. This is true, because T1 corresponds to a point in the relative

interior of O0 = O(E0) = O(ET1), T2 corresponds to a point in the relative interior

of Ok = O(Fk) = O(ET2), and O0 6= Ok because T1 and T2 have no edges in

common by definition of a path space. Therefore, the carrier of the path space

61

geodesic is always non-empty, and can be found by removing the orthants in S

that do not contain the geodesic in their relative interiors. When the path space

geodesic is also the geodesic, we will just refer to the carrier of the geodesic. The

definition of the carrier of the geodesic was first given by Vogtmann [55].

Proposition 5.1.2. Let S be a path space between between T1 and T2. Let Q =

∪l
i=0Oi = ∪l

i=0O(Ei ∪ Fi) be the carrier of the path space geodesic through S.

Then
{
‖E0\E1‖
‖F1\F0‖ ,

‖E1\E2‖
‖F2\F1‖ , ..,

‖El−1\El‖
‖Fl\Fl−1‖

}
<

is the ascending ratio sequence generated by

running PathSpaceGeo on Q.

Proof. Running PathSpaceGeo on Q is equivalent to running it on the ratio

sequence
{
‖E0\E1‖
‖F1\F0‖ ,

‖E1\E2‖
‖F2\F1‖ , ..,

‖El−1\El‖
‖Fl\Fl−1‖

}
. If this ratio sequence is non-descending,

then it will also be the sequence output by PathSpaceGeo. We will now prove

that this ratio sequence is strictly ascending, and hence the output.

If for some 1 ≤ i < l − 1, ‖Ei\Ei+1‖
‖Fi+1\Fi‖ >

‖Ei+1\Ei+2‖
‖Fi+2\Fi+1‖ , then by Lemma 4.2.3 the

path space geodesic passes through the intersection Oi ∩ Oi+1 ∩ Oi+2. Thus the

path space geodesic does not pass through the relative interior of Oi+1, which

contradicts the definition of the carrier of the path space geodesic.

If for some 1 ≤ i < l − 1, ‖Ei\Ei+1‖
‖Fi+1\Fi‖ = ‖Ei+1\Ei+2‖

‖Fi+2\Fi+1‖ , then cross-multiply, add

‖Ei\Ei+1‖ · ‖Ei+1\Ei+2‖ to each side, and rearrange to get ‖Ei\Ei+1‖
‖Ei\Ei+1‖+‖Fi+1\Fi‖ =

‖Ei+1\Ei+2‖
‖Ei+1\Ei+2‖+‖Fi+2\Fi+1‖ . This implies that the edges in Ei\Ei+1 and Ei+1\Ei+2 shrink

to length 0 at the same point on the path space geodesic, and that this point is

in the intersection Oi ∩ Oi+1 ∩ Oi+2. Thus the path space geodesic does not pass

through the relative interior of Oi+1, which is also a contradiction.

Therefore, the ratios form an ascending ratio sequence, which thus must be the

ratio sequence output by PathSpaceGeo.

62

We will now define projection in tree space.

Definition 5.1.3. A projection of T ∈ Tn onto the orthant O(A), where A ⊆ ET ,

is the tree T (ET ∩ A).

Definition 5.1.4. Let A be a set of mutually compatible splits of type n. A

projection of an orthant O(A) onto the subspace S of Tn, where S ⊕O(B) = Tn,

is O(A\B).

Recall that we write O(A) ⊕ O(B) only when A ∩ B = ∅. To project a path

space onto a subspace of Tn that contains all splits except those in the split set B,

project each orthant of the path space in turn onto this subspace.

Projections can be used when computing geodesics through the subspace of Tn

represented by an interval [A,B] within the path poset K(T1, T2). All of the trees

in the orthants corresponding to this interval have the splits A∪CT1(B) in common.

This split set is only empty if A = ∅ and B = ET2 , and hence the interval is the

full path poset. Therefore, we can ignore these common splits when doing geodesic

computations in this interval by first projecting the interval’s orthants onto the

subspace S of Tn such that S ⊕O(A ∪ CT1(B)) = Tn.

Theorem 5.1.5. Let T1 and T2 be two trees in Tn. Let A,B ⊆ ET2 such that

A ∩ B = ∅ and XT1(A) ∩ XT1(B) = ∅. Let gA be the geodesic from TA
1 =

T (XT1(A)) to TA
2 = T (A), and let gB be the geodesic from TB

1 = T (XT1(B)) to

TB
2 = T (B). Then the geodesic from T (XT1(A ∪ B)) to T (A ∪ B) has length√
d(TA

1 , T
A
2)2 + d(TB

1 , T
B
2)2 and can be explicitly found by taking the ascending

ratio sequences associated with gA and gB and merging them so that the new ratio

sequence is non-descending.

Notice that TA
1 is the projection of T1 onto O(XT1(A)), and TA

2 is the projection

63

of T2 onto O(A). Similarly, TB
1 is the projection of T1 onto O(XT1(B)) and TB

2 is

the projection of T2 onto O(B).

Proof. Let SA = ∪k
i=0Oi be the carrier of the geodesic gA between TA

1 and TA
2 ,

and let SB = ∪l
i=0O′i be the carrier of the geodesic gB between TB

1 and TB
2 . We

claim the splits defining Oi are mutually compatible with the splits defining O′j

for any 0 ≤ i ≤ k and any 0 ≤ j ≤ l. The splits in Ei and E ′j are all in T1, and

thus are compatible. Similarly, the splits in Fi and F ′j are all in T2, and hence

are compatible. It remains to show that the splits in Ei and F ′j are compatible,

and that the splits in E ′j and Fi are compatible. If some split f ∈ F ′j ⊆ B

is incompatible with some split e ∈ Ei ⊆ XT1(A), then e ∈ XT1(A) ∩ XT1(B),

which is a contradiction. If some split f ∈ Fi ⊆ B is incompatible with some

split e ∈ E ′j ⊆ XT1(A), then e ∈ XT1(A) ∩XT1(B), which is also a contradiction.

Therefore, we have proven our claim.

Since A ∩ B = ∅ and XT1(A) ∩XT1(B) = ∅, then for any 0 ≤ i ≤ k and any

0 ≤ j ≤ l, Oi⊕O′j is an orthant in Tn. The geodesic between T (XT1(A)∪XT1(B))

and T (A ∪B) lies in the union of these orthants, ∪k
i=0 ∪l

j=0 Oi ⊕O′j.

We will now isometrically map the problem into Euclidean space. By Theorem

4.1.5, gA lies in a subspace of SA isometric to V (Rk), and gB lies in a subspace of SB

isometric to V (Rl). Now the splits in Oi and O′j are compatible for any 0 ≤ i ≤ k

and any 0 ≤ j ≤ l, and so their corresponding dimensions are orthogonal in tree

space. This implies that the isometric maps from a subspace of SA to V (Rk) and a

subspace of SB to V (Rl) can be extended to an isometric map from a subspace of

∪k
i=0 ∪l

j=0 Oi ⊕O′j to the product space V (Rk)× V (Rl). Since SA and SB are the

carriers of their respective geodesics, gA and gB are straight lines through SA and

SB, respectively, and hence through V (Rk) and V (Rl), respectively. Since the two

64

orthogonal components of the image of the geodesic from T (XT1(A) ∪XT1(B)) to

T (A ∪B) are straight lines, by properties of the metric space, its distance is

d
(
T (XT1(A) ∪XT1(B)), T (A ∪B)

)
=
√
d(TA

1 , T
A
2)2 + d(TB

1 , T
B
2)2.

Since the maps are orthogonal, this is also the distance of the geodesic from

T (XT1(A) ∪XT1(B)) to T (A ∪B).

Furthermore, by Proposition 5.1.2, the ascending ratio sequence correspond-

ing to SA is
{
‖E0\E1‖
‖F1\F0‖ ,

‖E1\E2‖
‖F2\F1‖ , ...,

‖Ek−1\Ek‖
‖Fk\Fk−1‖

}
<

and the ascending ratio sequence

corresponding to SB is
{
‖E′0\E′1‖
‖F ′1\F ′0‖

,
‖E′1\E′2‖
‖F ′2\F ′1‖

, ...,
‖E′l−1\E

′
l‖

‖F ′l \F
′
l−1‖

}
<

. Therefore, in the prod-

uct space V (Rk) × V (Rl), the ratios corresponding to the orthant transitions

are
{
‖E0\E1‖
‖F1\F0‖ ,

‖E1\E2‖
‖F2\F1‖ , ...,

‖Ek−1\Ek‖
‖Fk\Fk−1‖

,
‖E′0\E′1‖
‖F ′1\F ′0‖

,
‖E′1\E′2‖
‖F ′2\F ′1‖

, ...,
‖E′l−1\E

′
l‖

‖F ′l \F
′
l−1‖

}
. As the image of

the geodesic is a straight line, these ratios must be in non-descending order by

Lemma 4.2.1, as desired.

This theorem allows us to decompose the problem when computing the geodesic

between two trees with a common edge. Let T̃1 and T̃2 be two trees with a common

split e = X|Y , where 0 ∈ X, as shown in Figure 5.1(a). For i ∈ {1, 2}, let T̃A
i

be the tree T̃i with edge e contracted, as well as any edge a = X ′|Y ′ such that

X ′ ⊂ Y or Y ′ ⊂ Y . Then T̃A
i is the tree formed by contracting e and all edges

below it in T̃i, as shown in Figure 5.1(b). For i ∈ {1, 2}, let T̃B
i be the tree T̃i with

edge e contracted, as well as any edge b = X ′|Y ′ such that X ′ ⊂ X or Y ′ ⊂ X.

Then T̃B
i is the tree formed by contracting e and all edges not below it in Ti, as

shown in Figure 5.1(c). We are abusing notation here, because for i ∈ {1, 2}, T̃A
i

and T̃B
i do not have exactly the same relation to T̃i as the relationship TA

i and TB
i

have to Ti, which was described in Theorem 5.1.5. In both cases, we are dividing

some or all of the splits in the original tree into two disjoint sets. In the case of

T̃A
i and T̃B

i , the splits are divided by their relation to e, and all splits besides e are

65

included in one of the two trees. Furthermore, we may have EeT A
1
∩ EeT A

2
6= ∅ and

EeT B
1
∩ EeT B

2
6= ∅, which is forbidden in the hypotheses of Theorem 5.1.5.

e
{

0

{
X \ 0

Y

(a) Tree T̃i.

{

0

{

X \ 0Y

(b) Tree T̃A
i .

{

0

{

X \ 0

Y

(c) Tree T̃B
i .

Figure 5.1: Forming the trees T̃A
i and T̃B

i from T̃i for i ∈ {1, 2}.

Corollary 5.1.6. If T̃1 and T̃2 have a common edge e, and T̃A
i and T̃B

i

are as described in the above paragraph for i ∈ {1, 2}, then d(T̃1, T̃2) =√
d(T̃A

1 , T̃
A
2)2 + d(T̃B

1 , T̃
B
2)2 +

(
|e|eT1

− |e|eT2

)2
.

Proof. By Lemma 2.3.1,

d(T̃1, T̃2) =

√
d(T̃1/e, T̃2/e)2 +

(
|e|eT1

− |e|eT2

)2
. (5.1)

So it remains to calculate d(T̃1/e, T̃2/e)
2. The trees T̃A

1 and T̃A
2 , or T̃B

1 and T̃B
2

may have splits in common. For the remainder of this proof, for i ∈ {1, 2}, assume

that if there is an edge e′ ∈ T̃A
i that does not have positive length in T̃B

i , but is

compatible with all edges in T̃B
i , then e′ is an edge of T̃B

i with length 0. Similarly,

if there is an edge e′ ∈ T̃B
i that does not have positive length in T̃A

i , but is

compatible with all edges in T̃A
i , then assume that e′ is an edge of T̃A

i with length

0. Let EA = EeT A
1
∩ EeT A

2
. Similarly, let EB = EeT B

1
∩ EeT B

2
. Let E = EA ∪ EB ∪ e.

66

Repeatedly apply Lemma 2.3.1 to get

d(T̃1/e, T̃2/e)
2 = d(T̃1/E, T̃2/E)2 +

∑
e′∈EA∪EB

(
|e′|eT1

− |e′|eT2

)2
. (5.2)

Let us compute d(T̃1/E, T̃2/E)2. Let TA
1 = T̃A

1 /EA, TA
2 = T̃A

2 /EA, TB
1 =

T̃B
1 /EB, and TB

2 = T̃B
2 /EB. Let T1 = T̃1/E, and let T2 = T̃2/E. We will now show

that TA
1 , TA

2 , TB
1 , and TB

2 meet the hypotheses of the trees with the same name in

Theorem 5.1.5.

Let A = ET A
2

and let B = ET B
2

. By definition of E, XT1(A) = ET A
1

, and

XT1(B) = ET B
1

. Also by construction of T̃A
1 and T̃B

1 , EeT A
1
∩ EeT B

1
= ∅, and hence

XT1(A)∩XT1(B) = ∅. Similarly, by construction of T̃A
2 and T̃B

2 , EeT A
2
∩EeT B

2
= ∅,

and hence A∩B = ∅. Therefore, we have shown that TA
1 , TA

2 , TB
1 , and TB

2 satisfy

the hypotheses of Theorem 5.1.5, and hence applying that theorem gives

d(T1, T2) =
√
d(TA

1 , T
A
2)2 + d(TB

1 , T
B
2)2.

Substitute this into (5.2) to get

d(T̃1/e, T̃2/e)
2 = d(TA

1 , T
A
2)2 + d(TB

1 , T
B
2)2 +

∑
e′∈EA

(
|e′|eT A

1
− |e′|eT A

2

)2

+
∑

e′∈EB

(
|e′|eT B

1
− |e′|eT B

2

)2

= d(T̃A
1 , T̃

A
2)2 + d(T̃B

1 , T̃
B
2)2

We then substitute this expression into (5.1) to get

d(T̃1, T̃2) =

√
d(T̃A

1 , T̃
A
2)2 + d(T̃B

1 , T̃
B
2)2 +

(
|e|eT1

− |e|eT2

)2
.

67

5.1.2 Local Geodesic Property

For the following section, let T1 and T2 be two trees in Tn with no common edges.

We will show that the geodesic between T1 and T2 is contained in some maximal

path space M , where M has the following property. If we project M onto the

subspace formed from all splits except those added and dropped in the last orthant

transition in M , then this subspace contains the geodesic between the projections

of T1 and T2.

So consider some maximal path space M = ∪k
i=0Oi = ∪k

i=0O(Ei ∪ Fi) between

T1 and T2. Let T ′1 = T (ET1\Ek−1) and T ′2 = T (Fk−1). Notice that the degenerate

trees T ′1 and T ′2 are projections of T1 and T2, respectively, onto the subspace of

Tn that contains all splits except those in Ek−1 and Fk\Fk−1 = ET2\Fk−1. The

excluded splits are those added and dropped at the transition from Ok−1 to Ok. If

M ′ = ∪k−1
i=0O(Ei\Ek−1 ∪ Fi), then T ′1 and T ′2 are the projections of T1 and T2 onto

M ′. Furthermore, M ′ is a projection of M onto the subspace S ⊂ Tn such that

S ⊕O(Ek−1 ∪ FT1\Fk−1) = Tn.

Lemma 5.1.7. Let T1 and T2 be two trees in Tn with no common edges. Let

M = ∪k
i=0Oi be a maximal path space between T1 and T2. Let M ′ = ∪k−1

i=0O′i, where

O′i ⊕ O(Ek−1) = Oi for all 0 ≤ i ≤ k − 1. If M ′ does not contain the geodesic

between the degenerate trees T ′1 and T ′2 in Tn, then there exists a path space P ′

between T ′1 and T ′2 such that dP ′(T
′
1, T

′
2) < dM ′(T

′
1, T

′
2) and dP (T1, T2) ≤ dM(T1, T2),

where P = (P ′ ⊕O(Ek−1)) ∪ Ok.

Proof. Let Q′ = ∪l
i=0O′c(i) be the carrier of the path space geodesic in M ′. Let q be

the path space geodesic through Q′ between T ′1 and T ′2, and let qi = O′c(i−1)∩O′c(i)∩q

for every 1 ≤ i ≤ l. Since q is not the geodesic from T ′1 to T ′2, q cannot be locally

68

shortest in Tn. By Proposition 4.1.2, for all 1 ≤ i ≤ l − 1, the part of q between

qi and qi+1 is a line, so we cannot vary this part of q to find a locally shorter

path in Tn. This implies that there exists a qj such that we can vary q in the

neighbourhood of qj to get a shorter path. In particular, there exists some ε

such that if s and t are the points on q, ε before and after qj in the orthants

Oc(j−1) and Oc(j), respectively, then the geodesic between the trees represented

by s and t does not follow q. So replace the part of q between s and t with

the true geodesic between s and t to get a shorter path in Tn, with distance

ds. This geodesic travels through the relative interiors of the orthants in some

sequence Oc(j−1),O′′1 = O(E ′′1 ∪F ′′1), ...,O′′m = O(E ′′m ∪F ′′m),Oc(j), where O′′1 , ...,O′′m

are not in M ′. Since the line is the geodesic between the trees we can assume that

E ′c(j−1) ⊃ E ′′1 ⊃ ... ⊃ E ′′m ⊇ E ′c(j) and F ′c(j−1) ⊂ F ′′1 ⊂ ... ⊂ F ′′m ⊂ F ′c(j). Thus

P ′ = Q′ ∪ (∪m
i=0O′′i) is a path space. Since the path space geodesic is the shortest

path through a path space, dP ′(T
′
1, T

′
2) ≤ ds < dQ′(T

′
1, T

′
2).

We now want to compare dP (T1, T2) and dQ(T1, T2), where P = (P ′⊕O(Ek−1))∪

Ok and Q = (Q′ ⊕ O(Ek−1)) ∪ Ok. The path space geodesic between T1 and T2

through Q is contained in P , because Q ⊂ P . This implies dP (T1, T2) ≤ dQ(T1, T2),

as desired. By definition of Q′, dQ′(T
′
1, T

′
2) = dM ′(T

′
1, T

′
2).

Finally, we show that dQ(T1, T2) = dM(T1, T2). Consider running PathSpace-

Geo on the ratio sequence corresponding to M ,
{
‖E0\E1‖
‖F1\F0‖ ,

‖E1\E2‖
‖F2\F1‖ , ...,

‖Ek−1\Ek‖
‖Fk\Fk−1‖

}
.

The first k − 1 ratios correspond to M ′, and thus they will be combined

by PathSpaceGeo to correspond with Q′, the carrier of the path space

geodesic in M ′. Therefore, stopping PathSpaceGeo before it has found

the non-descending ratio sequence, we get the intermediate ratio sequence{
‖Ec(0)\Ec(1)‖
‖Fc(1)\Fc(0)‖

,
‖Ec(1)\Ec(2)‖
‖Fc(2)\Fc(1)‖

, ...,
‖Ec(l−1)\Ec(l)‖
‖Fc(l)\Fc(l−1)‖

, ‖Ek−1\Ek‖
‖Fk\Fk−1‖

}
. But this is the ratio sequence

69

we would input to run PathSpaceGeo on the path space Q. Therefore,

PathSpaceGeo outputs the same non-descending ratio sequence with input M as

with input Q. This implies that dQ(T1, T2) = dM(T1, T2), and so P ′ is the desired

path space.

Theorem 5.1.8. There exists a maximal path space M = ∪k
i=0Oi, where k > 1,

containing the geodesic between the trees T1 and T2 in Tn, such that M ′ = ∪k−1
i=0O′i,

where O′i ⊕ O(Ek−1) = Oi for all 0 ≤ i ≤ k − 1, is a maximal path space that

contains the geodesic between T ′1 and T ′2.

Proof. Let S be any maximal path space containing the geodesic between T1 and

T2. Suppose S consists of l+ 1 orthants, and let E be the set of edges dropped at

the transition to the (l+1)-st orthant Ol. Let S ′ be defined by (S ′ ⊕O(E))∪Ol =

S. Then S ′ is a maximal path space between T ′1 and T ′2, as the conditions in

Theorem 3.2.2 still hold. If S ′ contains the geodesic between T ′1 and T ′2, then we

are done. So suppose that S ′ does not contain the geodesic between T ′1 and T ′2.

By Lemma 5.1.7, there exists another maximal path space P from T1 to T2, with

dP (T1, T2) ≤ dS(T1, T2) and dP ′(T
′
1, T

′
2) < dS′(T

′
1, T

′
2). If P ′ does not contain the

geodesic between T ′1 and T ′2, then apply Lemma 5.1.7 again to a maximal path

space containing P ′. There are only a finite number of path spaces between T ′1

and T ′2, and the length of the path space geodesic strictly decreases, so this process

stops with the path space containing the geodesic. Call this path space Q′. Q′

is contained in at least one maximal path space between T ′1 and T ′2. Call this

maximal path space M ′ = ∪k−1
i=0O′i. Then M = (M ′ ⊕ O(E)) ∪ Ol is a maximal

path space between T1 and T2 with the required properties.

As an example of how Theorem 5.1.8 can be applied, consider the trees T1 and

T2 in Figure 5.2. The incompatibility poset P (T1, T2) and path poset K(T1, T2) are

70

shown in Figures 5.2(c) and 5.2(d), respectively. Suppose that the branch lengths

of T1 and T2 are such that the geodesic is contained only in the maximal path space

corresponding to the maximal chain ∅ < f4 < f2 < f1f2 < f3 = ET2 in K(T1, T2).

To transition from Of1f2
to Of3

, we drop the edge e2 and add the edge f3. Now

consider the subspace S of T6 such that S⊕O(e2 ∪ f3) = T6. Projecting T1 and T2

onto S ∩O∅ and S ∩Of1f2
, respectively, gives the trees T ′1 and T ′2 in Figures 5.2(e)

and 5.2(f). Now Theorem 5.1.8 implies that the geodesic between T ′1 and T ′2 in

S, and hence in T6, passes through the intersection of S with the orthants O∅,

Of4
, Of2

, and Of1f2
. That is, the geodesic between T ′1 and T ′2 is contained in the

projections of the orthants containing the geodesic between T1 and T2.

4

2

5

3

e1

e2

0

6

1

e4

e3

(a) Tree T1.

3

2

4

1f3

f1

0

5 6

f4

f2

(b) Tree T2.

f1 - {e1}

f3 - {e1, e2, e3, e4}

f2 - {e3, e4}

f4 - {e4}

(c) P (T1, T2)

∅

f1 f4

f1f4 f2

f1f2

f3

(d) K(T1, T2)

e3

2

e1

4 5

3

0

6

1
e4

(e) Projection of T1 is
T ′

1.

3

1

f1

0

5

6

2

4

f4

f2

(f) Projection of T2 is
T ′

2.

Figure 5.2: An example illustrating the path space geodesic property.

Alternatively, we can look at an interval in K(T1, T2). For example, in Fig-

71

ure 5.2(d), consider the interval [∅, f1f2]. Then Theorem 5.1.8 implies that if the

geodesic from T1 to T2 goes through the orthant Of1f2
, then the geodesic is con-

tained in the orthants containing the geodesic from T ′1 to T ′2, that is, the orthants

O∅, Of4
, Of2

, and Of1f2
. Note, however, that the geodesic from T1 to T2 need not

go through the interior of all of these orthants, even if the geodesic between T ′1

and T ′2 does.

5.2 Algorithms

We will now present two specific algorithms for computing geodesics. Each of

these algorithms uses Theorem 5.1.8 to avoid computing the path space geodesic

for each maximal path space between T1 and T2. This significantly decreases the

run time. We call these algorithms GeodeMaps, which stands for GEOdesic Dis-

tancE via MAximal Path Spaces. The first algorithm uses dynamic programming

techniques, and is denoted GeodeMaps-Dynamic, while the second uses a divide

and conquer strategy, and is denoted GeodeMaps-Divide.

5.2.1 GeodeMaps-Dynamic: a Dynamic Programming Al-

gorithm

Theorem 5.1.8 implies that for any element in A in K(T1, T2), we can find the

geodesic between T (XT1(A)) and T (A) by considering the geodesic gB between

T (XT1(B)) and T (B) for each B covered by A. For each gB, update the ascend-

ing ratio sequence associated with gB by adding the ratio corresponding to the

transition from OB to OA. Next apply PathSpaceGeo to it to get an ascending

72

ratio sequence corresponding to a path space geodesic between T (XT1(A)) and

T (A). Of the path space geodesics between T (XT1(A)) and T (A) that were just

computed from gB for each B covered by A, the one with the minimum distance is

the geodesic between T (XT1(A)) and T (A), by Theorem 5.1.8, because T (XT1(B))

and T (B) are projections of T (XT1(A)) and T (A). This suggests that we can com-

pute the geodesic distance by doing a breath-first search on the Hasse diagram of

the path poset. As we visit each node A in the Hasse diagram of K(T1, T2), we

construct the geodesic between T (XT1(A)) and T (A) using the geodesics between

T (XT1(B)) and T (B) for each node B covered by A, which we have already visited.

As we showed in Chapter 3, there can be an exponential number of elements in

the path poset, so this algorithm is not polynomial.

Example

As an example of how the algorithm works, consider the trees T1 and T2, and their

incompatibility poset P (T1, T2) in Figure 5.2. Figure 5.3(a) contains their path

poset K(T1, T2) with each edge in the Hasse diagram labelled with the ratio of

the length of the split dropped to the length of the split added during the orthant

transition represented by the edge. For each maximal chain, the ratios along its

edges give the initial ratio sequence that we pass to PathSpaceGeo to find the

unique ascending ratio sequence, corresponding to the geodesic. Therefore, we

can find the geodesic from T ({e1, e4}) in O∅ to T ({f1, f4}) in Of1,f4
, by passing

the ratio sequences
{

0.83
0.7
, 0.88

0.15

}
and

{
0.88
0.15

, 0.83
0.7

}
to PathSpaceGeo. This step

corresponds to Figure 5.3(b). PathSpaceGeo returns the distances 1.84 and 1.95,

respectively. This and Theorem 5.1.8 imply that the geodesic travels through Of1
,

if it travels through Of1f4
. We next calculate the geodesic between T ({e1, e3, e4})

in O∅ and T ({f1, f2, f4}) in Of1,f2
. There are three maximal chains between ∅

73

and f1, f2. However, we do not have to consider ∅ < f4 < f1f4 < f1f2, because

we just showed that if the geodesic passes through Of1
or Of4

, then it passes

through Of1
. As illustrated in Figure 5.3(c), we apply PathSpaceGeo to the

ratio sequences
{

0.83
0.7
, 0.88

0.15
, 0.47

0.87

}
and

{
0.88
0.15

, 0.47
0.87

, 0.83
0.7

}
, which are derived from the

remaining two chains. PathSpaceGeo returns the distances 2.4244 and 2.4243,

respectively. Thus, by Theorem 5.1.8 if the geodesic between T1 and T2 passes

through Of1f2
, then it must also pass through the orthants corresponding to ∅,

f4, and f2. However, from the topology of the path poset, the geodesic must pass

through the orthant corresponding to f1f2, and hence we have found the maximal

path space containing the geodesic, as shown in Figure 5.3(d). The length of this

geodesic is 2.65.

∅

f1 f4

f1f4 f2

f1f2

f3

0.83

0.7

0.88

0.15

0.47

0.87

0.73

0.42

0.47

0.87

0.88

0.15

0.83

0.7

0.83

0.7

(a) Labelled path
poset K(T1, T2).

∅

f1 f4

f1f4 f2

f1f2

f3

0.83

0.7

0.83

0.7

0.88

0.15

0.88

0.15

(b) First iteration.

∅

f1 f4

f1f4 f2

f1f2

f3

0.83

0.7

0.83

0.7

0.88

0.15

0.88

0.15

0.47

0.87

0.47

0.87

(c) Second iteration.

∅

f1 f4

f1f4 f2

f1f2

f3

0.83

0.7

0.88

0.15

0.47

0.87

0.73

0.42

(d) Third iteration.

Figure 5.3: An example illustrating the dynamic programming approach.

We have implemented a more memory-efficient version of this algorithm, called

GeodeMaps-Dynamic. This version uses a depth-first search of the Hasse dia-

gram of K(T1, T2). For each element A in K(T1, T2), we store the distance of the

shortest path space geodesic found so far between T (XT1(A)) and T (A). When we

visit a node A for the first time, we store the path space geodesic distance between

T (XT1(A)) and T (A) that we have just calculated in reaching A, and continue

74

our depth-first search. When we re-visit a node, we compare the stored distance

between T (XT1(A)) and T (A) with the path space geodesic distance that we have

just calculated in returning to A. If this new distance is longer, we do not continue

this branch of the search. We always store the carrier of the shortest path space

geodesic that we have found so far between T1 and T2. Additionally, at any point in

the search, we store the path space that we have followed to our current position.

GeodeMaps-Dynamic still uses an exponential amount of memory, because

it stores the shortest distance to each node in a hash table. However, this is

much more memory-efficient than storing the carrier of the geodesic to each node.

We add the heuristic improvement of, at each stage in the depth-first search,

choosing as the next node the one with the lowest transition ratio of the nodes

not yet visited. Choosing the orthant transition with the lowest ratio does not

always give the geodesic distance, as illustrated by the trees in Figure 5.3. The

details of GeodeMaps-Dynamic are presented in Section A.2 of the appendix,

as Algorithm 2, which recursively calls the method dpRecursive (Algorithm 3).

Running GeodeMaps-Dynamic on a 3.60 GHz Pentium 4 processor with 2.0

GB RAM, it took 0.4 s on average to compute each geodesic distance between

31 trees with 43 leaves each [31]. The trees used represented possible ancestral

histories of bacteria and archaea.

5.2.2 GeodeMaps-Divide: a Divide And Conquer Al-

gorithm

If A is an element in K(T1, T2), then the trees in the orthant corresponding to

A, OA = O(CT1(A) ∪ A), share the splits A with T2. This inspires the following

75

algorithm, which is called GeodeMaps-Divide. Choose some minimal element

of P (T1, T2), and add the splits in this equivalence class to T1 by first dropping

the incompatible splits. For example, if we choose to add the split set F1, then

we must drop XT1(F1). The trees in this orthant OF1 now have splits F1 in com-

mon with T2. Apply Corollary 5.1.6 to divide the problem into subproblems along

these common splits. For each subproblem, recursively call GeodeMaps-Divide.

Since some subproblems will be encountered many times, store the geodesics for

each solved subproblem using a global hash table. By Theorem 5.1.5, we can find

the geodesic between the original trees by combining the geodesics from each com-

ponent subproblem in polynomial time. GeodeMaps-Divide is given in detail

as Algorithm 4 in Section A.3 of the appendix.

For an example of how this algorithm works, consider the trees T1 and T2

in Figures 5.4(a) and 5.4(b). These trees belong to the family of trees given in

Figure 3.3, which have an exponential number of elements in their path posets.

Suppose we first chose the minimal element f3. We drop e4 from T1 and add f3 to

get the tree T in Figure 5.4(c). T and T2 now share the split f3, so we can apply

Corollary 5.1.6 to decompose the problem into two subproblems. Notice that the

incompatibility poset can also be decomposed, as illustrated in Figure 5.4(e).

Each subproblem corresponds to an element in K(T1, T2), and GeodeMaps-

Divide is polynomial in the number of subproblems solved. Hence an upper

bound on the complexity of GeodeMaps-Divide is the number of elements in

K(T1, T2). This was shown to be exponential in the number of leaves by the

family of trees presented in Figure 3.3. However, for this particular family of

trees, one can show that GeodeMaps-Divide has a polynomial runtime, while

GeodeMaps-Dynamic has an exponential runtime. Now consider the family of

76

0

21 43 65 87

e1
e4

e2

e3
e6

e5

(a) Tree T1.

1 2 34 5 6 7

8

0

f1

f2

f3

f4
f6

f5

(b) Tree T2.

0

21 43

6

5

87

e1

f3

e2

e3 e6

e5

(c) Tree T .

f1 - {e2} f3 - {e4} f5 - {e6}

f2 -

 {e1, e2}

f6 -

 {e4, e5, e6}

f4 -

{e2, e3, e4}

(d) Incompatibility poset P (T1, T2).

f1 - {e2} f3 - {e4} f5 - {e6}

f2 -

 {e1, e2}

f6 -

 {e4, e5, e6}

f4 -

{e2, e3, e4}

(e) Incompatibility poset P (T1, T2) after first
step.

Figure 5.4: An example illustrating the first step of GeodeMaps-Divide.

trees illustrated by Figure 5.5, where T1 and T2 are in Tn−1 and n ≥ 12 is divisible

by 3. We can add f1, f2, ... , fn
3
−1, or fn

3
by dropping exactly the edge e1, e2, ... ,

en
3
−1, or en

3
, respectively. However, the added f edge does not divide the new tree

into non-trivial subproblems, and thus GeodeMaps-Divide cannot divide the

original problem into non-trivial subproblems. Therefore, GeodeMaps-Divide

will solve each subproblem created by adding a different subset of the edges in

{f1, f2, ..., fn
3
−1, fn

3
} during the first steps. There are 2

n
3 such subproblems, and

77

0

n-1
1

n-2
n-3n-4

n-5
n-6n-7

7

2
654

3

e1
en/3+1

en/3+2
e2

en/3+3

en/3+4
e3

en/3-1

en-4en-3

en/3

(a) Tree T1.

0

n-1

1

n-2n-3

n-4

n-5n-6
n-7

7

2

6

5

43

f1

fn/3+1

fn/3+2

f2

fn/3+3

f3

fn/3-1

fn-4

fn-3
fn/3

fn-5

(b) Tree T2.

Figure 5.5: A family of trees for which GeodeMaps-Divide has an expo-
nential runtime.

hence GeodeMaps-Divide can be exponential in the number of leaves in T1 and

T2.

Running GeodeMaps-Divide on a 3.60 GHz Pentium 4 processor, with 2.0

GB of RAM, it took 0.2 s on average to compute the geodesic distance between

each pair of trees in the data set supplied by [31]. This average computation time

is faster than that of GeodeMaps-Dynamic. However, GeodeMaps-Divide is

a more memory-intensive algorithm if we store the geodesic for each subproblem.

We can reduce the required memory at the expense of the runtime, by instead

storing a pointer to the (sub)subproblems used to solve each subproblem.

We now give a preliminary comparison of GeodeMaps-Divide with the al-

gorithm of Kupczok et al. [29], GeoMeTree, using the same data set [31]. Cer-

tain geodesic distances could not be computed by GeoMeTree within 24 hours

on the 3.60 GHz Pentium 4 processor. For 30 of the geodesic distance computa-

tions, the average time per computation was 10 517s using GeoMeTree, while

78

the average time per computation for those same 30 inter-tree distances using

GeodeMaps-Divide was 0.2s.

5.3 Conclusion

We have used the combinatorics and geometry of the tree space Tn to develop two

algorithms for computing the geodesic distance between two trees in this space. In

doing so, we have provided a linear time algorithm for computing the shortest path

in the subspace V (Rn) of Rn, which will help characterize when the general problem

of finding the shortest path through Rn with obstacles is NP-hard. Furthermore,

our practical implementation will be of use to any researcher wishing to use the

tree space framework in their work with phylogenetic trees. For example, Yap

and Pachter [57] and Suchard [52] have explicitly mentioned this as a direction for

future work.

79

APPENDIX A

ALGORITHM DETAILS

A.1 PathSpaceGeo

PathSpaceGeo is presented below in pseudo-code as Algorithm 1. This is the

explicit algorithm corresponding to Theorem 4.2.5, and it computes the length of

the shortest path between (a1, ..., ak) and (−b1, ...,−bk) in V (Rk), where ai, bi ≥ 0

for all 1 ≤ i ≤ k. In Chapter 4, we showed that this is equivalent to computing the

length of the geodesic through the path space ∪k
i=0O(Ei∪Fi), where ai = ‖Ei−1\Ei‖

and bi = ‖Fi\Fi+1‖ for all 1 ≤ i ≤ k. We sometimes think of PathSpaceGeo

as returning ratioList, instead of its distance corresponding to it. The method

combine
(

a1

b1
, a2

b2

)
returns the ratio

√
a2
1+a2

2√
b21+b22

. Note that this operation is associa-

tive. If ratioList contains the ratios a1

b1
, ..., am

bm
, then distance(ratioList) returns√∑m

i=1(ai + bi)2.

Algorithm 1: PathSpaceGeo calculates the length of the shortest path in
V (Rk) from A = (a1, ..., ak) to B = (−b1, ...,−bk).

1: Input: (a1, ..., ak), (−b1, ...,−bk)
2: ratioList ← a doubly-linked list where the elements are the ratios a1

b1
, ..., ak

bk
,

and ai

bi
links to ai+1

bi+1
for all 1 ≤ i ≤ k − 1.

3: currentRatio ← a2

b2
4: while currentRatio 6= null do
5: if (currentRatio.previous 6= null) && (currentRatio < currentRa-

tio.previous) then
6: currentRatio ← combine(currentRatio, currentRatio.previous)
7: else
8: currentRatio ← currentRatio.next
9: end if

10: end while
11: return distance(ratioList)

80

A.2 GeodeMaps-Dynamic

GeodeMaps-Dynamic uses dynamic programming techniques to compute the

geodesic between two trees T1 and T2 with no common edges. It is described in

Section 5.2.1, and presented below in pseudo-code as Algorithm 2, which recur-

sively calls Algorithm 3. In Algorithm 2, a path stores a chain of elements in

K(T1, T2) starting at ∅. These elements correspond to orthants, so a path can

also be thought of as part of a maximal path space. path.dist() returns the dis-

tance of the path space geodesic through the path space corresponding to path.

The parents of an element A in K(T1, T2) are the elements that cover A. The

hash table D stores the shortest distance between T (XT1(A)) and T (A) for each of

element A in K(T1, T2) that has been computed so far. This distance is returned

by D[A], while D[A]← dist stores the distance dist for element A.

Algorithm 2: GeodeMaps-Dynamic

1: Input: P (T1, T2)
2: Initialize: D = a hash table storing the shortest distance found between
T (XT1(A)) and T (A) for each A in K(T1, T2), geoPath = the shortest path
found between T1 and T2

3: dpRecursive(∅, an empty path)
4: return geoPath

A.3 GeodeMaps-Divide

GeodeMaps-Divide uses divide and conquer techniques to compute the geodesic

between two trees T1 and T2 with no common edges. It is presented in pseudo-

code as Algorithm 4, which recursively calls Algorithm 5. In these algorithms, any

variable referred to as a geodesic holds the carrier of this geodesic, from which we

81

Algorithm 3: The recursive method dpRecursive in GeodeMaps-Dynamic.

1: Input: an element A in K(T1, T2), path = the chain followed in K(T1, T2) from
∅ to A.

2: parents← the minimal elements of P (T (XT1(A)), T (A)).
3: if A = ET2 then
4: if path.dist() < geoPath.dist() then
5: geoPath← path
6: end if
7: return
8: end if
9: sortedParents ← parents, ordered by sorting the ratios associated with the

transition from A to each parent from least to greatest
10: for i = 1 to sortedParents.size do
11: dist← (path + sortedParents[i]).dist()
12: if dist < D[sortedParents[i]] then
13: D[sortedParents[i]]← dist
14: path← path+ sortedParents[i]
15: dpRecursive(sortedParents[i], path)
16: end if
17: end for
18: return

can reconstruct the actual geodesic. The merge method applies Theorem 5.1.5 to

combine two orthogonal geodesics. The global hash table G stores the geodesic

solving each subproblem. G[A] returns the geodesic for the subproblem associated

with A.

Algorithm 4: GeodeMaps-Divide

1: Input: two trees T1 and T2

2: Initialize: G = a hash table that stores the geodesic computed for each sub-
problem

3: return dcRecursive(T1, T2)

82

Algorithm 5: The recursive method dcRecursive in GeodeMaps-Divide.

1: Input: two trees T1 and T2 with the same leaf sets
2: Initialize: minParentGeo = null, parentGeo as new geodesic
3: for each parentNode that covers ∅ in K(T1, T2) do
4: if G[parentNode] 6= null then
5: parentGeo← G[parentNode]
6: else
7: edges← edges common to parentNode and T2

8: pairsOfSubtrees ← pairs of subtrees formed by deleting edges from
parentNode and T2

9: for each (T ′1, T
′
2) in pairsOfSubtrees do

10: merge(parentGeo, dcRecursive(T ′1, T
′
2))

11: end for
12: parentGeo← parentNode+ parentGeo
13: end if
14: if (G[parent] = null) or (parentGeo.dist() < G[parent].dist()) then
15: G[parent]← parentGeo
16: end if
17: end for
18: return G[parent]

83

BIBLIOGRAPHY

[1] N. Amenta, M. Godwin, N. Postarnakevich, and K. St. John. Approximating
geodesic tree distance. Information Processing Letters, 103:61–65, 2007.

[2] A.C. Barbrook, C.J. Howe, N. Blake, and P. Robinson. The phylogeny of The
Canterbury Tales. Nature, 394:839, 1998.

[3] L. Billera, S. Holmes, and K. Vogtmann. Geometry of the space of phylo-
genetic trees. Advances in Applied Mathematics, 27:733–767, 2001.

[4] G. Birkhoff. Lattice Theory. American Mathematical Society, 1967.

[5] M. Bordewich and C. Semple. On the computational complexity of the rooted
subtree prune and regraft distance. Annals of Combinatorics, 8:409–423, 2004.

[6] M.R. Bridson and A. Haefliger. Metric Spaces of Non-positive Curvature.
Springer-Verlag, 1999.

[7] P. Buneman. The recovery of trees from measures of dissimilarity. In Math-
ematics in the Archaeological and Historical Sciences, pages 387–395. Edin-
burgh University Press, Edinburgh, 1971.

[8] J. Canny and J. Reif. Lower bounds for shortest path and related problems.
In Proceedings of the 28th Annual Symposium on Foundations of Computer
Science (FOCS), 1987.

[9] B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp, L. Wang, and L. Zhang. Com-
puting distances between evolutionary trees. In Handbook of Combinatorial
Optimization, pages 35–76. Kluwer Academic Publishers, 1998.

[10] W.H.E. Day. Optimal algorithms for comparing trees with labeled leaves.
Journal of Classification, 2:7–28, 1985.

[11] M. Dror, A. Efrat, A. Lubiw, and J. Mitchell. Touring a sequence of polygons.
In Proceedings of the 35th Annual ACM Symposium on Theory of Computing
(STOC), 2003.

[12] M. Dunn, A. Terrill, G. Reesink, R.A Foley, and S.C. Levinson. Structural
phylogenetics and the reconstruction of ancient language history. Science,
309:2072–2075, 2005.

84

[13] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological sequence analy-
sis: Probabilistic models of proteins and nucleic acids. Cambridge University
Press, 1998.

[14] J.A. Eisen. Phylogenomics: Improving functional predictions for uncharac-
terized genes by evolutionary analysis. Genome Research, 8:163–167, 1998.

[15] J. Felsenstein. Evolutionary trees for DNA sequences: a maximum likelihood
approach. J. Mol. Evol., 17:368–376, 1981.

[16] J. Felsenstein. Confidence limits on phylogenies: An approach using the boot-
strap. Evolution, 39:783–791, 1985.

[17] J. Felsenstein. Phylogenies and the comparative method. Am. Nat., 125:1–15,
1985.

[18] W.M. Fitch. On the problem of discovering the most parsimonious tree. The
American Naturalist, 111:223–257, 1977.

[19] B. Gaschen, J. Taylor, K. Yusim, B. Foley, F. Gao, D. Lang, V. Novitsky,
B. Haynes, B.H. Hahn, T. Bhattacharya, and B. Korber. Diversity consider-
ations in HIV-1 vaccine selection. Science, 296:2354–2360, 2002.

[20] E. Haeckel. Generelle Morphologie der Organismen: Allgemeine Grundzuge
der orgnischen Formen-Wissenschaft, mechanisch begrundet durch die von
Charles Darwin, reformite Descendenz-Theorie. Georg Riemer, Berlin, 1866.

[21] J. Hein. Reconstructing evolution of sequences subject to recombination using
parsimony. Mathematical Biosciences, 98:185–200, 1990.

[22] M.D. Hendy and D. Penny. A framework for the quantitative study of evolu-
tionary trees. Syst. Zool., 38:297–309, 1989.

[23] J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths
in the plane. SIAM J. Comput., 28:2215–2256, 1999.

[24] S. Holmes. Statistics for phylogenetic trees. Theor. Popul. Biol., 63:17–32,
2003.

[25] J.P. Huelsenbeck and F. Ronquist. MRBAYES: Bayesian inferfence of phylo-
genetic trees. Bioinformatics, 17:754–755, 2001.

85

[26] J. Ingram. Unpublished research report, Warwick University. 2004.

[27] E.A. Kellogg. Evolutionary history of the grasses. Plant Physiology, 125:1198–
1205, 2001.

[28] M.K. Kuhner and J. Felsenstein. A simulation comparison of phylogeny algo-
rithms under equal and unequal evolutionary rates. Mol. Biol. Evol., 11:459–
468, 1994.

[29] A. Kupczok, A. von Haeseler, and S. Klaere. An exact algorithm for the
geodesic distance between phylogenetic trees. J. Theor. Biol., 2008. Accepted.

[30] S.M. Lehman. Conservation biology of malagasy strepsirhines: A phylogenetic
approach. Am. J. Phys. Anthr., 130:238–253, 2006.

[31] Philippe Lopez. Personal communications, 2003.

[32] R. Mace and C.J. Holden. A phylogenetic approach to cultural evolution.
TRENDS in Ecology and Evolution, 20:116–121, 2005.

[33] J.S.B. Mitchell. Geometric shortest paths and network optimization. In Hand-
book of Computational Geometry, pages 633–701. Elsevier Science, 2000.

[34] J.S.B. Mitchell and M. Sharir. New results on shortest paths in three dimen-
sions. In 20th Annual Symposium on Computational Geometry, 2004.

[35] D.C. Nickle, M.A. Jensen, G.S. Gottlieb, D. Shriner, G.H. Learn, A.G. Ro-
drigo, and J.I. Mullins. Consensus and ancestral state HIV vaccines. Science,
299:1515–1517, 2003.

[36] D. Penny and M.D. Hendy. The use of tree comparison metrics. Syst. Zool.,
34:75–82, 1985.

[37] V. Polishchuk and J.S.B. Mitchell. Touring convex bodies - a conic program-
ming solution. In 17th Canadian Conference on Computational Geometry,
2005.

[38] A. Rambaut, D. Posada, K.A. Crandall, and E.C. Holmes. The causes and
consequences of HIV evolution. Nature, 5:52–61, 2004.

86

[39] K. Rexová, D. Frynta, and J. Zrzavý. Cladistic analysis of languages: Indo-
European classification based on lexicostatistical data. Cladistics, 19:120–127,
2003.

[40] D.F. Robinson. Comparison of labeled trees with valency three. J. Combina-
torial Theory, 11:105–119, 1971.

[41] D.F. Robinson and L.R. Foulds. Comparison of weighted labelled trees. In
Combinatorial Mathematics VI, volume 748 of Lecture Notes in Mathematics,
pages 119–126, Berlin, 1979. Springer.

[42] D.F. Robinson and L.R. Foulds. Comparison of phylogenetic trees. Mathe-
matical Biosciences, 53:131–147, 1981.

[43] F. Ronquist and J.P. Huelsenbeck. MrBayes 3: Bayesian phylogenetic infer-
ence under mixed models. Bioinformatics, 19:1572–1574, 2003.

[44] N. Saitou and M. Nei. The neighbor-joining method: A new method for
reconstructing phylogenetic trees. Mol. Biol. Evol., 4:406–425, 1987.

[45] C. Semple and M. Steel. Phylogenetics. Oxford University Press, Oxford,
2003.

[46] D.D. Sleator, R.E. Tarjan, and W.P. Thurston. Rotation distance, triangula-
tions, and hyperbolic geometry. J. Am. Math. Soc., 1:647–681, 1988.

[47] M. Spencer, E.A. Davidson, A.C. Barbrook, and C.J. Howe. Phylogenetics of
artificial manuscripts. Theoretical Biology, 227:503–511, 2004.

[48] R.P. Stanley. Enumerative Combinatorics, volume 1. Cambridge University
Press, 1997.

[49] A. Staple. Computing distances in tree space. Unpublished research report,
Stanford University, 2004.

[50] K. Strimmer and A. von Haeseler. Quartet puzzling: A quartet maximum
likelihood method for reconstructing tree topologies. Mol. Biol. Evol., 13:964–
969, 1996.

[51] J.A. Studier and K.J. Keppler. A note of the neighbor-joining algorithm of
Saitou and Nei. Mol. Biol. Evol., 5:729–731, 1988.

87

[52] M.A. Suchard. Stochastic models for horizontal gene transfer. Genetics,
170:419–431, 2005.

[53] D.L. Swoffold, G.J. Olsen, P.J. Waddell, and D.M. Hillis. Molecular System-
atics, chapter 11, pages 407–514. Sinauer Associates, Inc., 2nd edition, 1996.

[54] R.I. Vane-Wright, C.J. Humphries, and P.H. Williams. What to protect? -
systematics and the agony of choice. Biol. Conserv., 55:235–254, 1991.

[55] K. Vogtmann. Geodesics in the space of trees. Available at
www.math.cornell.edu/vvogtmann/papers/TreeGeodesicss/index.html,
2007.

[56] M.S. Waterman and T.F. Smith. On the similarity of dendrograms. J. Theor.
Biol., 73:789 – 800, 1978.

[57] V.B. Yap and L. Pachter. Identification of evolutionary hotspots in the rodent
genomes. Genome Research, 14:574–579, 2004.

88

