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High energy demand

Key challenge for providers in electricity markets:

High simultaneous demand
Limited supply (per unit time)

ConEd wants to sell you lots of energy... but not all right now

Extreme simultaneous usage is a challenge for the provider

Difficult to prepare for, puts strain on grid, causes blackouts...
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Demand charges

One response by utilities: disincentivize peak usage

peak for the individual client
(other models: client incentives based on total current usage)
though this could be reposed from the provider’s pt of view

Some large clients’ energy bills are based on both:

How much kWh electricity usage charges
How fast (at peak) kWh/h = kW power peak charges

Per-kW peak charge ≈ 100x per-kWh usage charge

Incentive: spread out usage over time
But not always possible - stores have customer surges, etc.

A. Bar-Noy, M.P. Johnson, O. Liu Demand Smoothing Through Resource Buffering



Motivation Offline problem Online problem Conclusion

Demand charges

One response by utilities: disincentivize peak usage

peak for the individual client
(other models: client incentives based on total current usage)
though this could be reposed from the provider’s pt of view

Some large clients’ energy bills are based on both:

How much kWh electricity usage charges
How fast (at peak) kWh/h = kW power peak charges

Per-kW peak charge ≈ 100x per-kWh usage charge

Incentive: spread out usage over time
But not always possible - stores have customer surges, etc.

A. Bar-Noy, M.P. Johnson, O. Liu Demand Smoothing Through Resource Buffering



Motivation Offline problem Online problem Conclusion

Demand charges

One response by utilities: disincentivize peak usage

peak for the individual client
(other models: client incentives based on total current usage)
though this could be reposed from the provider’s pt of view

Some large clients’ energy bills are based on both:

How much kWh electricity usage charges
How fast (at peak) kWh/h = kW power peak charges

Per-kW peak charge ≈ 100x per-kWh usage charge

Incentive: spread out usage over time
But not always possible - stores have customer surges, etc.

A. Bar-Noy, M.P. Johnson, O. Liu Demand Smoothing Through Resource Buffering



Motivation Offline problem Online problem Conclusion

Alternative energy sources

Energy sources such as solar, wind, etc., may be low-cost and
clean...

but typically unpredictable.

How to rely on them?
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Solution to both: batteries

Figure: Gaia PowerTower
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Other interpretations

Resource is water

Power Tower → water tower

Resource is undistinguished unit-time jobs doable in advance

Resource is unsold products

The Xbox shortage of 2005

“[T]he Xbox 360 can be produced only gradually, but all the demand is
there at once. Plentiful supply would be possible only if Microsoft made
millions of consoles in advance and stored them without releasing them,
or if it built vast production lines that only ran for a few weeks–both
economically unwise strategies. ... The steady supply can’t match peak
December demand.” (http://www.slate.com/id/2132071/)

Or can it?
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Model and notation

At each time: How much extra to request? Or how much less?

Goal: make request curve as smooth as possible (min max)

While always satisfying demand
Ideally without wasting any energy

A dilemma:

Request nothing extra: waste the battery
Request too much extra: introduce new peaks

Obj ftn is max, not sum

“strict liability”
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Offline problem definition

Notation

n discrete timesteps

di : demand at time i (demands = input)

ri : request at time i (requests = output)

D = maxi di

R = maxi ri

bi : battery level at start of time i (b1 = 0 or b1 = B)

Goal: choose requests ri to minimize R

i.e., make request curve as smooth as possible

all demands must be satisfied
with no underflow: ∀i bi ≥ 0

NB: bi+1 = bi + ri − di (except when underflow/overflow)
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Incorporating the free source

At each time may also have free source amount fi

In this case, effective demand is d̂i = di − fi

As long as negative demands make sense, can ignore free
source wlog
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Optimal solution (offline, unbounded battery)

Figure: Demands and mean
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Optimal solution (offline, unbounded battery)

Figure: Demands, mean, and optimal
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Threshold algorithms

All our algorithms are based on thresholds

Threshold = amount the algorithm tries to request
Offline: global threshold T
Online: threshold Ti at timestep i

At each time, (try to) request Ti , and charge/discharge the
rest (based on di & bi )

Two issues:

Overflow: battery too full: ok, just lose the energy

Or just request less

Underflow: battery below empty: forbidden (“crash”)
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Threshold algorithms

for each timeslot i
if Ti > di

charge min(Ti − di ,B − bi )
else

discharge di − Ti

Figure: Threshold algorithm schema (assumes bi ≥ di − Ti )

A. Bar-Noy, M.P. Johnson, O. Liu Demand Smoothing Through Resource Buffering



Motivation Offline problem Online problem Conclusion

Offline problems

Two subsettings: unbounded and bounded batteries

Both solvable by LP

But we seek efficient combinatorial algorithms
Our online algorithms will use offline as subroutine

Initial/final conditions: slightly preprocess input (demands)

Unbounded battery: find hardest prefix (average) of demands

For b1 = 0 case
Easy in linear time
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Offline problems

Bounded battery: find hardest subsequence (critical region)

In this region, for OPT:
battery will go from full to empty (if ever does)
requests will be flat
request value: (−B +

∑j
t=i dt)/(j − i + 1) (“generalized

average” or GA)

Can easily find this region in quadratic time
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Online algorithms

Change: demands di now arrive online (free source values,
too)

Goal: competitiveness with OPT

Potential obj ftns: minimize peak, or maximize savings

One idea: alpha policy [Hunsaker et al. 1998]

Common intuition: maybe the future will be like the past

→ at each moment, run OPT on the full history up until now

Then choose accordingly

i.e., request OPT’s max-so-far (times some α ≥ 1)
unbounded case: just the maximum prefix mean
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Request graph

Figure: Demands, mean, and optimal
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Request graph: means

Figure: Demands, mean, and optimal
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Request graph: maximean

Figure: Demands, mean, and optimal
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Competitive online algorithm?

Unfortunately, there are competitiveness counterexamples for both
the minimize peak and maximize savings problems

Figure: Competitiveness counterexample for b1 = 0 case
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Semi-online algorithms

So, relaxation for maximize savings problem: assume we can
guess peak demand D (e.g. from history data)

for minimize peak problem: still factor-n lower bound on
competitiveness

Now do “alpha from above” (Alg 2.a)

Since opt savings is D − Ropt

Always request so that savings is exactly 1/Hn of “optimal
savings so far” (compared to D)

Alg 2.a: Ti ← D − D−µ̂(1,i)
Hn

Hn-competitive by construction, assuming it’s correct

i.e., assuming battery never crashes
i.e., request Ti always suffices, with no underflow

A. Bar-Noy, M.P. Johnson, O. Liu Demand Smoothing Through Resource Buffering



Motivation Offline problem Online problem Conclusion

Semi-online algorithms

So, relaxation for maximize savings problem: assume we can
guess peak demand D (e.g. from history data)

for minimize peak problem: still factor-n lower bound on
competitiveness

Now do “alpha from above” (Alg 2.a)

Since opt savings is D − Ropt

Always request so that savings is exactly 1/Hn of “optimal
savings so far” (compared to D)

Alg 2.a: Ti ← D − D−µ̂(1,i)
Hn

Hn-competitive by construction, assuming it’s correct

i.e., assuming battery never crashes
i.e., request Ti always suffices, with no underflow

A. Bar-Noy, M.P. Johnson, O. Liu Demand Smoothing Through Resource Buffering



Motivation Offline problem Online problem Conclusion

Semi-online algorithms

So, relaxation for maximize savings problem: assume we can
guess peak demand D (e.g. from history data)

for minimize peak problem: still factor-n lower bound on
competitiveness

Now do “alpha from above” (Alg 2.a)

Since opt savings is D − Ropt

Always request so that savings is exactly 1/Hn of “optimal
savings so far” (compared to D)

Alg 2.a: Ti ← D − D−µ̂(1,i)
Hn

Hn-competitive by construction, assuming it’s correct

i.e., assuming battery never crashes
i.e., request Ti always suffices, with no underflow

A. Bar-Noy, M.P. Johnson, O. Liu Demand Smoothing Through Resource Buffering



Motivation Offline problem Online problem Conclusion

Semi-online algorithms

Lemma

If there is an instance with underflow for Alg 2.a, then there will be
one with battery decreasing from full to empty, with no overflow in
the middle.

In this case, we have: bi+1 = bi + ri − di .

Thm: Alg 2.a is correct, and so Hn-competitive

Proof sketch: We have Hn-approx by construction, as long as no
underflow. Cite lemma. But for such monotonic instances, total
net discharge is ≤ B. Thus the final battery level is nonnegative.

NB: applies to both bounded and unbounded battery.
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Semi-online algorithms

Thm: Hn-competitive is optimal for bounded battery

Proof sketch: If ALG is c-competitive (c ≥ 1) and b1 = B, can
force it to discharge:

B/c at time 1,

B/(2c) at time 2,

B/(3c) at time 3, etc.

Total discharge:
∑

i B/(i · c) = Hn · B/c .

The demand sequence is just: (D,D,D, ...,D), for some D ≥ B.

For unbounded battery, have lower bound of Hn − 1/2.
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Semi-online algorithms

NB: in some sense, n (hence Hn) is constant

monthly billing periods, coarseness of time units...

Alg 2.a can be O(n2)

Basically computing OPT over time
At each time, extend O(n) GAs

Turns out (lemma) we can do better with less work: O(n)

Suffices to find the GA back to last time battery was full (for
us)
Forget about prefix: n→ n′ < n
More importantly: only one GA to extend each time

Alg 2.b: Ti ← D − D−µ(si ,i)
H(n−si +1)

Analysis same as for Alg 2.a
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Summary

Gave poly-time offline algorithms for bounded and unbounded
batteries

Unfortunately, many online problem settings here are
intractable, but not all

Gave O(1)-per-unit-time online algorithms for two of them
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Future directions

Problem extensions:

Entry loss

Corresponding online algorithm also appears to be
Hn-competitive (WEA ’08), but no proof

Self-discharge (batteries draining over time)

30-minute rolling averages

Experimental work:

Tuning more aggressive algorithms to empirical data (WEA
’08)

Other models:

E.g. dynamic pricing based on total current demand
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Thanks!

mpjohnson@gmail.com
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