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Abstract. We describe an algorithm to compute the geodesics in an arbitrary CAT(0)
cubical complex. A key tool is a correspondence between cubical complexes of global
non-positive curvature and posets with inconsistent pairs. This correspondence also gives
an explicit realization of such a complex as the state complex of a reconfigurable system,
and a way to embed any interval in the integer lattice cubing of its dimension.

1. Introduction

A cubical complex is a polyhedral complex where all cells are cubes and all attaching
maps are injective. Informally speaking, it is just like a simplicial complex, except that
the cells are cubes instead of simplices. Every cubical complex has an intrinsic metric
induced by the Euclidean L2 metric on each cube. A polyhedral complex is CAT(0) if
and only if it is globally non-positively curved. This implies that there is a unique local
geodesic between any two points. CAT(0) cubical complexes make frequent appearances
in mathematics and its applications, for instance in geometric group theory, in the theory
of reconfigurable systems, and in phylogenetics. The main goal of this paper is to describe
an algorithm for computing geodesics in CAT(0) cubical complexes.

A prototypical example of CAT(0) cubical complexes comes from “reconfigurable sys-
tems”, a broad family of systems which change according to local rules. Examples include
robotic motion planning, the motion of non-colliding particles in a graph, and phyloge-
netic tree mutation, among many others. In many reconfigurable systems, the parameter
space of all possible positions of the system naturally takes the shape of a CAT(0) cubical
complex X [10]. Finding geodesics in X is equivalent to finding the optimal way to get
the system from one position to another one under this metric.

Our algorithm appears in Section 7; before we can describe it, we need a number
of preliminary steps. First, in Section 2, we develop a new combinatorial description
of CAT(0) cubical complexes in terms of distributive lattices of partially ordered sets
(posets) with inconsistent pairs. In Section 3 we give two applications of this description.
In Section 3.1 we develop the notion of an interval between two cubes in a CAT(0) cubical
complex. The interval contains the geodesic between any point in the first cube and any
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point in the second cube. The interval is a new CAT(0) cubical complex which corresponds
to an ordinary distributive lattice (no inconsistent pairs). This interpretation allows us
to prove the conjecture [17] that a d-dimensional interval embeds in the lattice cubing Zd.
In Section 3.2 we review reconfigurable systems and their state complexes, and show that
our combinatorial description of a CAT(0) cubical complex provides a way to realize it as
such a state complex.

In Section 4 we introduce valid cube sequences, the paths of cubes that a geodesic can
pass through. In Section 5.1, we describe locally the geodesics passing through a given set
of cubes. In Section 5.2 we give a criterion to determine whether the geodesic through a
given sequence of cubes is the global geodesic; and if it is not, to detect a better sequence
of cubes for it to pass through. This description of geodesics and check for improvement
generalizes the main criteria from [20] for determining geodesics in phylogenetic tree space.
This provides a characterization of the geodesic between two points.

After reviewing touring problems in Section 6, we describe our algorithm in Section 7.
We compute the shortest path through a given sequence of cubes, translating this into a
fixed order touring problem, which can be solved in polynomial time using semidefinite
programming [21]. We then use the criteria of Sections 5.1 and 5.2 to determine whether
this is the global geodesic, and if it is not, to improve it.

Unlike in the case of tree space, where the resulting touring problem can be solved in
linear time [19] and all break points have constructible coordinates (obtained by a sequence
of quadratic field extensions), the touring problem for general CAT(0) cubical complexes
has intrinsic algebraic complexity. In particular, geodesics in general CAT(0) complexes
can have break points whose coordinates have nonsolvable Galois groups, implying that
the iterative algorithms are probably essential for this problem, since there is no exact
“simple” formula for the geodesic. We explore this algebraic complexity in Section 8.

Related results in the literature. The problem of finding the shortest path between
two points in some Euclidean region is very well studied in two dimensions. In a number
of general situations in two dimensions, the shortest path algorithm is polynomial. For
example, the Euclidean shortest path between polygonal obstacles in the plane can be
computed in time O(n log n), where n is the number of vertices in the obstacle polygons
[12]. For a detailed survey, see [15]. Recently, Chepoi and Maftuleac [6] gave a polynomial
algorithm for computing the shortest path through a CAT(0) rectangular complex, in
which each cell is 2–dimensional.

In three or more dimensions, computing Euclidean shortest paths through a region with
obstacles is NP-complete [5]. Indeed, this problem is NP-complete in 3 dimensions even
when the obstacles are restricted to being disjoint axis-aligned boxes [16]. Ghrist and
Lavalle [9] observed, however, that no example in [16] that is NP-hard is a CAT(0) space.

All known polynomiality results in higher dimensions are for CAT(0) spaces. For exam-
ple, the shortest path through a cube-curve, a sequence of face-connected 3-dimensional
cubes that does not intersect itself, can be computed in linear time [13]. For general
CAT(0) cube complexes, edge geodesics (geodesics along the edges of the cubes) are well
understood, and easily constructed in terms of Niblo and Reeves’s normal cube paths [18].
These play an important role in geometric group theory, where they are used to study
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groups acting on CAT(0) cube complexes. Much less is known about geodesics in the
L2-metric. An important, well understood example is the space of phylogenetic trees of
Billera, Holmes, and Vogtmann [2], where geodesics can be computed in polynomial time
[20]. This result was generalized to any CAT(0) orthant space; i.e., to any set of orthants
arranged around a common origin that is CAT(0) [14]. To the best of our knowledge, our
algorithm is the first to compute geodesics in an arbitrary CAT(0) cubical complex.

Acknowledgments. We would like to acknowledge Rick Scott for valuable discussions on
CAT(0) cubical complexes, and for an excellent talk at the Bay Area Discrete Mathematics
Day in 2007 which first inspired Theorems 2.5 and 3.5.

2. Combinatorial Geometry of CAT(0) Cubical Complexes

We begin by defining CAT(0) spaces, the spaces of global non-positive curvature that
we are interested in. Let X be a metric space where there is a unique geodesic (shortest)
path between any two points. Consider a triangle T in X of side lengths a, b, c, and build
a comparison triangle T ′ with the same lengths in Euclidean plane. Consider a chord of
length d in T which connects two points on the boundary of T ; there is a corresponding
comparison chord in T ′, say of length d′. If for every triangle T in X and every chord in
T we have d ≤ d′, we say that X is CAT(0).

Testing whether a general metric space is CAT(0) is quite subtle. However, Gromov
[11] proved that this is easier if the space is a cubical complex. In a cubical complex, the
link of any vertex is a simplicial complex. We say that a simplicial complex ∆ is flag if it
has no empty simplices; i.e., if any d + 1 vertices which are pairwise connected by edges
of ∆ form a d-simplex in ∆.

Theorem 2.1 (Gromov). A cubical complex is CAT(0) if and only if it is simply connected
and the link of any vertex is a flag simplicial complex.

We start by giving a global version of Gromov’s theorem: we propose a combinatorial
description of CAT(0) cube complexes, which is very similar but more compact than the
one given by Sageev [24] and Roller [23]. We first offer an informal description of our
construction, and then prove its correctness by showing that it is equivalent to theirs.

We first describe the hyperplanes in a CAT(0) cube complex X, following [24]. Given
an n-cube Q in X and an edge e in Q, let Q(e) denote the (n− 1)-dimensional subcube
obtained by intersecting Q with the hyperplane orthogonal to e which passes through
the midpoint of e. This defines an equivalence relation on the edges of each cube Q by
setting e ∼ e′ if Q(e) = Q(e′). We extend this transitively to an equivalence relation on
all the edges of X. Each equivalence class e of edges defines a hyperplane H(e) = ∪Q(e)
where the union is over all e ∈ e and all cubes Q containing e. Let H(X) be the set
of hyperplanes of X. Figure 1 shows a cube complex with six hyperplanes; one of the
hyperplanes is shaded.

Now fix a vertex v of X. We call (X, v) a rooted CAT(0) cubical complex. To each
hyperplane H one can associate a unique vertex h which is closest to v and on the opposite
side of H. These elements are highlighted in Figure 2 and numbered 1, 2, 3, 4, 5, 6. We
regard the vertices of X as a poset L(X, v) with minimum element v, by decreeing that
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Figure 1. A cube complex X and its hyperplanes.

u1 < u2 if there is an edge geodesic (a shortest path along the edges of X) from vertex v
to vertex u2 which passes through u1. Observe that the marked elements are the elements
which cover exactly one element in the poset. In fact, from the proof of the upcoming
Theorem 2.5, it follows that L(X, v) is a meet-semilattice, so we have a bijection between
the hyperplanes of X and the join irreducible elements of L(X, v).
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Figure 2. A cube complex X and its join irreducible elements.

The situation is now reminiscent of Birkhoff’s theorem, which gives a bijection between
distributive lattices and posets, as we now recall. An order ideal or downset I of P is a
subset of P such that a ≤ b and b ∈ I imply a ∈ I. For any poset P , the set J(P ) of
order ideals of P , partially ordered by inclusion, is a distributive lattice. Conversely, if L
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is a distributive lattice and P is the set of join-irreducible elements, ordered as in L, then
L ∼= J(P ). One suspects that this analogy is particularly relevant in our situation since
CAT(0) cube complexes “look like” distributive lattices.

We wish to imitate Birkhoff’s theorem, and ask whether one can determine the cube
complex X from the join-irreducible elements of the poset L(X, v), or equivalently from
its hyperplanes H. There is a natural way of labelling each vertex x of X: its index
indicates which join-irreducible elements are less than or equal to x in the poset L(X, v).
Equivalently, its index indicates which hyperplanes separate x from v. This is illustrated
in Figure 2.

The label of each vertex is indeed an order ideal in the subposet P (X, v) of join-
irreducible elements of L(X, v). However, not every order ideal arises in this way; so the
question becomes: Which order ideals of P (X, v) appear as vertex labels in X? The key
observation is that certain pairs of hyperplanes cannot separate the same vertex x from v.
Thus, for example, no vertex label in Figure 2 simultaneously contains the pair of indices
3 and 6, because it is impossible to cross both hyperplanes 3 and 6 starting from v. We
keep track of those pairs.

The following definition makes this precise. Recall that a poset P is locally finite if
every interval [i, j] = {k ∈ P : i ≤ j ≤ k} is finite, and it has finite width if every
antichain (set of pairwise incomparable elements) is finite.

Definition 2.2. A poset with inconsistent pairs is a locally finite poset P of finite width,
together with a collection of inconsistent pairs {p, q}, such that:

(1) If p and q are inconsistent, then there is no r such that r ≥ p and r ≥ q.
(2) If p and q are inconsistent and p′ ≥ p, q′ ≥ q, then p′ and q′ are inconsistent.

In particular, notice that any two inconsistent elements must be incomparable.
The Hasse diagram of a poset with inconsistent pairs is obtained by drawing the poset,

and connecting each minimal inconsistent pair with a dotted line. An inconsistent pair
{p, q} is minimal if there is no other inconsistent pair {p′, q′} with p′ ≤ p and q′ ≤ q.

1

2

4

65

3

Figure 3. A poset with inconsistent pairs.

The hyperplanes of a rooted CAT(0) cube complex (X, v) then form a poset with
inconsistent pairs P (X, v). For hyperplanes i and j, we have that i < j if, starting from
v, one must cross hyperplane i before crossing hyperplane j; and i and j are inconsistent
if it is impossible to cross them both starting from v. This poset is shown in Figure 3 for
the rooted cube complex of Figure 2.
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An antichain A of P is a subset containing no two comparable elements. Order ideals
or antichains which contain no inconsistent pair will be called consistent ; they will be
particularly important to us.

There is a bijection between consistent order ideals and consistent antichains: The
maximal elements of a consistent order ideal I form a consistent antichain A =: Imax, and
I can be recovered from A as I = P≤A = {p ∈ P | p ≤ a for some a ∈ A}.

Definition 2.3. If P is a poset with inconsistent pairs, we construct the cube complex
of P , which we denote XP . The vertices of XP are identified with the consistent order
ideals of P . There will be a cube C(I,M) for each pair (I,M) of a consistent order ideal
I and a subset M ⊆ Imax, where Imax is the set of maximal elements of I. This cube has
dimension |M |, and its vertices are obtained by removing from I the 2|M | possible subsets
of M . These cubes are naturally glued along their faces according to their labels.

For example, if P is the poset of Figure 3 then XP is the complex of Figure 2.
The following lemma is straightforward.

Lemma 2.4. Let J be a consistent order ideal and let N ⊆ Jmax. The faces of the cube
C(J,N) in the cubical complex XP are the 3|N | cubes C(J −N1, N −N1−N2), where N1

and N2 are disjoint subsets of N . The maximal cubes in XP correspond to the maximal
consistent antichains A of P ; they are of the form C(P≤A, A).

For example, {1, 3, 4} is a maximal consistent antichain in the poset of Figure 3, which
corresponds to the maximal 3-cube C({1, 2, 3, 4}, {1, 3, 4}) in Figure 2.

Now we are ready for the main theorem of this section.

Theorem 2.5. (Combinatorial description of CAT(0) cubical complexes.) There is a
bijection between posets with inconsistent pairs and rooted CAT(0) cube complexes, given
by the map P 7→ XP .

While it is possible to prove Theorem 2.5 directly, it will be easier to recall Sageev and
Roller’s description of CAT(0) cube complexes [23, 24], and prove that ours is equivalent
to theirs.

A halfspace system [24] or pocset [23] is a triple H = (H,≤, ∗) consisting of a set H of
halfspaces, a locally finite poset ≤ on H of finite width, and an order-reversing involution
∗, denoted h→ h∗, such that two halfspaces h, k ∈ H (coming from different hyperplanes)
satisfy at most one of the four inequalities:

h ≤ k, h ≤ k∗, h∗ ≤ k, h∗ ≤ k∗.

In particular h and h∗ must be incomparable for any h ∈ H.
Each element of H is called a halfspace, and two halfspaces are called nested if one of

the inequalities above holds, or transversal if none of them hold. A pair {h, h∗} is called
a hyperplane. Let H0 be the set of hyperplanes.

It will be useful for us to choose an arbitrary orientation for each hyperplane, and
label the elements of the pair h+ and h−. We will do this from now on, and denote the
hyperplane h = {h+, h−}.
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Figure 4. A halfspace system H.

Once again, this construction is motivated by the geometry of a CAT(0) cube complex
X, as illustrated in Figure 5. Each combinatorial hyperplane h = {h+, h−} represents
a geometric hyperplane of X, which divides X into two halfspaces h+ and h−, with an
arbitrary choice of sign. The poset on H represents the poset of containment of these
geometric halfspaces. For example, Figure 4 is the poset of the halfspaces of the cube
complex of Figure 5.
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Figure 5. The CAT(0) cube complex XH of the halfspace system H of
Figure 4 ; for brevity, vertex 1−2−3−4+5−6+ is denoted −−−+−+.

To a halfspace system H, Roller and Sageev associate a cube complex XH . Its vertices
v = {hv(h) : h ∈ H0} correspond to the choices of a sign for each element of H0 such that
hs 6≤ k−t for all hs and kt in v. Recall that an order filter or upset I of P is a subset of
P such that a ≥ b and b ∈ I imply a ∈ I. Then each vertex u of XH corresponds to an
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order filter of the poset H which contains exactly one halfspace from each hyperplane.
Geometrically, in the cube complex, these are the halfspaces containing u.

To describe the cubes that a vertex u is in, regard u as an order filter F of the poset
H. Choose any d minimal elements of F . These d elements are pairwise transversal
halfspaces, and one can change their signs in any way to obtain the 2d vertices of a d-cube
containing u.

Maximal cubes of XH correspond to maximal sets A of pairwise transverse hyperplanes
of H. The order filter H≥A = {hs ∈ H : hs ≥ a+ or hs ≥ a− for some a ∈ A} contains
both halfspaces of each hyperplane in A and exactly one halfspace of each hyperplane not
in A. The vertices of the cube correspond to the 2|A| ways to choose a halfspace for each
hyperplane in A and remove them from H≥A.

For example, A = {1, 3, 4} is a maximal set of pairwise transverse hyperplanes in the
halfspace system of Figure 4. It corresponds to the three-dimensional cube in Figure 5,
with fixed vertex labels 2−, 5+ and 6+ (which are above A in H), and arbitrary choices of
signs for hyperplanes 1, 3, and 4.

Theorem 2.6 (Sageev [24], Roller [23]). If H is a halfspace system then XH is a CAT(0)
cube complex. Conversely, every CAT(0) cube complex arises in this way from a halfspace
system.

Now we are ready to prove the main result of this section.

Proof of Theorem 2.5. Say a halfspace system H is acyclic if it has no order relations of
the form a+ < b−. This is equivalent to saying that the all-positive set {h+ : h ∈ H0} is
a vertex of XH , which explains the terminology, borrowed from oriented matroid theory.

We proceed in three steps, as follows:
a. Every CAT(0) cube complex can be obtained from an acyclic halfspace system.
b. Posets with inconsistent pairs are in bijection with acyclic halfspace systems.
c. The cube complex that Theorem 2.5 associates to a poset with inconsistent pairs is
the same one that Theorem 2.6 assigns to its corresponding acyclic halfspace system.

a. Let X = XH be any CAT(0) cube complex, which comes from an arbitrary halfspace
system H. Fix a vertex v of XH , and reverse the labels of h+ and h− for each hyperplane
h such that h+ ∈ v. The resulting halfspace system H ′ is acyclic, and it is clear that XH

and XH′ are equal up to the aforementioned relabeling.

b. Let H be an acyclic halfspace system, and let v0 = {h+ : h ∈ H0} be the all-positive
vertex of XH . Consider the poset on H0 which one obtains by restricting the poset (H,≤)
to H+, and decree the pair {p, q} to be inconsistent whenever p− < q+ in H. To see that
H0 is indeed a poset with inconsistent pairs, we need to check two things:

1. If p and q are inconsistent, then p and q have no common upper bound in H0: If
r was such an upper bound, we would have p+ ≤ r+ and q+ ≤ r+ in H, which together
with p− < q+ would give p−, p+ ≤ r+ contradicting the definition of a halfspace system.

2. If p and q are inconsistent, any p′, q′ ∈ H0 with p′ ≥ p and q′ ≥ q are inconsistent:
We have (p′)− ≤ p− by the order reversing involution, p− ≤ q+ by the inconsistency of p
and q, and q+ ≤ (q′)+ by assumption. Therefore (p′)− ≤ (q′)+ as desired.
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To recover H from H0, make a positive and a negative copy of each element of H0, and
introduce the following order relations on each 4-tuple {a+, a−, b+, b−}: If a < b in H0,
let a+ < b+ and b− < a− in H. If a and b are inconsistent in H0, let a− < b+ and b− < a+

in H. Finally, if a and b are incomparable but consistent in H0, let them be transverse
in H, so {a+, a−, b+, b−} are pairwise incomparable in H.

For example, this bijection maps the poset with inconsistent pairs in Figure 3 to the
acyclic halfspace system of Figure 4.

c. It remains to show that the complex XH of Roller and Sageev is isomorphic to
the complex XH0 that we construct. First we establish a bijection between the vertices
of these complexes. To each vertex w = {hw(h) : h ∈ H} of XH we associate the set
S(w) ⊆ H0 of hyperplanes h such that h− ∈ v. To show that S(w) is an order ideal of
H0, assume that a ≤ b in H0 and b ∈ S(w). This means that b− ∈ w and a+ ≤ b+ in H,
which implies b− ≤ a− in H. Since H is an order filter, we have a− ∈ w; that is, a ∈ S(w).
Also, if S(w) contained an inconsistent pair {a, b}, that would mean that a− < b+ for
a−, b− ∈ w, a contradiction to the definition of the vertices of XH . Therefore S(w) is a
consistent order ideal, i.e., a vertex of XH0 . Conversely, given a consistent order ideal
S(w) it is clear how to recover w; and keeping in mind the acyclicity of H, the argument
can be reversed to show that this w is indeed a vertex of XH .

Finally, XH
∼= XH0 follows from the description of the maximal cubes in these two

complexes. �

Remark 2.7. Our combinatorial description of CAT(0) cubical complexes is different
from Sageev’s in that it pays special attention to one particular vertex of the complex,
and it breaks the symmetry between the positive and negative sides of a hyperplane. For
the purposes of this paper, this feature of our description is advantageous.

In general, which description is more useful depends on the particular application.
Ours is particularly helpful when there is a “special” vertex, or when there is no harm
in choosing one. In the Billera-Holmes-Vogtmann tree space, the origin might play that
role. In a cubical complex acted on by a group, the “special” vertex might represent the
identity. In a reconfigurable system, we might choose a “home” state.

Let P be a poset with inconsistent pairs. There are many ways to embed the associated
cubical complex XP in a finite dimensional real vector space. We will often make recourse
to the following embedding, which we call the standard embedding.

XP =
{

(x1, ..., xs) ∈ [0, 1]|P | : i ≺ j and xi < 1 =⇒ xj = 0,

and if (i, j) are inconsistent, then xixj = 0}

It is useful to literally think of the points in XP as assignments of a real number between
0 and 1 to each element of P . To move around XP starting at v, we start by assigning 0s
to all vertices, and then increase these numbers following two rules: no two incomparable
elements are allowed to have non-zero numbers, and to increase the number in a certain
position, one must have first increased all numbers in lower positions to 1.
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Note that the standard embedding has the property that any refinement of P , obtained
by adding relations or inconsistent pairs, is a subcomplex under its standard embedding.

3. Two applications: embeddability and realizability

We now present two applications of the combinatorial description of CAT(0) cube
complexes of Section 2.

3.1. Every n-dimensional interval of a CAT(0) cube complex embeds into Zn.
In the section we define intervals in a CAT(0) cube complex, and use Theorem 2.5 to
answer a question of Niblo, Sageev, and Wise [17].

Definition 3.1. Given two vertices v, w of a CAT(0) cube complex X, let [v, w] be the
set of vertices which lie on at least one edge geodesic between v and w. Alternatively,
these are the vertices which lie in every halfspace that contains v and w. Let the interval
X[v, w] in X be the subcomplex of X consisting of all cubes whose vertices are in [v, w].

If C and D are two cubes in X, let [C,D] be the set of vertices situated on at least one
edge geodesic between a vertex in C and a vertex in D. Define the interval X[C,D] to
be the subcomplex of X consisting of all cubes whose vertices are in [C,D].

Lemma 3.2. Consider an interval [v, w] in a cube complex X. Root X at v, and write
X = XP for the corresponding poset with inconsistent pairs P . Then the vertex w corre-
sponds to a consistent order ideal Q of P , and the vertices of the interval X[v, w] corre-
spond to the order ideals of Q. In particular, X[v, w] ∼= XQ.

Proof. The vertex w corresponds to a consistent order ideal Q of P , and the edge geodesics
from v to w correspond to the ways to build up the order ideal Q by adding one element
at a time; i.e., to the sequences of order ideals ∅ = I1 ⊂ I2 ⊂ · · · ⊂ Ik = Q with
|Ii − Ii−1| = 1 for all i. Since Q contains no inconsistent pairs, all of its order ideals
are consistent, and they are in bijection with the vertices of the interval X[v, w]. It then
follows that X[v, w] ∼= XQ as well. �

Remark 3.3. The two notions of interval in Definition 3.1 coincide. For any two vertices
v and w in X, let C and D be the largest cubes in X[v, w] containing v and w, respectively.
Then one easily checks that X[v, w] = X[C,D].

Conversely, let C and D be cubes in X. We can choose vertices v of C and w of D
which are farthest from each other, so that any hyperplane intersecting either C or D
separates v and w. Again, one easily checks that X[C,D] = X[v, w].

Definition 3.4. Let the dimension of an interval in a CAT(0) cube complex be the
dimension of the largest cube in that interval.

In [17], Niblo, Sageev, and Wise asked for a proof of the following result, which had
been given a flawed proof in the literature. Theorem 2.5 gives us a simple proof. (Brodzki,
Campbell, Guentner, Niblo, and Wright [4] and Chepoi and Maftuleac [6] independently
found proofs similar to ours.)

Theorem 3.5. Any interval of dimension n in a CAT(0) cube complex embeds as a
subcomplex in the integer lattice cubing of Rn.
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Proof. Let the interval be X[v, w]. Point the cube complex X at v and let X = XP be
the cube complex of the poset with inconsistent pairs P . Let Q be the consistent order
ideal corresponding to the vertex w.

Partially order [v, w] by letting w1 ≤ w2 if some edge geodesic from v to w2 goes through
w1. Combinatorially, this is equivalent to saying that the corresponding order ideals W1

and W2 of Q satisfy W1 ⊆ W2. As a poset, [v, w] is isomorphic to J(Q), the poset of order
ideals of Q. By Birkhoff’s theorem, J(Q) is a distributive lattice.

The order dimension of a poset is the least positive integer n for which the poset can be
embedded as a subposet of Zn with the componentwise partial order. Dilworth [8] proved
that the order dimension of a distributive lattice J(Q) equals q := width(Q), the size of
the largest antichain of Q. The following embedding is due to Reading [22]: By Dilworth’s
theorem, Q can be decomposed as the disjoint union of q chains C1, . . . , Cq. To embed
J(Q) into Zq, map an order ideal R ⊆ Q to the point f(R) = (|R ∩ C1|, . . . , |R ∩ Cq|).
Notice that if R2 covers R1 in J(Q) then the edge between f(R1) and f(R2) is a unit edge
in the direction i such that Ci contains the element R2 −R1.

This means that the 1-skeleton of X embeds as a subcomplex of the 1-skeleton of the
integer lattice cubing of Rn. One can then embed the whole cube complex by filling in
the appropriate cubes: whenever we need to fill in a cube in X, the corresponding edges
in Rn form a unit cube which is part of the integer lattice cubing. �

3.2. Every finite CAT(0) cube complexes comes from a reconfigurable system.
An important source of examples of CAT(0) cube complexes is the theory of reconfigurable
systems. In this theory, one starts with a graph G and a set A of possible vertex labels.
A state is a labeling of each vertex of G with an element of A. There are certain moves or
generators that one can perform. Each move φ has a prescribed support SUP (φ) ⊆ V (G)
which determines the legality of a move, and a trace TR(φ) ⊆ SUP (φ) where the move
takes effect. The move also has a labeling u : SUP (φ) − TR(φ) → A and two labelings
u1, u2 : TR(φ) → A. The move φ is admissible at a state v if v agrees with u on
SUP (φ) − TR(φ) and it agrees with one of u1, u2 on TR(φ). In that case, the effect
of the move is to switch the local labeling of TR(φ) from u1 to u2 or vice versa. (In
particular, if φ is admissible at v, then it is also admissible at φ(v), and φ(φ(v)) = v.)
A reconfigurable system is a collection of moves and a collection of states which is closed
under those moves.

Innumerable systems which change according to local rules can be naturally modeled as
reconfigurable systems. Examples include the motion planning of a robot, the prevention
of collision among several robots, the motion of a set of particles on a graph, and the
folding of proteins, among many others; see [10].

In many reconfigurable systems, the parameter space of all possible positions of the
system naturally takes the shape of a CAT(0) cubical complex X. Say that two moves
φ1 and φ2 are said to commute if they are “physically independent” and can be applied
simultaneously; that is, if TR(φ0)∩SUP (φ1) = TR(φ1)∩SUP (φ0) = ∅. Then the vertices
of X correspond to the states, the edges correspond to the moves connecting two states,
and the cubes correspond to sets of pairwise commuting moves, which can be applied
simultaneously to a state. Ghrist and Peterson [10] showed that the result is a cubical
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complex of local non-positive curvature. This means that the link of every vertex is a flag
simplicial complex, but the cubical complex is not necessarily simply connected. They
also gave an indirect proof of a stronger converse: that every CAT(0) cubical complex is
the state complex of a reconfigurable system. With Theorem 2.5 in hand, we can now
give a simple constructive proof:

Theorem 3.6 (Ghrist-Peterson). Any finite CAT(0) cubical complex is realizable as the
state complex of a reconfigurable system.

Proof. Root the given CAT(0) cube complex X at a vertex v and let it correspond to
a (finite) poset with inconsistent pairs P . We construct a reconfigurable system which
represents a virus trying to take over P , starting at the bottom and working its way up
the poset. The comparability relations i < j help transmit the virus up the poset, while
the inconsistency relations prevent it from spreading.

The underlying graph of the system is the Hasse diagram of P and the set of labels is
{0, 1}. For each element p ∈ P there is a move φp which infects it, changing its label from
a 0 to a 1 or vice versa. To apply the move φp, it is required that the elements covered
by p are labeled 1, and that the minimal elements among those inconsistent with p are
labeled 0.

The collection of states is the collection of consistent order ideals of P , encoded as 0-1
labelings of P , where the 1 labels denote the elements of the ideal. This is clearly closed
under the set of moves. It is also clear that the state complex of this reconfigurable system
is isomorphic to X. �

From this point of view, the space X serves as a continuous model for a discrete
reconfigurable system, with points of X representing positions of the continuous model.
Finding geodesics in X is equivalent to finding the optimal way to get the system from
one position to another one under this particular metric. Abrams and Ghrist [1] consider
the analogous problem under a different metric, which assumes that all moves take the
same amount of time, and physically independent moves can be done simultaneously at
no additional cost. Our metric even allows independent moves to be done simultaneously
at different speeds, but now there is a ‘Pythagorean’ penalty for doing so. For instance, if
each one of two independent moves demand 1 unit of time, energy, or cost, then we can
do them both simultaneously in

√
2 units. As should be expected, our geodesic will be

different from theirs in general.

4. Combinatorics of Geodesics

In this section, we study the combinatorics of finding the geodesic from x to y in a
CAT(0) cube complex. The first step will be to root the complex at a vertex v which is
intuitively “near x” and “in the opposite direction from y”, as follows. Let V and W be
the minimal cubes containing x and y respectively. We choose vertices v and w of V and
W , which we describe by their position with respect to the hyperplanes. If a hyperplane
H does not intersect V , the position of v with respect to H is determined; similarly for
w and W . If H intersects V and does not intersect W , choose v to be on the opposite
side of H from W , and vice versa. Finally, if H intersects both V and W , choose v and



GEODESICS IN CAT(0) CUBICAL COMPLEXES 13

w so that these four points are in relative position v, x, y, w with respect to the direction
orthogonal to H. In other words, choose them so that, when we root the complex at v,
we have 0 = vH ≤ xH ≤ yH ≤ wH = 1 in the standard embedding of X. (If xH = yH
then we have some freedom in our choice of v.)

Now our rooted complex has an associated poset with inconsistent pairs P . Let Q
be the consistent order ideal corresponding to w. Then Q contains no inconsistent pairs
and X[v, w] = XQ. The only non-zero coordinates in XQ are those corresponding to
elements of Q. The following lemma (which also appears in [6] and is used there in the
2-dimensional case) allows us to use the tools from the previous sections in the geodesic
problem.

Lemma 4.1. The geodesic from x to y is contained in X[v, w].

Proof. Suppose not. Then at some point q the geodesic exits XQ, before re-entering at
point r, since y is in XQ. Let γqr be the segment of the geodesic between q and r. Project
γqr onto XQ by sending each point z = (z1, ..., zs) to z̃ = (z̃1, ...z̃s) where

z̃i =

{
zi, i ∈ Q
0, i /∈ Q ,

which is easily checked to be in XQ. Since any two points in γqr which lie in the same cube

C(I,M) in XP get mapped to points that lie the same cube C(Ĩ , M̃) in XQ, the distance
of the projected points is less than or equal to their distance in γqr. This implies that the
projection γ̃qr of γqr onto XQ is a path of length less than or equal to the length of γqr.
Since the geodesic in a CAT(0) complex is unique, γqr could not be the geodesic. �

Thus the geodesic must lie in some connected sequence of cubes in XQ that begins with
the cube V containing x and ends with the cube W containing y. We will now introduce
a certain kind of cube sequence, called a valid cube sequence. We will then show that
valid cube sequences have some nice properties, and that the geodesic is contained in a
valid cube sequence.

Definition 4.2. Let V and W be the minimal cubes in XQ containing x and y, respec-
tively. A valid cube sequence is a sequence V = C(I1,M1), C(I2,M2), . . . , C(Ik,Mk) = W
of cubes in XQ such that

(1) I1 ⊂ I2 ⊂ · · · ⊂ Ik = Q;
(2) I1 = M1, Ii\Ii−1 ⊆Mi for 1 < i ≤ k;
(3) Mi is a maximal anti-chain in Q for all 1 ≤ i ≤ k.

By condition (3), the cube sequence is determined uniquely by the order ideals I1, . . . , Ik.
We can therefore think of it as a partial linear extension, i.e., an order-preserving function
f : P → [k], where f(p) is the smallest i such that p ∈ Ii; this is illustrated in Figure
6(c).

Example 4.3. Suppose we want to find the geodesic between points x and y, and have
identified the interval X[v, w] ∼= XQ shown in Figure 6(a). The corresponding poset Q is
given in Figure 6(b). The shaded cubes form a valid cube sequence C(I1,M1), C(I2,M2),
C(I3,M3), C(I4,M4), C(I5,M5), where I1 = {1, 5}, I2 = {1, 2, 5}, I3 = {1, 2, 5, 6}, I4 =
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{1, 2, 3, 5, 6, 7}, I5 = {1, 2, 3, 4, 5, 6, 7}, and M1 = {1, 5},M2 = {2, 5},M3 = {2, 6},M4 =
{3, 7},M5 = {4, 7}. The shortest path from x to y contained in this valid cube sequence
is shown by the dashed line. Figure 6(c) gives the partial linear extension corresponding
to this valid cube sequence.

x

y

1

1235

12

5

123456
156

1567

15

125

1256 12356

12567 123567 1234567

(a)

1

3

2

4

5

6

7

(b)

1

4

2

5

1

3

4

(c)

Figure 6. Corresponding to Example 4.3, Figure 6(a) is the interval
X[v, w] that contains the geodesic from x to y. The shaded cubes form
a valid cube sequence, and the dashed line represents the shortest path
from x to y contained in that valid cube sequence. Figure 6(b) is the poset
of the interval X[v, w], and Figure 6(c) shows the partial linear extension
corresponding to the shaded valid cube sequence.

Example 4.4. An important example of a cube sequence (which is usually not valid)
is the normal cube path between the vertices v and w, defined by Niblo and Reeve [18]
as follows. Let C1 be the minimal cube containing x. Starting at v, travel through the
cube C1 to the vertex which is closest to w in the edge geodesic metric. Define v1 to be
this vertex, and iterate the process starting at v1. In the end we get a cube sequence
C1, . . . , Ck and a sequence of vertices v = v0, v1, . . . , vk−1, vk = w where Ci ∩ Ci+1 = vi
and Ci = X[vi−1, vi]. Incidentally, to construct an edge geodesic from v to w, we just
need to string together minimal edge paths from vi−1 to vi along Ci for each i.

This construction is easily described in terms of the corresponding poset with (no)
inconsistent pairs. As above, root X[v, w] at v and let Q be the consistent order ideal
corresponding to vertex w, so X[v, w] = XQ. Then C1, . . . , Ck are obtained by iteratively
pruning off all minimal elements of the poset Q.

A normal cube path is not necessarily a valid cube sequence, since some of its cubes
may not be maximal. For example, if v and w are opposite corners of the n× k grid with
n 6= k, then the normal cube sequence will proceed on a diagonal from v towards w until
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it hits an edge of the grid. From this point on, the cubes will be edges, and hence not
maximal.

However, we can easily modify a normal cube path to make it a valid cube sequence,
by replacing non-maximal cubes with maximal ones containing them. If Ci = C(Ii,Mi)
is the first non-maximal cube, we can replace it with C ′i = C(Ii,M

′
i) where M ′

i is the set
of maximal elements of Ii, and iterate. The result is clearly a valid cube sequence, which
we call the extended normal cube path.

Proposition 4.5. A valid cube sequence C(I1,M1), C(I2,M2), ..., C(Ik,Mk) has the fol-
lowing properties:

(1) It contains x and y.
(2) It is connected.
(3) The intersection C(Ii−1,Mi−1) ∩ C(Ii,Mi) is the face C(Ii−1,Mi−1 ∩Mi).
(4) Each cube C(Ii,Mi) is maximal.

Proof. Property 1 holds since the first and last cubes are the minimal ones in Q containing
x and y, respectively.

Property 2 follows from property 3, so we now show that C(Ii−1,Mi−1) ∩ C(Ii,Mi) =
C(Ii−1,Mi−1 ∩ Mi). Note that C(Ii−1,Mi−1 ∩ Mi) is not empty by definition. Let u
be a vertex in C(Ii−1,Mi−1 ∩Mi), with corresponding order ideal Ii−1\M , where M is
contained in Mi−1∩Mi, and thus in Mi−1. So u is a vertex of C(Ii−1,Mi−1). We can rewrite
Ii−1\M = Ii\((Ii\Ii−1)∪M). Since both Ii\Ii−1 and M are contained in Mi, we also have
that u is a vertex of C(Ii,Mi). Thus C(Ii−1,Mi−1 ∩Mi) ⊆ C(Ii−1,Mi−1) ∩ C(Ii,Mi).

Next let u be a vertex in C(Ii−1,Mi−1) ∩ C(Ii,Mi). Since v ∈ C(Ii−1,Mi−1), the order
ideal corresponding to u is Ii−1\M , for some M ⊆ Mi−1. If M * Mi, then there would
exist some element a ∈M ⊆ Ii−1 ⊆ Ii that is not in Mi. This would imply that a is in all
of the order ideals corresponding to vertices in C(Ii,Mi). But a is not in the order ideal
Ii−1\M of u, which is a vertex of C(Ii,Mi), a contradiction. Thus M ⊆Mi, and hence u
is in C(Ii−1,Mi−1 ∩Mi).

Finally, property 4 follows from the condition that Mi is a maximal anti-chain in Q. �

Lemma 4.6. The geodesic is contained in a valid cube sequence.

Proof. The set of valid cube sequences contains all connected sequences of maximal cubes
containing x and y such that we always have larger order ideals at each step. Clearly
the geodesic must pass through a connected set of maximal cubes containing x and y.
We must show that the order ideals corresponding to the cubes of the sequence always
increase as we move along the geodesic from x to y. To this end it suffices to show that
we never gain an element i in the order ideal and then lose it again. If this happened, the
geodesic γ would leave the plane xi = 0 at some point r and then return to it at some
point r′ (in the standard embedding). Project the path between r and r′ onto the plane
xi = 0, where the projection of the point z defined by:

z̃j =

{
0, j ≥Q i
zj, otherwise

,
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which is easily seen to be in XQ. This gives a path that eliminates this extra addition and
subtraction of the element i, and is no longer than γ, contradicting that γ is the unique
geodesic. �

5. A Characterization of Geodesics

We now characterize geodesics in CAT(0) cube complexes. To do this, we introduce two
new properties, the Zero-Tension Condition and the No Shortcut Condition, which we will
show all geodesics satisfy. We then show that if we have a path contained in a valid cube
sequence that satisfies the Zero-Tension and No Shortcut conditions, then it must be the
geodesic. Algorithm 7.2 for computing geodesics will follow from this characterization.

5.1. The Zero-Tension Condition. In this subsection we describe the Zero-Tension
condition, which allows us to check whether or not a path through a given sequence of
cubes is a geodesic. We describe the condition for general polyhedral complexes.

Let C be a polyhedral complex with the induced Euclidean metric on each polyhedral
cell. We imagine that each maximal cell is embedded in some specific Euclidean space.
The attaching maps that connect polyhedral cells are assumed to be injective and iso-
metric. We assume that there are only finitely many cells and that all polyhedra are
convex.

Let x, y be two points in C that are in different cells. Since each of the cells has a
Euclidean metric, any connected component of any geodesic between x and y that is
contained in one cell must be a straight line connecting two points on the boundary the
cell (or connecting x, y to the boundary of the cell). Hence, any candidate geodesic from
x to y consists of a sequence of line segments connecting boundary points of cells to each
other and to x and y. Thus, we may suppose that we have the following setup:

Let P1, F1, P2, F2, . . . , Fk−1, Pk be a sequence of cells of C such that Fi ⊆ Pi ∩ Pi+1 for
i = 1, . . . , k− 1, x ∈ P1, y ∈ Pk. Let F ◦ denote the relative interior of face F . Consider a
sequence of points p0, . . . , pk where p0 = x, pk = y and pi ∈ F ◦i . The sequence p0, . . . , pk
defines a path from x to y. We prove a lemma that characterizes when this path is shortest
among all paths connecting x and y passing through the given sequence of cells and faces.

Let p be a point in an ambient Euclidean space in which the polyhedron P lives and
let F be a face of P . There is a well-defined orthogonal projection of p onto the affine
space spanned by F . Denote this projection by πF (p).

Lemma 5.1 (Zero-Tension Condition). Let P1, F1, P2, F2, . . . , Fk−1, Pk be a sequence of
cells of C such that Fi ⊆ Pi ∩ Pi+1 for i = 1, . . . , k − 1, x ∈ P1, y ∈ Pk. Consider a
sequence of points p0, . . . , pk where p0 = x, pk = y and pi ∈ F ◦i . The sequence p0, . . . , pk
defines a path from x to y. This is the shortest path through this sequence of cells and
faces if and only if

(5.1) πFi

(
pi − pi−1
||pi − pi−1||

)
= πFi

(
pi+1 − pi
||pi+1 − pi||

)
for i = 1, . . . , k − 1. Here ||x|| denotes the Euclidean norm.
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Said concisely, the shortest path will have opposite projections of the unit vector in the
direction of (pi−1 − pi) and pi+1 − pi.
Proof. The shortest path passing through this sequence of cells, in the given order, will
minimize the function:

f(q1, . . . , qk) = ||x− q1||+ ||q1 − q2||+ · · ·+ ||qk−1 − y||
where qi ∈ Fi, i = 1, . . . , k − 1. Since we have assumed that pi ∈ F ◦i , such a minimizer
must make the projection of the gradient of f onto F ◦i be zero.

Since the derivative of ||x|| with respect to xi is xi
||x|| we see that the gradient with

respect to qi is

−πFi

(
qi−1 − qi
||qi−1 − qi||

)
+ πFi

(
qi − qi+1

||qi − qi+1||

)
.

This is zero when evaluated at the sequence of points p1, . . . , pk−1 for all i, if and only if
Equation (5.1) is satisfied.

Since minimizing the function f is a convex optimization problem by the upcoming
Theorem 6.1, the only critical point is the unique minimum. �

Thus we have shown that every geodesic satisfies the Zero-Tension Condition.

5.2. No Shortcut Condition. Define a path Γ to be a local geodesic if there exists some
ε > 0 so that every subpath of Γ of length ≤ ε is the shortest path between its endpoints.
The following lemma from [20] (and the more general version in [3, Chap. II.1, Prop.
1.4]) shows that checking this local condition is sufficient to determine the geodesic.

Lemma 5.2. [20, Lemma 2.1] In a CAT(0) space, every local geodesic is a geodesic.

This implies that we only need to check if a geodesic is locally shortest where it bends.
Since we have shown that a geodesic is contained in a valid cube sequence and satisfies
the Zero-Tension Condition, we can assume, without loss of generality, that our path also
satisfies these two conditions.

We now need to introduce some notation for analyzing this restricted scenario. Let P1 =
C(I1,M1), P2 = C(I2,M2), ..., Pk = C(Ik,Mk) be the valid cube sequence corresponding
to the path, with breakpoint pi at its intersection with Pi and Pi+1.

Lemma 5.3. Every maximal cube in X[Pi, Pi+1] contains the vertex corresponding to the
order ideal Ii.

Proof. Let C(I,M) be any maximal cube in the interval X[Pi, Pi+1]. Then we have
Ii\Mi ⊆ I\M and I ⊆ Ii+1. We now show that Ii ⊆ I. Let x ∈ Ii. If x ∈ M then x ∈ I,
so assume x /∈ M . By the maximality of M , x must be comparable with an element m
of M . If x > m then m is not maximal in Ii, so m ∈ Ii\Mi ⊆ I\M , contradicting that
m ∈M . If x < m then x is in I and not maximal in I, so x ∈ I −M ⊆ I.

Since Pi and Pi+1 are part of a valid cube sequence, Ii+1\Ii ⊆ Mi+1. So I\Ii ⊆ Mi+1,
and hence I\Ii is an anti-chain of maximal elements of I. Since C(I,M) is a maximal
cube, M is the set of maximal elements of I. Thus we have I\Ii ⊆M , and therefore the
order ideal I\(I\Ii) = Ii is a vertex in C(I,M). �
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To determine if the path is locally shortest at breakpoint pi, it is sufficient to determine
if there is a shorter path from pi−1 to pi+1 through the interval X[Pi, Pi+1]. Since every
maximal cube in X[Pi, Pi+1] shares the vertex Ii, the interval X[Pi, Pi+1] forms what is
called a truncated CAT(0) orthant space, which we now define.

A k-dimensional orthant is a cone isometric to Rk
≥0. An orthant space is a collection

of orthants with a common origin vertex. We are interested in orthant spaces which are
CAT(0):

Definition 5.4. A d-dimensional CAT(0) orthant space is denoted by T = (V,Ω), where
V is the set of coordinates and Ω is a d-dimensional flag simplicial complex on V . Every
face F of Ω is associated with the orthant

OF = R|F |+ ,

that is, the set of non-negative vectors with components associated with face F . The
space T is the union of all orthants {OF : F ∈ Ω}, with the orthants identified along the
subcones of their common coordinates.

In a truncated CAT(0) orthant space, each orthant is replaced with a unit cube of the
same dimension.

Corollary 5.5. If the cubes Pi and Pi+1 are part of a valid cube sequence, then X[Pi, Pi+1]
is a truncated CAT(0) orthant space, whose origin is the vertex corresponding to order
ideal Ii.

Proof. This follows directly from Lemma 5.3 and the definition of a truncated CAT(0)
orthant space. �

A polynomial time algorithm for finding a shorter path from pi−1 to pi+1, if one exists,
was found for a certain kind of CAT(0) orthant space by Provan and the second author
in [20], and shown to apply to all CAT(0) orthant spaces, including truncated CAT(0)
orthant spaces in [14].

Note that Mi and Mi+1 are the sets of indices of the variable coordinates in the cubes
Pi and Pi+1, respectively. If z = (z1, z2, ..., zs) is any point in the cube complex X, and C
is some subset of the indices {1, 2, ..., s}, then let z|C be the vector with i-th coordinate
0 if i /∈ C and zi otherwise.

The following lemma is a restatement in the language of this paper of Theorem 2.5
from [20], which was shown to generalize to truncated CAT(0) orthant spaces in [14].

Lemma 5.6 (No Shortcut Condition). A path through a valid cube sequence that satisfies
the Zero-Tension Condition is a geodesic if and only if the following condition holds at
each breakpoint pi:

For each pair of partitions Ai∪Bi of Mi−Mi+1 and Ai+1∪Bi+1 of Mi+1−Mi, at least
one of which is non-trivial, such that there exists a cube in X[Pi, Pi+1] whose variable
coordinates have indices (Mi ∩Mi+1) ∪Bi ∪ Ai+1, we have

‖(pi − pi−1)|Ai
‖ · ‖(pi+1 − pi)|Bi+1

‖ ≥ ‖(pi − pi−1)|Bi
‖ · ‖(pi+1 − pi)|Ai+1

‖.
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The previous inequality can be written more simply (but less symmetrically) as:

‖(1− pi−1)|Ai
‖ · ‖pi+1|Bi+1

‖ ≥ ‖(1− pi−1)|Bi
‖ · ‖pi+1|Ai+1

‖
since the (Mi+1 −Mi)-coordinates of pi equal 0 and its (Mi −Mi+1)-coordinates equal 1.

Note that Mi and Mi+1 are antichains and, when we remove their intersection, we
obtain a bipartite poset on (Mi−Mi+1)∪ (Mi+1−Mi). The intermediate cubes of Lemma
5.6 that we check correspond to “intermediate antichains”, which contain Mi ∩Mi+1 and
some elements (Bi in the bottom level and Ai+1 in the top level) of this poset.

We can then use the algorithm for solving the Extension Problem given in [20, Section 3]
for each breakpoint pi, to check whether there is a cube C and partitions Ai ∪ Bi and
Ai+1 ∪Bi+1 which violate the above lemma. If they do, return the cube C, which we will
add to the cube sequence. (In Lemma 7.4 we will show that the result is still a valid cube
sequence.) We will call this the Shortcut-Checking Algorithm, which has running time
O(n3), where n = max(dimPi, dimPi+1) = max(|Mi|, |Mi+1|).

The Shortcut-Checking Algorithm determines if there are partitions Ai∪Bi and Ai+1∪
Bi+1 violating the lemma. To do so, it solves a Minimum Weight Vertex Cover problem
on the bipartite graph G induced by the poset on (Mi−Mi+1)∪(Mi+1−Mi). The weights
of a vertex j in Mi −Mi+1 and a vertex k in Mi −Mi+1 are(

(pi − pi−1)j
||pi − pi−1||

)2

and

(
(pi+1 − pi)k
||pi+1 − pi||

)2

respectively. A vertex cover is a set S of vertices such that every edge is incident to a
vertex in S; we seek a vertex cover of minimum weight.

One easily checks that partitions violating Lemma 5.6 exist if and only if there is a
minimum weight vertex cover with total weight less than 1. If it does exist, then the sets
Ai+1 and Bi consist of the elements not in the cover. They form a maximal independent
set, since the vertex cover has minimum weight. Thus (Mi+1 ∩ Mi) ∪ Ai+1 ∪ Bi is a
maximal anti-chain in the poset. In this case, the Shortcut-Checking Algorithm inserts
a cube C into the sequence, with C = C(I,M) where I = Ii+1\Bi+1 = Ii ∪ Bi and
M = (Mi+1 ∩Mi) ∪ Ai+1 ∪ Bi. Since M is a maximal anti-chain, the cube C inserted by
the algorithm is maximal.

Example 5.7. Figure 7 shows the four cubes forming X[P3, P4] in the interval X[v, w]
in Figure 6(a), along with a segment of the shortest path from x to y contained in the
given valid cube sequence. The two cubes in the valid cube sequence that are in the
figure are C(I3,M3), where I3 = {1, 2, 5, 6} and M3 = {2, 6}, and C(I4,M4), where
I4 = {1, 2, 3, 5, 6, 7} and M4 = {3, 7}. Notice that this segment is not a geodesic in the
cube complex, since it would be shorter if it passed through the cube C(I,M). In this case,
the partitions returned by the Shortcut-Checking Algorithm are A3 = {2} and B3 = {6}
of M3−M4 = M3 = {2, 6} and A4 = {3} and B4 = {7} of M4−M3 = M4 = {3, 7}. Thus
I = {1, 2, 3, 5, 6} and M = {3, 6}. The inequality of Lemma 5.6 is not satisfied:

‖(1− p2)|A3‖ · ‖p4|B4‖ = ‖(0, 1, 0, 0, 0, 0, 0)‖ · ‖(0, 0, 0, 0, 0, 0, 0.45)‖ = 1 · 0.45

≤ 1 · 1 = ‖(0, 0, 0, 0, 0, 1, 0)‖ · ‖(0, 0, 1, 0, 0, 0, 0)‖ = ‖(1− p2)|B3‖ · ‖p4|A4‖
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p2 = (1,0,0,0,1,0,0)

p3 = (1,1,0,0,1,1,0)

p4 = (1,1,1,0,1,1,0.45)

C(I3,M3)

C(I4,M4)

C(I, M)

Figure 7. The four cubes forming in X[P3, P4] in the interval X[v, w] in
Figure 6(a). The dashed line represents part of the shortest path from x to
y in the given valid cube sequence. The Shortcut Condition returns cube
C(I,M), as explained in Example 5.7.

This gives us a characterization of geodesics in CAT(0) cube complexes.

Theorem 5.8. A path from x to y in a CAT(0) cube complex is the geodesic if and only
if it

(1) is contained in a valid cube sequence,
(2) consists of the union of a finite number of line segments,
(3) satisfies the Zero-Tension Condition, and
(4) satisfies the No Shortcut Condition.

Proof. If the path is the geodesic, then by Lemma 4.6 it is contained in a valid cube se-
quence. Since a valid cube sequence satisfies the hypotheses of the Zero-Tension Condition
by Proposition 4.5.3, the geodesic must also satisfy the Zero-Tension Condition. Finally,
by Lemma 5.6, we have that the geodesic also satisfies the No Shortcut Condition. If the
path is contained in a valid cube sequence and satisfies both the Zero-Tension Condition
and the No Shortcut Condition, then by Lemma 5.6, it is a geodesic. �

6. Touring Problems

Let S1, S2, . . . , Sk be a sequence of regions in Rn, and x and y two points in Rn. The
touring problem asks for the shortest path starting at x and ending at y and intersecting
S1, S2, . . . , Sk, in that order. In other words, the touring problem asks for points pi ∈ Si
that minimize the sum of distances

||x− p1||+ ||p1 − p2||+ . . .+ ||pk − y||.
Note that without the restriction on fixing a prescribed order, this minimization problem
includes the geometric traveling salesman problem as a special case and is NP-complete.
Fixing a prescribed ordering, however, and specifying the regions Si as convex polyhedra
of polynomial complexity guarantees that the problem has a polynomial time solution
using semidefinite programming [21].
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Theorem 6.1 ([21]). Touring problems of convex polyhedra are convex optimization prob-
lems, and can be formulated as semidefinite programs. Furthermore, if there is a polyno-
mial number of polyhedra, and each one has polynomial complexity (in terms of the bit
complexity of the input), then the resulting semidefinite program can be solved in polyno-
mial time.

The importance of the touring problem for us is that the problem of finding the shortest
path through a particular valid cube sequence between points x and y is a touring problem.

Proposition 6.2. Let XP be a CAT(0) cube complex. The problem of computing the
shortest path from x to y lying in a given valid cube sequence can be solved by a touring
problem which is itself solvable in polynomial time in |P |.

Proof. Let C(I1,M1), C(I2,M2), . . . , C(Ik,Mk) be a valid cube sequence. Using the stan-
dard embedding, we can embed the entire cube complex into Rn. The shortest path
through this cube complex is determined by where the geodesic crosses from cube C(Ii,Mi)
into cube C(Ii+1,Mi+1), for each i = 1, . . . , k − 1. By Proposition 4.5, this boundary is
the cube C(Ii,Mi ∩Mi+1). Thus, we must optimize the function

||x− p1||+ ||p1 − p2||+ . . .+ ||pk−1 − y||.
subject to pi ∈ C(Ii,Mi ∩Mi+1). This is a touring problem with at most n polyhedral
regions, each with at most 2n facets, where n is the number of elements in the poset P .
The coefficients appearing in any defining inequality are all 0 or 1. Hence, this problem
is solvable in polynomial time by Theorem 6.1. �

7. An Algorithm to Compute Geodesics

At this point, we have developed all the necessary tools to describe our algorithm for
computing geodesics in CAT(0) cube complexes.

Problem 7.1. Given a poset with inconsistent pairs P and two points x and y in the
cubical complex XP , find the geodesic path between x and y in XP .

By Lemma 4.1, it is sufficient to find the geodesic between points x and y in the cube
complex X[v, w]. We first present the overall algorithm, and then analyze the steps in
more detail.

Algorithm 7.2. [Computing geodesics in a CAT(0) cube complex XP ].
Input: A poset with inconsistent pairs P and two points, x, y in XP .
Output: A cube sequence containing the geodesic and the corresponding break points of
the geodesic.

(1) Find vertices v and w of XP such that the geodesic is contained in X[v, w], as
described at the beginning of Section 4. Reroot the complex at v, and construct
the poset Q such that X[v, w] ∼= XQ.

(2) Choose the extended normal cube path as a starting valid cube sequence P1, P2, ..., Pk.
(3) Solve the Touring Problem associated with P1, P2, ..., Pk to get the path γ.
(4) Find the smallest valid cube sequence containing γ, and reset that to be P1, P2, ..., Pk.
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(5) At each breakpoint, check if the No Shortcut condition holds, using the algorithm
from Section 5.1.
(a) If the No Shortcut condition fails to hold at some pi, then it also returns a

new cube C(I,M) that passing through yields a shorter path from x to y.
Add C(I,M) to the cube sequence, and re-index. Go to step 3.

(b) If the No Shortcut condition holds at all breakpoints p1, p2, ..., pk−1, then γ is
the geodesic and the algorithm terminates.

Lemma 7.3. Algorithm 7.2 terminates in a finite number of steps.

Proof. This algorithm always finds a strictly shorter path, and this path is always the
shortest path through its respective valid cube sequence. Thus the algorithm cannot
return to a previously encountered valid cube sequence. Since there are only a finite
number of cubes in the CAT(0) complex, there are only a finite number of valid cube
sequences. �

7.1. Proof of Correctness of Algorithm 7.2. We have already done most of the work
to show this. We need the following lemma.

Lemma 7.4. After applying the Shortcut-Checking algorithm in step 5a, the resulting
cube sequence is still valid.

Proof. Let C(I,M) be the maximal cube found by the Shortcut-Checking algorithm at
step 5a. First note that the first and last cubes are the same in all valid cube sequences.
Thus it remains to show that Ii ( I ( Ii+1, I\Ii ⊆ M , Ii+1\I ⊆ Mi+1, and that M is
a maximal anti-chain. The first and last of these hold because the Shortcut-Checking
algorithm returns a maximal cube in X[Pi, Pi+1].

We now show that I\Ii ⊆ M . Since I ⊆ Ii+1, we have I\Ii ⊂ Ii+1\Ii ⊆ Mi+1, which is
the set of all maximal elements of Ii+1. Thus I\Ii is contained in the set of all maximal
elements of I ∈ Ii+1, and hence in M , which is this set by the maximality of C(I,M).

Finally, since Ii+1\Ii ⊆Mi+1 and Ii ⊂ I, then Ii+1\I ⊆Mi+1. �

The path returned by the Touring Problem satisfies the Zero-Tension Condition, since
it is a geodesic within a valid cube sequence. Since step 5a always returns a valid cube
sequence, the final path returned by this algorithm will satisfy the four properties of
Theorem 5.8, and hence be the geodesic.

7.2. Complexity of the Algorithm. In analyzing the complexity of the algorithm, we
will simply focus on whether each step requires time polynomial or exponential in the
number of elements in the relevant poset, ignoring implementation details. Let n be the
number of elements in the input poset P , and let m be the number of elements in the
poset Q corresponding to the interval X[v, w].

To initialize the algorithm, we need to determine v and w, reroot the poset at v, and
then determine the poset Q such that X[v, w] ∼= XQ. We determine v and w by first
finding V and W , the minimal cubes containing them, by checking which coordinates
are strictly between 0 and 1, and then using the procedure explained at the beginning of
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Section 4. Since each step can be done by running through the coordinates or elements
of P , this takes time polynomial in n.

Finding the starting extended normal cube sequence takes time polynomial in m, since
we do this by repeatedly pruning off all minimal elements of Q. To determine the minimal
elements there are only

(
m
2

)
comparisons to be made, and the number of repetitions is

bounded by m.
Note that a valid cube sequence contains at most m cubes. Thus each step of the

iterative part of the algorithm is also polynomial in m, as mentioned above, including
solving the touring problem for a given valid cube sequence (O(m8 log 1

ε
)), checking the

No Shortcut Condition at each breakpoint (O(m3)), and constructing a new valid cube
sequence (O(m)). So each iteration is polynomial in m.

The only part of the algorithm which is potentially non-polynomial is the number of
iterations, which is bounded above by the number of valid cube sequences.

Problem 7.5. Is there a polynomial bound on the number of valid cube sequences that
the algorithm visits?

8. Algebraic Complexity of Geodesics

In this section, we explore the algebraic complexity of computing geodesics. According
to the Zero-Tension Condition of Lemma 5.1, the geodesic will be the solution to the
algebraic system of equations (5.1) in the valid cube sequence in which the geodesic lies. If
the starting and ending points of the geodesic are generic rational numbers, the transition
points will be algebraic numbers of a fixed degree that depends only on the poset and
the partial linear extension corresponding to the cell-face sequence. In this section, we
explore this algebraic complexity using computational algebra. This also leads to some
(open) classification problems on posets.

For simplicity, we restrict to posets which have the property that the CAT(0) complex
XP has exactly one valid cube sequence. In such a poset P , the partial order on maximal
antichains induced by the distributive lattice J(P ) is a linear order. For this reason, we
call these ascending antichain posets.

The ascending antichain posets have a unique sequence of maximal cells going from the
smallest to the largest cell in the complex XP . These are the posets whose complexes XP

arise as valid cube sequences for geodesics in arbitrary CAT(0) complexes. However, it is
not true, in general, that in the cube complex XP of an ascending antichain poset P there
exists a pair of points and a geodesic connecting them that passes through the interior of
every maximal cell. We call such ascending antichain posets bent, and ascending antichain
posets that are not bent are straight.

Example 8.1. The poset with 6 elements and covering relations 1 ≺ 2, 2 ≺ 4, 2 ≺ 5,
3 ≺ 5, 5 ≺ 6, is an ascending antichain poset. The maximal antichains in the poset are
{1, 3}, {2, 3}, {3, 4}, {4, 5}, {4, 6}, in that order. However, this poset is a bent ascending
antichain poset because the geodesic from any point in C({1, 3}, {1, 3}) to any point in
C({1, 2, 3, 4, 5, 6}, {4, 6}) does not pass through the relative interior of the maximal cube
C({1, 2, 3, 4}, {3, 4}).
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This leads to a problem about posets, a positive solution to which could help rule out
valid cube sequences which are globally unnecessary to check.

Problem 8.2. Characterize the straight ascending antichain posets. More generally,
develop a characterization that, given an arbitrary poset P , describes the valid cube
sequences in which there exists a geodesic from a point in the bottom cell to a point in
the top cell in XP intersecting the interiors of all maximal cells.

Suppose that P is a straight ascending antichain poset. Let x and y be in the bottom
and top cells, such that the geodesic from x to y intersects the interior of each maximal
cell. We want to study the algebraic degree of the coordinates of the breakpoints of the
geodesic from x to y. This number only depends on P and not on the particular choice of
x and y, assuming that x and y are generic. We denote this number gd(P ), the geodesic
degree of P . Beyond the value of the gd(P ), we are also interested in knowing the Galois
group of the extension if possible. If the Galois group is complicated, we expect that there
should be no especially straightforward algorithm to compute the geodesic besides using
the touring problem solution.

First we catalogue some results about the geodesic degree of posets in simple cases.

Proposition 8.3. Let P be a straight ascending antichain poset such that every maximal
chain has length 1 or 2. Then gd(P ) = 2n for some n and the Galois group of the extension
field has the form Zn2 for some n. In particular, the coordinates of geodesics lie in a field
obtained by adjoining square roots of rational numbers.

Proof. If a straight ascending antichain poset P satisfies the condition that every maximal
chain has length 1 or 2, then the geodesic in P is solved in linear time by the algorithm
in [19]. This algorithm reduces the computation to computing a line between two points
in a Euclidean space after possibly modifying the problem by replacing the points x and
y with two new points whose coordinates are at worst square roots of rational numbers.
The intersection of a line connecting two such points with a rational plane lies in the same
field, and the Galois group of the normal closure of the field containing these points has
the desired form. �

Proposition 8.4. Let P be a straight ascending antichain poset such that the size of the
largest antichain is 2. Then gd(P ) = 1. Thus, in a two dimensional CAT(0) complex, the
coordinates of the break points on the geodesic between two points with rational coordinates
are all rational.

Proof. If the size of the largest antichain is 2, then each maximal cell has dimension 2
or one. Each intermediate point in a geodesic is either on an edge, or at a vertex of the
complex. If an intermediate point is at a vertex of the complex, it is integral, and hence
rational. If an intermediate point is on an edge of the complex, the zero tension condition
implies that the geodesic is a straight line through that point. Hence the point must have
rational coordinates. �

Proposition 8.4 can be extended to handle straight ascending antichain posets where
all maximal antichains are of the same size and the break points always lie in the interior
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of a codimension 1 cell. In this case, the geodesic must be a straight line, and hence,
gd(P ) = 1.

At this point, it seems natural to ask whether or not every poset has such a simple
description of its geodesics. That is, is the Galois group of the geodesic always Zn2 for
some n, with the field extension obtained by adjoining square roots of rational numbers?
We were surprised to find that this fails in the simplest example that does not satisfy
Propositions 8.3 or 8.4.

Proposition 8.5. Let P be the poset on five elements with covering relations 1 ≺ 3,
1 ≺ 4, 2 ≺ 5, 3 ≺ 5. Then gd(P ) = 8 and the splitting field which contains all coordinates
of the geodesic has Galois group S8. In particular, the break points on the geodesic cannot
be expressed in terms of radicals.

Proof. The CAT(0) complex X(P ) consists of a three dimensional cube with two squares
attached on skew, nonneighboring edges. In the standard embedding, we must find the
geodesic between the fixed points of the form (a, b, 0, 0, 0) and (1, 1, 1, c, d) passing through
points (1, x, 0, 0, 0) and (1, 1, 1, y, 0). Applying the Zero-Tension Condition yields the
system of two algebraic equations

b− x√
(a− 1)2 + (b− x)2

=
x− 1√

(x− 1)2 + y2 + 1
,

y√
(x− 1)2 + y2 + 1

=
y − c√

(y − c)2 + d2
.

Squaring both sides and clearing denominators yields a polynomial system. The following
Singular [7] computation shows that there are generically eight solutions to this system
of equations.

ring R = (0,a,b,c,d),(x,y), dp;

ideal i =

(b-x)^2*((x-1)^2 + y^2 + 1) - (x-1)^2*((a-1)^2 + (b-x)^2),

y^2*((y-c)^2 + d^2) - (y-c)^2*( (x-1)^2 + y^2 + 1);

ideal j = std(i);

degree(j);

Making a specific choice of values for a, b, c, and d, we compute a lexicographic Gröbner
basis for the ideal, which contains a polynomial of degree 8 in the variable y. Plugging this
polynomial into Maple we verify that this polynomial, and hence the polynomial system,
has Galois group S8. This implies that the system is not solvable by radicals. Since the
order of the Galois group is upper-semicontinuous in the parameters, we see that this
system is not solvable in radicals for generic choices of the parameters. �

These calculations show that there will be no simple closed form formulas for the
breakpoints in the geodesic, and suggest that any algorithm for computing geodesics
should depend on iteration in some way.
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