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Abstract. We introduce and solve a new problem inspired by energy pricing
schemes in which a client is billed for peak usage. At each timeslot the system
meets an energy demand through a combination of a new request, an unreliable
amount of free source energy (e.g. solar or wind power), and previously received
energy. The added piece of infrastructure is the battery, which can store sur-
plus energy for future use. More generally, the demands could represent required
amounts of energy, water, or any other tenable resource which can be obtained
in advance and held until needed. In a feasible solution, each demand must be
supplied on time, through a combination of newly requested energy, energy with-
drawn from the battery, and free source. The goal is to minimize the maximum
request. In the online version of this problem, the algorithm must determine each
request without knowledge of future demands or free source availability, with the
goal of maximizing the amount by which the peak is reduced. We give efficient
optimal algorithms for the offline problem, with and without a bounded battery.
We also show how to find the optimal offline battery size, given the requirement
that the final battery level equals the initial battery level. Finally, we give effi-
cient Hn-competitive algorithms assuming the peak effective demand is revealed
in advance, and provide matching lower bounds.

1 Introduction

There is increasing interest in saving fuel costs by use of renewable energy sources such
as wind and solar power. Although such sources are highly desirable, and the power they
provide is in a sense free, the typical disadvantage is unreliability: availability depends
e.g. on weather conditions (it is not “dispatchable” on demand). Many companies seek
to build efficient systems to gather such energy when available and store it, perhaps in
modified form, for future use [16].

On the other hand, power companies charge some high-consumption clients not
just for the total amount of power consumed, but also for how quickly they consume
it. Within the billing period (typically a month), the client is charged for the amount
of energy used (usage charge, in kWh) and for the maximum amount requested over
time (peak charge, in kW). If demands are given as a sequence (d1, d2, . . . , dn), then
the total bill is of the form c1

∑
i di + c2 maxi{di} (for some constants c1, c2 > 0),

i.e., a weighted sum of the total usage and the maximum usage. (In practice, the dis-
crete timeslots may be 30-minute averages [2].) This means that a client who powers a
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100kW piece of machinery for one hour and then uses no more energy for the rest of the
month would be charged more than a client who uses a total of 100kWh spread evenly
over the course of the month. Since the per-unit cost for peak charges may be on the
order of 100 times the per-unit cost for total usage [3], this difference can be significant.

This suggests a second use for the battery: to store purchased energy for future use.
Indeed, at least one start-up company [1] is currently marketing such a battery-based
system intended to reduce peak energy charges. In such a system, a battery is placed
between the power company and a high-consumption client site, in order to smooth
power requests and shave the peak. The client site will charge to the battery when
demand is low and discharge when demand is high. Spikes in the demand curve can
thus be rendered consistent with a relatively flat level of supplied power. The result is a
lower cost for the client and a more manageable request curve for the provider.

We may generalize this problem of minimaxing the request to any resource which
is tenable in the sense that it may be obtained early and stored until needed. For ex-
ample, companies frequently face shortages of popular products: “Plentiful supply [of
Xboxes] would be possible only if Microsoft made millions of consoles in advance and
stored them without releasing them, or if it built vast production lines that only ran for
a few weeks–both economically unwise strategies,” a recent news story asserted [11].
A producer could smooth the product production curve by increasing production and
warehousing supply until future sales. But when should the producer “charge” and “dis-
charge”? (In some domains, there may also be an unpredictable level of volunteer help.)
A third application is the scheduling of jobs composed of generic work-units that may
be done in advance. Although the problem is very general, we will use the language of
energy and batteries for concreteness.

In the online version of our problem, the essential choice faced at each timeslot is
whether (and by how much) to invest in the future or to cash in a prior investment.
The investment in our setting is a request for more energy than is needed at the time.
If the algorithm only asks for the minimum required, then it is vulnerable to spikes in
demand; if it asks for much more energy than it needs, then the greater request could
itself introduce a new, higher peak. The strictness of the problem lies in the fact that the
cost is not cumulative: we want every request to be low.

Background. Experimental work applying variations of these online algorithms to set-
tings lacking provable guarantees was recently presented [6]. The present paper focuses
on settings that allow guaranteed competitiveness.

There is a wide literature on commodity production, storage, warehousing, and
supply-chain management (see e.g. [13, 17, 9, 14]). More specifically, there are a num-
ber of inventory problems based on the Economic Lot Sizing model [8], in which de-
mand levels for a product vary over a discrete finite time-horizon and are known in
advance. A feasible solution in these problems must obtain sufficient supply through
production (sometimes construed as ordering) or through other methods, in order to
meet each of the demands on time, while observing certain constraints. The nature of
solution quality varies by formulation.

One such inventory problem is Single-Item Lot-Sizing, in which sufficient supplies
must be ordered to satisfy each demand, while minimizing the total cost of ordering
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charges and holding charges. The ordering charge consists of a fixed charge per or-
der plus a charge linear in order size. The holding charge for inventory is per-unit and
per-timeslot. There is a tradeoff between these incentives since fixed ordering charges
encourage large orders while holding charges discourage them. Wagner & Whitin [15]
showed in 1958 that this problem can be solved in polynomial time. Under the as-
sumption of non-speculative costs, in which case orders should always be placed as
late as possible, the problem can be solved in linear time. Such “speculative” behavior,
however, is the very motivation of our problem. There are many lot-sizing variations,
including constant-capacity models that limit the amount ordered per timeslot. (See [14]
and references therein.) Our offline problem differs in that our objective is minimizing
this constant capacity (for orders), subject to a bound on inventory size, and we have no
inventory charge.

Another related inventory problem is Capacity and Subcontracting with Inventory
(CSI) [5], which incorporates trade-offs between production costs, subcontracting costs,
holding costs, and the cost for maximum per-unit-timeslot production capacity. The
goal in that problem is to choose a production capacity and a feasible production/ sub-
contracting schedule that together minimize total cost, whereas in our problem choosing
a production capacity, subject to storage constraints, is the essential task.

In the minimax work-scheduling problem [12], the goal is to minimize the maxi-
mum amount of work done in any timeslot over a finite time-horizon. Our online prob-
lem is related to a previously studied special case in which jobs with deadlines are
assigned online. In that problem, all work must be done by deadline but cannot be be-
gun until assigned. Subject to these restrictions, the goal is to minimize the maximum
work done in any timeslot. While the optimization goal is the same, our online prob-
lem differs in two respects. First, each job for us is due immediately when assigned.
Second, we are allowed to do work (request and store energy) in advance. One online
algorithm for the jobs-by-deadlines problem is the α-policy [12]: at each timeslot, the
amount of work done is α times the maximum per-unit-timeslot amount of work that
OPT would have done, when running on the partial input received so far. One of our
online algorithms adopts a similar strategy.

Contributions. We introduce a novel scheduling problem and solve several versions
optimally with efficient combinatorial algorithms. We solve the offline problem for two
kinds of batteries: unbounded battery in O(n) time and bounded in O(n2). Separately,
we show how to find the optimal offline battery size, for the setting in which the final
battery level must equal the initial battery level. This is the smallest battery size that
achieves the optimal peak. The online problem we study is very strict. A meta-strategy
in many online problems is to balance expensive periods with cheap ones, so that the
overall cost stays low [7]. The difficulty in our problem lies in its non-cumulative nature:
we optimize for the max, not for the average. We show that several versions of the
online problem have no algorithm with non-trivial competitive ratio (i.e., better than
n or Ω(

√
n)). Given advanced knowledge of the peak demand D, however, we give

Hn-competitive algorithms for batteries bounded and unbounded. Our fastest algorithm
has O(1) per-slot running-time. Hn is the (optimal) competitive ratio for both battery
settings.
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Examples. Although there is no constant-ratio competitive algorithm for unbounded n,
our intended application in fact presumes a fixed time-horizon. If the billing period is
one month, and peak charges are computed as 30-minute averages, then for this setting
Hn is approximately 7.84. If we assume that the battery can fully recharge at night,
so that each day can be treated as a separate time period, then for a 12-hour daytime
time-horizon Hn is approximately 3.76.

2 Model and preliminaries

Definition 1. At each timeslot i, di is the demand, ri is the request, bi is the battery
charge level at the start of the timeslot, and fi is the amount of free source available. By
d̂i we indicate the effective demand di − fi. We sometimes refer to the sequence over
time of one of these value types as a curve, e.g., the demand curve. D is the maximum
effective demand maxi{d̂i}, and R is the maximum request maxi{ri}.

The problem instance comprises the demands, the free source curve, battery size
B, initial charge b1, and required final charge bn+1 (in the offline case). The problem
solution consists of the request curve.

Definition 2. Let overflow be the situation in which ri + fi− di > B− bi, i.e., there is
not enough room in the battery for the amount we want to charge. Let underflow be the
situation in which di−ri−fi > bi, i.e., there is not enough energy in the battery for the
amount we want to discharge. Call an algorithm feasible if underflow never occurs. The
goal of the problem is to minimize R (for competitiveness measures this is construed as
maximizing D −R) while maintaining feasibility.

In the absence of overflow/underflow, the battery level at timeslot i is simply bi =
bi−1 +ri−1 +fi−1−di−1. It is forbidden for bi to ever fall below 0. That is, the request
ri, the free source fi, and the battery level bi must sum to at least the demand di at each
timeslot i. Notice that effective demand can be negative, which means that the battery
may be charged (capacity allowing), even if the request is 0. We assume D, however,
is strictly positive. Otherwise, the problem instance is essentially trivial. We use the
following to simplify the problem statement:

Observation 1 If effective demands may be negative, then free source energy need not
be explicitly considered.

As such, we set aside the notion of free source, and for the remainder of the paper
(simplifying notation) allow demand di to be negative.

In the energy application, battery capacity is measured in kWh, while instantaneous
request is measured in kW. By discretizing we assume wlog that battery level, demand,
and request values are expressed in common units. Peak charges are based linearly on
the max request, which is what we optimize for. The battery can have a maximum capac-
ity B or be unbounded. The problem may be online, offline, or in between; we consider
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the setting in which the peak demand D is revealed in advance, perhaps predicted from
historical information.

Threshold algorithms: For a particular snapshot (di, ri, bi), demand di must be sup-
plied through a combination of the request ri and a change in battery bi+1 − bi. This
means that there are only three possible modes for each timeslot: request exactly the
demand-free, request more than this and charge the difference, or request less and dis-
charge the difference. We refer to our algorithms as threshold algorithms. Let T1, T2, ..., Tn

be a sequence of values. Then the following algorithm uses these as request thresholds:

for each timeslot i
if di < Ti

charge min(B − bi, Ti − di)
else

discharge di − Ti

Intuitively, the algorithm amounts to the rule: at each timeslot i, request an amount
as near to Ti as the battery constraints will allow. Our offline algorithms are constant
threshold algorithms, with a fixed T ; our online algorithms compute Ti dynamically for
each timeslot i.

A constant-threshold algorithm is specifiable by a single number. In the online set-
ting, predicting the exact optimal threshold from historical data suffices to solve the
online algorithm optimally. A small overestimate of the threshold will merely raise the
peak cost correspondingly higher. Unfortunately, however, examples can be found in
which even a small underestimate eventually depletes the battery before peak demand
and thus produce no cost-savings at all.

The offline problem can be solved approximately, within additive error ε, through
binary search for the minimum feasible constant threshold value T . Simply search the
range [0, D] for the largest value T for which the threshold algorithm has no underflow,
in time O(n log D

ε ). If the optimal peak reduction is R − T , then the algorithm’s peak
reduction will be at least R− T − ε. It is straightforward to give a linear programming
formulation of the offline problem; it can also be solved by generalized parametric max-
flow [4]. Our interest here, however, is in efficient combinatorial optimal algorithms.
Indeed, our combinatorial offline algorithms are significantly faster than these general
techniques and lead naturally to our competitive online algorithms. Online algorithms
based on such general techniques would be intractable for fine-grain timeslots.

3 Offline problem

We now find optimal algorithms for both battery settings. For unbounded, we assume
the battery starts empty; for bounded, we assume the battery starts with amount B. For
both, the final battery level is unspecified. We show below that these assumptions are
made wlog. The two offline threshold functions, shown in Table 1, use the following
definition:

Definition 3. Let µ(j) = 1
j

∑j
t=1 dt be the mean demand of the prefix region [1, j],
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and let µ̂(k) = max1≤j≤kµ(j) be the maximum mean among of the prefix regions

up to k. Let ρ(i, j) = −B+
∑j

t=i dt

j−i+1 be the density of the region [i, j] and ρ̂(k) =
max1≤i≤j≤kρ(i, j) be the maximum density among all subregions of [1, k].

Alg. battery threshold Ti run-time

1.a unbounded µ̂(n) O(n)
1.b bounded ρ̂(n) O(n2)

Table 1. Threshold functions used for offline algorithm settings.

Bounded capacity changes the character of the offline problem. It suffices, however,
to find the peak request made by the optimal algorithm, Ropt. Clearly Ropt ≥ D − B,
since the ideal case is that a width-one peak is reduced by size B. Of course, the peak
region might be wider.

Theorem 2. Algorithm 1.a (threshold Ti = µ̂(n), for unbounded battery) and Algo-
rithm 1.b (threshold Ti = ρ̂(n), for bounded battery) are optimal, feasible, and run in
times O(n) and O(n2), respectively.

Proof. First, let the battery be unbounded. For any region [1, j], the best we can hope for
is that requests for all demands d1, ..., dj can be spread evenly over the first j timeslots.
Therefore the optimal threshold cannot be lower than the maximum µ(j), which is
Algorithm 1.a’s threshold. For feasibility, it suffices to show that after each time j,
the battery level is nonnegative. But by time j, the total input to the system will be
j · µ̂(n) ≥ j · µ(j) =

∑j
t=1 dj , which is the total output to the system up to that point.

For complexity, just note that µ(j + 1) = j·µ(j)+dj+1
j+1 , so the sequence of µ values, and

their max, can be computed in linear time.

Now let the battery be bounded. Over the course of any region [i, j], the best that
can be hoped for is that the peak request will be reduced to B/(j − i + 1) less than
the average di in the region, i.e., ρ(i, j), so no threshold lower than Algorithm 1.b’s is
possible.

For feasibility, it suffices to show that the battery level will be nonnegative after
each time j. Suppose j is the first time underflow occurs. Let i− 1 be the last timeslot
prior to j with a full battery. Then there is no underflow or overflow in [i, j), and so for
each t ∈ [i, j] the discharge at t is bt − bt+1 = dt − T (possibly negative, meaning a
charge) and the so the total net discharge over [i, j] is

∑j
t=i dt− (j− i+1)T . Total net

discharge greater than B implies T <
−B+

∑j
t=i dt

j−i+1 , which contradicts the definition of
T . The densest region can be found in O(n2), with n separate linear-time passes, each
of which finds the densest region beginning in some position i, since ρ(i, j + 1) can be
computed in constant time from ρ(i, j).

3.1 Battery level boundary conditions

We assumed above that the battery starts empty for the unbounded offline algorithm
and starts full for the bounded offline algorithm, with the final battery level left inde-
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terminate for both settings. A more general offline problem may require that b1 = β1

and bn+1 = β2, i.e., the battery begins and ends at some charge levels specified by
parameters β1 and β2. We argue here that these requirements are not significant algo-
rithmically, since by pre- and postprocessing, we can reduce to the default cases for
both the unbounded and bounded versions.

First, consider the unbounded setting, in which the initial battery level is 0. In order
to enforce that b1 = β1 and bn+1 = β2, run the usual optimal algorithm on the sequence
(d1−β1, d2, ..., dn−1, dn +β2). (Recall that negative demands are allowed.) Then bn+1

will be at least β2 larger than dn. To correct for any surplus, manually delete a total of
bn+1 − β2 from the final requests. For the bounded setting, the default case is b1 = B
and bn+1 indeterminate. To support b1 = β1 6= B and bn+1 = β2, modify the demand
sequence as above, except with d1 + (B − β1) as the first demand and then do similar
postprocessing as in the unbounded case to deal with any final surplus.

3.2 Optimal battery size

A large component of the fixed initial cost of the system will depend on battery ca-
pacity. A related problem therefore is finding the optimal battery size B for a given
demand curve di, given that the battery starts and ends at the same level β (which can
be seen as an amount borrowed and repaid). The optimal peak request possible will be
1
n

∑n
i=1 di = µ(n), and the goal is to find the smallest B and β that achieve peak µ(n).

(A completely flat request curve is possible given a sufficiently large battery.) This can
be done in O(n).

Since we will have b1 = bn+1, ri = µ for all i, and
∑

di =
∑

ri, there must be
no overflow. Let d′i = di − µ, i.e., the amount by which di is above average (positive
means discharge, negative means charge). Then the minimum possible β = b1 is the
maximum prefix sum of the d′ curve (which will be at least 0). It could happen that
the battery level will at some point rise above b1, however. (Consider the example d =
(0, 0, 1, 0, 0, 0), for which µ = 1/6, d′ = (−1/6,−1/6, 5/6,−1/6,−1/6,−1/6) and
β = 1/2.) The needed capacity B can be computed as β plus the maximum prefix sum
of the negation of the d′ curve (which will also be at least 0). (In the example, we have
B = β + 2/6 = 5/6.)

Although B is computed using β, we emphasize that the computed β is the mini-
mum possible regardless of B, and the computed B is the minimum possible regardless
of β.

4 Online problem

We consider two natural choices of objective function for the online problem. One op-
tion is to compare the peak requests, so that if ALG is the peak request of the on-
line algorithm ALG and OPT is that of the optimal offline algorithm OPT, then a
c-competitive algorithm for c ≥ 1 must satisfy ALG

OPT ≤ c for every demand sequence.
Although this may be the most natural candidate, we argue that for many settings it is
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uninteresting. If the peak demand is a factor k larger than the battery capacity, for exam-
ple, then the trivial online algorithm that does not use the battery would be (k/(k−1))-
competitive. If we drop the assumption of a small battery, then no reasonable competi-
tive factor is possible in general, even if D is revealed in advance.

Proposition 1. With peak demand D revealed in advance and finite time horizon n, no
online algorithm for the problem of minimizing peak request can have competitive ratio
1) better than n if the battery begins with some strictly positive charge, or 2) better than
Ω(
√

n) if the battery begins empty.1

Proof. For part 1, suppose that the battery begins with initial charge D. Consider the
demand curve (D, 0, ..., 0, ?), where the last demand is either D or 0. ALG must dis-
charge D at time 1, since OPT = 0 when dn = 0. Thus ALG’s battery is empty at
time 2. If ALG requests nothing between times 2 and n − 1, and dn = D, then we
have OPT = D/n and ALG = D; if ALG requests some α > 0 during any of those
timeslots, and dn = 0, then we have OPT = 0 and ALG = α. This yields a lower
bound of n.

For part 2, suppose the battery begins empty, which is a disadvantage for both ALG
and OPT. Consider the demand curve (0, 0, ..., 0, D), in which case OPT = D/n. If
an algorithm is c-competitive for some c ≥ 1, then in each of the first n − 1 timeslots
of this demand curve ALG can charge at most amount cD/n. Now suppose that the
only nonzero demand, of value D, arrives possibly earlier, at some timeslot k ∈ [1, n],
following k− 1 demands of zero, during which ALG can charge at most (k− 1)cD/n.
In this case, we have OPT = D/k and ALG ≥ D − (k − 1)cD/n, which yields the
competitive ratio:

c ≥ D − (k − 1)cD/n

D/k
=

1− (k − 1)c/n

1/k
= k − k2c/n + kc/n

Solving for c, and then choosing k =
√

n, we have:

c ≥ k

1 + k2/n− k/n
=

√
n

1 + 1− 1/
√

n
= Ω(

√
n)

thus establishing the lower bound.

Instead, we compare the peak shaving amount (or savings), i.e., D−R. For a given
input, let OPT be the peak shaving of the optimal algorithm, and let ALG be the peak
shaving of the online algorithm. Then an online algorithm is c-competitive for c ≥ 1 if
c ≥ OPT

ALG for every problem instance. For this setting, we obtain the online algorithms
described below.

The online algorithms (see Def. 4) are shown in Table 2.

Definition 4. Let T opt
i be the optimal threshold used by the appropriate optimal algo-

rithm when run on the first i timeslots. At time i during the online computation, let si

be the index of the most recent time prior to i with bsi
= B (or 1 in the unbounded

setting).
1 If the peak is not known, a lower bound of n can be obtained also for the latter case.
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Alg. battery threshold Ti per-slot time

2.a both D − D−T
opt
i

Hn
O(n)

2.b both D − D−ρ(si,i)
Hn−si+1

O(1)

Table 2. Threshold functions used for online algorithms.

4.1 Lower bounds for D − R

Since the competitiveness of the online algorithms holds for arbitrary initial battery
level, in obtaining lower bounds on competitiveness, we assume particular initial battery
levels.

Proposition 2. With peak demand D unknown and finite time horizon n, there is no
online algorithm 1) with any constant competitive ratio for unbounded battery (even
with n = 2) or 2) with competitive ratio better than n for bounded battery.

Proof. For part 1, assume b1 = 0, and suppose d1 = 0. Then if ALG requests r1 = 0
and we have d2 = D, then OPT = D/2 and ALG = 0; if ALG requests r1 = a (for
some a > 0) and we have d2 = a, then OPT = a/2 and ALG = 0. For part 2, let
b1 = B, and assume ALG is c-competitive. Consider the demand curve (B, 0, 0, . . . , 0).
Then OPT clearly discharges B at time 1 (decreasing the peak by B). For ALG to
be c-competitive, it must discharge at least B

c in the first slot. Now consider curve
(B, 2B, 0, 0, . . . , 0). At time 2, OPT discharges B, decreasing the peak by B, so at
time 2, ALG must discharge at least B

c . (At time 1, ALG already had to discharge
B
c .) Similarly, at time i for (B, 2B, 3B, ..., iB, ..., nB), ALG must discharge B

c . Total
discharging by ALG is then at least:

∑n
i=1

B
c = nB

c . Since we must have nB
c ≤ B, it

follows that c ≥ n.

The trivial algorithm that simply discharges amount B/n at each of the n timeslots
and never charges is n-competitive (since OPT ≤ B) and so matches the lower bound
for the bounded case.

Proposition 3. With peak demand D known in advance and finite time horizon n, no
online algorithm can have 1) competitive ratio better than Hn if the battery begins
nonempty or 2) competitive ratio better than Hn − 1/2 if the battery begins empty,
regardless of whether the battery is bounded or not.

Proof. First assume the battery has initial charge b. (The capacity is either at least b or
unbounded.) Suppose ALG is c-competitive. Consider the curve (D, 0, 0, . . . , 0), with
D ≥ b. Then OPT clearly discharges b at time 1 (decreasing the peak by b). For ALG to
be c-competitive, it must discharge at least b

c . Now consider curve (D,D, 0, 0, . . . , 0).
At times 1 and 2, OPT discharges b

2 , decreasing the peak by b
2 . At time 2, ALG will

have to discharge at least b/2
c = b

2c . Similarly, at time i on (D,D,D, ...,D), ALG must
discharge b

ic . Total discharging by ALG is then at least:
∑n

i=1
b
ic = Hn

b
c . Since we
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discharge at each timeslot and never charge, we must have b
cHn ≤ b, and so it follows

that c ≥ Hn.

Now let the battery start empty. Assume the battery capacity is at least D or is
unbounded. Repeat the argument as above, except now with a zero demand inserted
at the start of the demand curves, which gives both ALG and OPT an opportunity to
charge. Then for each time i ∈ [2, n], ALG must discharge at least D

ic since OPT
may discharge (and so save) D

i (in which case it would have initially charged D(1 −
1/i)). ALG is then required to discharge (Hn − 1)D

c during the last n − 1 timeslots.
Obviously it could not have charged more than D during the first timeslot. In fact, it
must charge less than this. On the sequence (0, D, 0, 0, ..., 0), OPT charges D/2 at time
1 and discharges it at time 2, saving D/2. ALG must discharge D

2c at time 2 in order to
be c-competitive on this sequence, and so reduce the peak D by D

2c . Therefore at time 1,
ALG cannot charge more than D−D

2c . Therefore we must have D−D
2c ≥ (Hn−1)D/c,

which implies that c ≥ Hn − 1/2.

4.2 Bounded battery

Our first online algorithm bases its threshold at time i on a computation of the optimal
offline threshold T opt

i for the demands d1, ..., di. The second bases its threshold at time
i on ρ(si, i) (see Defs. 3 and 4). Assuming the algorithms are feasible (i.e., no battery
underflow occurs), it is not difficult to show that they are competitive.

Theorem 3. Algorithms 2.a and 2.b are Hn-competitive, if they are feasible, and have
per-timeslot running times of O(n) and O(1), respectively.

Proof. First observe that ρ̂(i) ≥ ρ(si, i) implies D−ρ̂(i)
Hn

≤ D−ρ(si,i)
Hn−si+1

implies T a
i ≥ T b

i

for all i. Therefore it suffices to prove competitiveness for Algorithm 2.a. Since T opt
i

is the lowest possible threshold up to time i, D − T opt
i is the highest possible peak

shaving as of time i. Since the algorithm always saves a 1/Hn fraction of this, it is
Hn-competitive by construction.

Since µ(1, i + 1) can be found in constant time from µ(1, i), Algorithm 2.b is
constant-time per-slot. Similarly, Algorithm 2.a is, recalling the proof of Theorem 2,
linear per-slot.

We now show that indeed both algorithms are feasible, using the following lemma,
which allows us to limit our attention to a certain family of demand sequences.

Lemma 1. If there is a demand sequence (d1, d2, ..., dn) in which underflow occurs for
Algorithm 2.a or 2.b, then there is also a demand sequence (for the same algorithm) in
which underflow continues to the end (i.e., bn+1 < 0) and no overflow ever occurs, i.e.,
one in which the battery level decreases monotonically from full to empty.

Proof. The battery is initialized to full, b1 = B. Over the course of running one of the
algorithms on a particular problem instance, the battery level will fall and rise, and may
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return to full charge multiple times. Suppose underflow were to occur at some time t,
i.e. bt < 0, and let s be the most recent time before t when the battery was full. We now
construct a demand sequence with the two desired properties, for both algorithms.

First, if s > 1, then also considering region [1, s − 1] when defining the thresh-
old Ti for Algorithm 2.a or 2.b can only raise the threshold over what it would be if
only region [s, t] were considered. Therefore shifting the region leftward from [s, t] to
[1, t′] = [1, t − s + 1] will only lower the thresholds used, which therefore preserves
the underflow. Second, since any underflow that occurs in region [1, t′] can be extended
to the end of sequence by setting each demand after time t′ to D, we can assume wlog
that t′ = n.

Theorem 4. Algorithms 2.a and 2.b are feasible.

Proof. For a proof by contradiction, we can restrict ourselves by Lemma 1 to regions
that begin with a full battery, underflow at the end, and have no overflow in the middle.
For such a region, the change in battery-level is well behaved (bi − bi+1 = di − Ti),
which allows us to sum the net discharge and prove it is bounded by B. We now show
that it is impossible for the battery to fall below 0 at time n, by upperbounding the net
discharge over this region. Let ∆bi = bi − bi+1 = di − Ti be the amount of energy the
battery discharges at step i. (∆bi will be negative when the battery charges.) We will
show that

∑
1≤i≤n ∆bi ≤ B. Let ∆ba

i and ∆bb
i refer to the change in battery levels for

the corresponding algorithms. Because as we observed above T a
i ≥ T b

i , we have:

∆ba
i = di − T a

i ≤ ∆bb
i = di − T b

i

Therefore it suffices to prove the feasibility result for Algorithm 2.b, and so we drop the
superscripts. Expanding the definition of that algorithm’s threshold, we have:

∆bi = di−Ti = di−
(

D− 1
Hn

(D−ρ(1, i))
)

= di−
(

D− 1
Hn

(
D − 1

i

( i∑
k=1

dk −B
)))
(1)

By summing Eq. 1 for each i, we obtain:

n∑
i=1

∆bi =
n∑

i=1

(
di −

(
D −

D − (
∑i

k=1 dk −B)/i

Hn

))

=
n∑

i=1

(
di −

(
D −

D − (
∑i

k=1 dk)/i

Hn

))
+

n∑
i=1

B/i

Hn

=
n∑

i=1

(
di −

(
D −

D − (
∑i

k=1 dk)/i

Hn

))
+ B

Therefore it suffices to show that:
n∑

i=1

(
di −

(
D −

D −
∑i

k=1 dk/i

Hn

))
≤ 0 (2)



12 Amotz Bar-Noy Matthew P. Johnson Ou Liu

which is equivalent to:

n∑
i=1

di − nD +
1

Hn

(
nD −

n∑
i=1

i∑
k=1

dk/i
)
≤ 0

iff
n∑

i=1

di + nD(
1

Hn
− 1)− 1

Hn

( n∑
i=1

i∑
k=1

dk/i
)
≤ 0

iff
n∑

i=1

Hndi −
( n∑

i=1

i∑
k=1

dk

i

)
≤ nD(Hn − 1) (3)

With the following derivation:

n∑
i=1

i∑
k=1

dk

i
=

n∑
i=1

n∑
k=1

dk

i
−

n∑
i=1

n∑
k=i+1

dk

i
=

n∑
k=1

n∑
i=1

dk

i
−

n∑
k=1

k−1∑
i=1

dk

i
=

n∑
k=1

Hndk−
n∑

k=1

Hk−1dk

we can rewrite Eq. 3 (replacing the parenthesized expression) as:
∑n

i=1 Hi−1di ≤
n(Hn − 1)D. Since di ≤ D and D > 0, it suffices to show that:

∑n
i=1 Hi−1 ≤

n(Hn − 1). In fact, this holds with equality (see [10], Eq. 2.36).

4.3 Unbounded battery and boundary conditions

Both online algorithms, modified to call appropriate subroutines, also work for the un-
bounded battery setting. The algorithms are feasible in this setting since ρ(i) ≤ T opt

i

still holds, where T opt
i is now the optimal threshold for the unbounded battery setting.

(Recall that offline Algorithm 1.a can “greedily” run in linear total time.) The algorithm
is Hn-competitive by construction, as before.

Corollary 1. Algorithms 2.a and 2.b are feasible in the unbounded battery setting.

Proof. The proof is similar to that of Theorem 4, except that b1 (which may be 0) is
plugged in for all occurrences of B (resulting in a modified ρ), and overflow is no longer
a concern.

We also note that the correctness and competitiveness of both algorithms (with mi-
nor preprocessing) holds for the setting of arbitrary initial battery levels. In the case of
Algorithm 2.a, each computation of T opt

i is computed for the chosen b1, as described
in Section 3.1, and the online algorithm again provides a fraction 1/Hn of this savings.
Although in the bounded setting “increasing” b1 for the T opt

i computation by modify-
ing d1 may raise the peak demand in the offline algorithm’s input, the D value for the
online algorithm is not changed. Indeed, examining the proof of Theorem 4, we note
that the upperbound on the di is only used for i > 1 (see Eq. 4).
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5 Conclusion

In this paper, we formulated a novel peak-shaving problem, and gave efficient optimal
offline algorithms and optimally competitive online algorithms. In work in progress,
we are testing our online algorithms on actual client data from Gaia [1]. (See [6] for
preliminary results.) There are several interesting extensions to the theoretical problem
that we plan to address, such as adapting the algorithms to inefficient batteries that lose
a percentage of charge instantly or over time or batteries with a charging speed limit.
We could also optimize for a moving average of demands rather than a single peak.
Finally, online algorithms could also be granted additional predictions about the future.

Acknowledgements: We thank Ib Olson of Gaia Power Technologies and Ted Brown of
CUNY and its Institute for Software Development and Design for posing this problem
to us.
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