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When a sensor network is deployed, it is typically required to support multiple simultaneous
missions. Schemes that assign sensing resources to missions thus become necessary. In this article,

we formally define the sensor-mission assignment problem and discuss some of its variants. In its

most general form, this problem is NP-hard. We propose algorithms for the different variants,
some of which include approximation guarantees. We also propose distributed algorithms to

assign sensors to missions which we adapt to include energy-awareness to extend network lifetime.

Finally, we show comprehensive simulation results comparing these solutions to an upper bound
on the optimal solution.

Categories and Subject Descriptors: []: —

General Terms: Wireless Sensor Networks, Resource Allocation, Mission Assignment

1. INTRODUCTION

In many sensor network applications, it is necessary to support multiple missions
that may arrive over time and compete for the same sensing resources. For isotropic
sensing devices recording ambient temperature, for example, the information pro-
vided by a single sensor can be used to support any and all missions, given that
they lie within its sensing range. A directional or anisotropic sensor, such as a
camera, however, must be directed to a certain location and hence can in general
only support a single mission. Thus choices must be made as to which sensors will
be assigned to which missions. Given information about available sensors and mis-
sions, the network must have a process to choose the “best” assignment of sensors
to missions.

An intelligent sensor network should direct its resources to the most important
feasible missions, reallocating resources appropriately as missions arrive or depart,
while taking care not to waste resources on unsuccessful missions. If there are mul-
tiple sensors and multiple missions, it must choose the best matching of sensors to
missions. A given sensor may offer different missions varying amounts of informa-
tion (because of geometry, obstructions, or remaining battery level, for example),
or none at all.

Missions may vary in both importance (profit) and difficulty (demand), and these
properties need not be correlated. An ongoing surveillance mission may be expen-
sive but of minor importance, whereas an urgent mission for information about
one particular spot may be low-demand but very important. In many applications,
partial satisfaction will be no better than zero satisfaction. If the goal of a given
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mission is to reconstruct the 3D shape of an object, for example, then this may be
accomplished with images from two cameras, but an image from just one camera
will be useless. Indeed, accepting the single image could actually be harmful since
the drain on the sensor’s battery could preclude a future mission that might oth-
erwise have been satisfiable. In our model we consider two profit functions: (1) we
only receive profit from missions whose demands are fully met, and (2) we consider
profits from ones that reached a preset threshold. Hence the problem is to choose
the “best” assignment of sensors to missions, in the sense that profits from satisfied
missions are maximized.

In some networks, there may simply be a static set of long-term missions, in which
case the aspect of time may be eliminated. In other settings, mission arrivals and
departures may be infrequent, so that for each block of time, sensor assignment
can be solved as a static problem. Even in this static setting, our problem is
computationally hard to solve optimally. Thus we use approximation algorithms
and heuristics.

A centralized approach to sensor assignment will collect all the relevant infor-
mation at a central location for decision-making and then distribute assignments.
Such an approach can be expensive in terms of communication overhead, however.
Another approach is to have nodes1 make these assignment decisions locally, in a
distributed manner, using mission information that is disseminated into the net-
work. While this should decrease communication costs, a centralized algorithm
may be able to guarantee better solution.

Since the problem we formulate is (in its most general form) NP-hard even to ap-
proximate, we investigate constrained versions for which approximation algorithms
exist. First, we bound the number of sensors that may offer contributions to any
single mission. This is a reasonable assumption in realistic settings in which sensors
have a limited sensing range and the sensors are distributed in such a way as to
limit sensing redundancy. Second, we consider a geometric constraint; only sensors
within a bounded sensing range from a mission can be assigned to that mission.
We also generalize the problem further by allowing a mission to be successful even
if its demand is not fully met. We do this by setting a threshold which specifies
the minimum fraction of the demand to be met for a mission to succeed. In this
case, the mission will not be awarded the full profit but rather a fraction based on
its satisfaction level.

Contributions. In this article, we consider the problem of assigning directional
sensors to missions in wireless sensor networks. We show NP-hardness and give the-
oretical results for certain problem variants, including a ∆-approximation greedy
algorithm and a shifting-based Polynomial-Time Approximation Scheme (PTAS).
We present both centralized and distributed approaches to solving the dynamic
problem. In the distributed setting, we give a novel multi-round proposal scheme,
which we also adapt to a dynamic setting. We also provide an energy-aware exten-
sion to the distributed scheme that extends network lifetime.

Our simulations show that in spite of the theoretical difficulty of the general
problem, efficient schemes can perform quite well. The greedy algorithm frequently

1In this article we use the terms sensor and node interchangeably. We use element to refer to

either a sensor or a mission.
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performs near-optimally, obviating the need for the more computationally expensive
PTAS. Furthermore, distributed schemes are often competitive with the centralized
greedy algorithm, especially in networks with high node density. In our static exper-
iments, the difference in quality between the distributed and centralized solutions
is less than 8%, and in some cases the same results are obtained. At the same
time, the distributed approach saves as much as 50% of the number of messages.
In the dynamic setting, the performance of our adapted distributed scheme closely
matches that of the centralized scheme. We also find that adding energy-awareness
to the distributed scheme can increase the network lifetime by up to 70%.

The rest of this article is organized as follows. Section 2 discusses some related
work in sensor networks and in assignment problems. In Section 3 we state our
network model and formally define the sensor assignment problem and study its
computational complexity. In Section 4, we study variants of the problem and pro-
pose algorithms to solve them. In Section 5 we propose more practical distributed
algorithms for the dynamic problem. In Section 6 we detail the network model
used in our simulations and present those results. Finally, Section 7 concludes the
article.

2. RELATED WORK

Sensor networks. The general problem of choosing sensors to achieve an ob-
jective has received sizable attention lately. Several selection objectives have been
considered. In [Perillo and Heinzelman 2003; Shih et al. 2006], for example, the
goal is to cover the region using few sensors in order to conserve energy. The tech-
niques used range from dividing the sensors in the network into a number of sets
and rotating them, activating one at a time [Perillo and Heinzelman 2003], to using
Voronoi diagram properties [Aurenhammer 1991] to ensure that the area of a sen-
sor’s diagram is as close to its sensing area as possible [Shih et al. 2006]. Another
technique used is delayed sensor activation [Lu et al. ], in which sensors are initially
inactive and are activated according to their coverage contribution. In that way
the schemes greedily turn on the sensors with highest probability of successfully
sensing the areas of interest. Our problem is similar if we consider that covering a
certain area is a mission.

Another related problem is to efficiently locate and track targets such as the
works in [Zhao et al. 2002] and [Kaplan 2006]. In [Zhao et al. 2002], for example,
the most informative sensor for tracking a target is chosen based on the concept
of information gain. This information is then passed on to the next active sensor,
which is chosen by considering the target’s expected path. Target localization
using acoustic sensors is considered by [Kaplan 2006]. An initial active set of
two sensors is chosen by exhaustive search, and then additional sensors are added
to the active set. The goal there is to minimize the mean squared error of the
target location as perceived by the active sensors. Our work, however, is motivated
by contention between multiple missions with varying profit values, and therefore
focuses on mission selection rather than sensor selection.

There has also been some work on frameworks for single and multiple mission
assignment problems. For example, [Byers and Nasser 2000] defines a framework
modeling the assignment problem with notions of utility and cost. The goal is to find
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a solution that maximizes the utility while staying under a predefined budget. In
[Mullen et al. ], a market-based method is used in which sensors provide information
or “goods” which can be purchased while observing certain budgets. The goal is to
maximize the amount of goods delivered without exceeding the budget. A survey
of sensor selection and assignment problems, including simple theoretical models of
the problem, can be found in [Rowaihy et al. 2007].

The problem we consider here is different from previous work since it considers
multiple missions with different priorities. These missions contend for the same set
of sensors which calls for resolution mechanisms. We also consider adding energy
awareness to our algorithms in order to prolong the network lifetime.

Energy awareness in sensor networks have also been studied in the literature.
For example, the authors of [Heinzelman et al. 2000] propose LEACH which is an
energy-efficient communication protocol that uses the concept of clusters. In their
scheme they rotate the cluster heads in order to evenly distribute the load among
them. This is similar to our energy-aware scheme in which we rotate the sensors
assigned to a mission for the same purpose. A survey of energy-efficient scheduling
mechanisms in sensor networks can be found in [Wang and Xiao 2006].

Algorithms. Although we use the terminology of sensors and missions for con-
creteness, the problem we are considering can be viewed as a more general problem
of resource allocation. An alternative interpretation regards scheduling jobs on un-
related parallel machines. As in other (maximization) scheduling problems [Sung
and Vlach 2005], the goal is a schedule that maximizes profit earned from jobs com-
pleted, subject to certain constraints. The twist is that each job specifies not the
set of machines that can perform it, but the set of families of machines that can
perform it. (A job may be too difficult to be performed by any single machine.) The
feasibility constraint is that no machine can be assigned more than one “sub-job”.

Our problem also relates to other optimization problems, such as the Bin Cov-
ering problem, in which the goal is to use a set of items to fill completely as many
bins as possible. Sensor-Mission Assignment is a generalization of (weighted) Bin
Covering in that an “item” may take up different amounts of space in different
“bins”. In this way, an analogy can be seen between Sensor-Mission Assignment
and the Bin Covering on the one hand and the Multiple Knapsack and the Gener-
alized Assignment (GAP) [Fleischer et al. 2006] problems on the other. While the
problem we study in this article does not involve capacity constraints of GAP, in
later work we use a GAP-inspired algorithm to solve a budgeted sensor assignment
problem [Johnson et al. 2008].

Combinatorial Auctions. In contrast to conventional auctions, in combina-
torial auctions players can bid of sets or combinations of items (which may entail
exponentially many bids). Given a fixed supply of goods, the goal of the winner
determination problem is to maximize revenue earned from the sale of disjoint item
combinations. Since this is a difficult problem, much of the research focus has been
on AI or algorithm-engineering approaches. (See [de Vries and Vohra 2003] for a
survey.) Another way of understanding our problem is as a combinatorial auction
in which bidders are the missions, the items are the sensors and the missions, and
ACM Transactions on Sensor Networks, Vol. , No. , 20.
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Fig. 1. Modeling the problem as a bipartite graph

each mission places a bid (equal to its own profit) for any set that can be con-
structed as follows: the set contains the mission itself and some subset of sensors
that together satisfy the mission’s demand. The language of profits, demands, and
edge values, however, allows for a succinct representation of bids.

Many weaker and often fractional models of sensor-mission assignment can be
reduced to maximum matching or network flow problems, and thus can be solved
optimally in polynomial time [Ahuja et al. 1993].

3. OVERVIEW

In this section we discuss our network model. Then, we formally define the core
problem of sensor-mission assignment.

3.1 Network Model

In our network model, we assume a set of static sensors pre-deployed in a field.
Missions can arrive and depart over time. By a mission, we mean a primitive
sensing task that requires information of a certain type, which may be contributed
by one or more deployed sensors. Each mission is defined by a specific geographic
location. An example of a mission is video monitoring an area of interest. General
missions that cover large areas, such as perimeter monitoring, can be divided into
multiple missions each having its own location. The deployed sensors are directional
in nature and hence each of them can be assigned to a single mission (i.e. directed
to one location). The direction of a sensor can be changed when the assignment is
changed. A video camera is a good example of such sensors.

3.2 Core Problem Definition

The problem, which we call Semi-Matching with Demand (SMD), is modeled as a
weighted bipartite graph whose vertex sets consist of sensors S = {S1, ..., Sn} and
missions {M1, ...,Mm} (see Figure 1). A sensor Si may be able, depending on its
type and location, to provide mission Mj with some data. A positively weighted
edge (Si,Mj) means that Si is applicable to Mj . The weight of the edge (eij)
indicates the utility (or quality of information) that Si could contribute to Mj if
this pairing were chosen. The utility may vary depending on the sensor’s type,
location or other properties. Also given is a positive-valued demand dj associated
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Fig. 2. Integrality gap instance

with each mission Mj , indicating the total utility the mission requires. To simplify
the problem we assume that the utility amounts received by a mission are additive.
That is the total utility received by a mission is equal to the sum of the utilities
provided by sensors assigned to it. While this may be realistic in some settings
such as sensing applications in which high-quality measurements can be obtained
by e.g. either taking a single high-quality reading or averaging together several
lower-quality readings, in others it is not; for our purpose of comparing the different
algorithms this assumption is sufficient.

What we seek is a semi-matching of sensors to missions, so that (ideally) each
mission demand is satisfied. That is, a sensor may be assigned to at most one of the
missions to which it is applicable, but a mission can accept utility from multiple
sensors. Of course, satisfying all missions may not be feasible; in general, the goal is
to maximize a weighted sum of the satisfied missions. We assume there is a profit pj
associated with achieving mission Mj . We then seek to maximize the total satisfied
profit.

We start by defining the strict version in which no profit is awarded for a partially
satisfied mission. Later (in Section 4.3), we relax this requirement and consider a
version of the problem in which missions can be partially successful if they reached
a minimum threshold of utility.

Unless there is structure to the weights of the sensor-mission edges, for example
if they relate to the geometry of node positions, we can assume without loss of gen-
erality that each demand is 1. For each mission Mj with demand dj , simply divide
edge value eij by dj to obtain an instance with unit demands. Unless otherwise
stated, we will assume this normalization henceforth, though it is sometimes con-
venient to allow for non-unit demands. With this in mind, we define the problem
formally.

Instance:. A weighted bipartite graph G = (S,M,P,E), where S = {S1, ..., Sn}
is a collection of sensors, M = {M1, ...,Mm} is a collection of missions, P =
{p1, ..., pm} is a collection of positive mission profits, and E is a collection of non-
negative weights for the edges S ×M .

Goal:. Find a semi-matching F ⊆ E (no two chosen edges share the same sensor),
ACM Transactions on Sensor Networks, Vol. , No. , 20.



Sensor-Mission Assignment in Wireless Sensor Networks · 7

in which
∑
Mj∈A pj is maximized, where A ⊆ M is the set of missions satisfied by

F (i.e.,
∑

(i,j)∈F eij ≥ 1 for each Mj ∈ A).

The problem can be formulated as an Integer Program (IP). The IP below em-
ploys two sets of decision variables: uj indicating whether mission Mj is satisfied
with the received utility, and xij indicating whether sensor Si is assigned to mission
Mj . Finding a solution can be seen as a two-step process: decide which missions
to satisfy, and then decide how to satisfy them. Each mission Mj has a constraint
requiring that the sum of utility received by Mj be at least the value uj , which is
0 or 1. When uj = 0, this constraint is automatically satisfied. Here is the IP:

Maximize:
P

j pjuj

Such that:
Pn

i=1 xijeij ≥ uj , for each mission Mj ,Pm
j=1 xij ≤ 1, for each sensor Si, and

xij ∈ {0, 1}, for each variable xij and uj ∈ {0, 1}, for each variable uj

Note that if we had not normalized to unit demands, the first constraint would be:∑n
i=1 xijeij ≥ ujdj .
The corresponding Linear Program (LP), relaxes variable constraints from {0, 1}

to [0, 1]. This allows for fractional profits to be awarded for partially satisfied
missions and for sensors to be fractionally assigned to multiple missions. This fully
fractional version can be solved optimally by Linear Programming. Such an optimal
fractional solution provides an upper bound on the true optimal solution value.

Definition 1. Let IP (I) indicate the optimal solution value for a given integer
program and let LP (I) indicate the optimal solution value of the LP relaxation,
both on problem instance I. We will say that the formulation has integrality gap
(at least) c for c ≥ 1, if c ≤ |LP (I)|

|IP (I)| for some problem instance I.

Remark 2. The IP above has unbounded integrality gap, since instances can be
constructed in which the optimal solution of the corresponding LP OPTLP = m/2
and the optimal solution of the IP OPTIP = 1, where m is the number of missions.
To create such an instance (see Figure 2), connect a separate sensor to each pair of
missions, so that each mission has m− 1 neighbors, and set all demands to m− 1
and all profits to 1. Then setting all edge weights to 1/2 will clearly half-satisfy
each mission, but only one can be satisfied integrally.

Definition 3. Let |OPT (I)| indicate the optimal solution value for a given
problem instance(I), and let |ALG(I)| indicate a corresponding approximate so-
lution value. We will say that an algorithm is a c-approximation for c ≥ 1 if
c ≤ |OPT (I)|

|ALG(I)| for every problem instance I. We omit I below when it is clear from
the context.

Proposition 4. SMD is NP-hard and at least as hard to approximate as Max-
imum Independent Set (MIS).

Proof. Given an MIS graph G = (V,E), an SMD instance is created with a
mission Mv for each v ∈ V , with dv = deg(v) and pv = 1, and a sensor Su,v
for each edge (u, v) ∈ E, which offers utility 1 to missions Mu and Mv. Then

ACM Transactions on Sensor Networks, Vol. , No. , 20.



8 · ROWAIHY et al.

Algorithm 1 ∆-Approximation Greedy Algorithm
for each mission Mj in order of decreasing Pj

for each still-available sensor Si in order of decreasing eij
assign Si to Mj

if Mj is satisfied then break
if Mj is not satisfied then

return any sensors assigned to it

the optimal SMD solution yields the optimal maximum independent set (and both
share the same solution quality).

Since MIS cannot be approximated to factor |V |1−ε unless NP=ZPP [H̊astad
1999], neither an optimal nor a nontrivial approximation algorithm for SMD is
likely to be forthcoming. Therefore we turn in the next section to easier special
cases.

4. PROBLEM VARIANTS AND ALGORITHMS

In this section we discuss a number of problem variants of SMD. First we discuss
two special cases which admit approximation algorithms–a degree-bounded version
and a geometric variant; then, we study two problem extensions, generalizing to
allow a success threshold and generalizing from static to dynamic.

4.1 Degree-bounded Approximation Problem

Because of the difficulty of the approximation problem as defined in the previous
section, we constrain it in order to render it more tractable. We assume that the
problem instance has bounded degree, in the following sense. If a sensor Si makes
a non-zero offer to a mission Mj , then say that Si is Mj ’s neighbor. Then the
assumption is that no mission has more than ∆ neighbors, for some small constant
∆. We call this problem ∆-SMD.

A simple greedy algorithm (see Algorithm 1) considers missions in decreasing
order of profit. For each mission, the algorithm assigns it available sensors in
decreasing order of offer utility, until the mission is satisfied. If the mission does
not succeed, then all sensors are returned. The running time of this algorithm
is O(m logm + mn log n) where m is the number of mission and n is the number
of sensors. This algorithm provides an approximation guarantee which we prove
below.

We note that the algorithm can be given a distributed implementation, proceed-
ing in rounds, as in the distributed greedy algorithm for the Dominating Set prob-
lem of [Jia et al. 2002]. In each round, each pending mission determines whether
it is still satisfiable and if so broadcasts its profit value to all other missions within
distance 2RS . Each pending, satisfiable mission is then assigned its chosen sensors
iff it has the highest-profit among such missions in its 2RS neighborhood. Since
this is a faithful implementation of the algorithm, we note that the approximation
guarantee given below applies to this case.

Definition 5. Let a star consist of a mission and a minimally satisfying set of
sensors for it. The sensor set is minimal in the sense that no proper subset would
ACM Transactions on Sensor Networks, Vol. , No. , 20.
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completely satisfy the mission in question. (Notice that a given mission may in
general be part of many stars.) Say that a mission is tight if it has degree ∆ and
requires all ∆ sensors in order to be satisfied. Two stars overlap if they share one
or more sensors, if they share a mission, or both, including the case that the stars
are identical.

Proposition 6. Algorithm 1 produces a ∆-approximation for the ∆-SMD prob-
lem.

Proof. Let OPT be the set of missions satisfied in some optimal solution (with
solution quality |OPT |), and let ALG be the missions satisfied by Algorithm 1
(with quality |ALG|). We want to show that |OPT | ≤ ∆ · |ALG|, i.e., that

∑
Mj∈OPT

pj ≤
∑

Mj′∈ALG
∆ · pj′ (1)

To prove Ineq. 1, we account for each term pj on the left-hand side with one of
the terms ∆ · pj′ on the right-hand side. For each Mj ∈ OPT , say that Mj charges
to the highest-profit mission Mj′ ∈ ALG whose star overlaps with Mj ’s star, and
write Mj ∈ ch(Mj′). (There must be one such Mj′ with pj ≤ pj′ since Algorithm 1
satisfies a maximal set of missions, selected in decreasing order of profit.) Then let
Mj′ be an arbitrary mission in ALG. Mj′ is either tight or not. (Recall Definition
5.) Suppose tight, in which case that mission has only one star. If Mj′ ∈ OPT ,
then only Mj′ itself charges to Mj′ ∈ ALG; if Mj′ /∈ OPT , then at most ∆ stars in
OPT can charge to Mj′ (those that share at least one of its sensors). Now suppose
Mj′ is not tight, so that it contains ≤ ∆−1 sensors. Then at most ∆ stars in OPT
can charge to Mj′ (those that share at least one of its sensors, and possibly one
that shares its mission). Thus we have

∑
Mj∈ch(M ′

j)

pj ≤ ∆ · pj′ (2)

By summing Ineq. 2 over all missions in ALG, we obtain Ineq. 1.

It is easy to construct an example with ∆+1 missions to show that the ∆ bound
is tight: let one mission have profit 1 + ε and require all ∆ sensors; let the rest of
the missions have profit 1 and require one sensor each. We note that such examples
can be given even for the geometric settings that we discuss below.

Interestingly, when the number of sensors neighboring a mission is less than or
equal to two, then the problem can be solved in polynomial time.

Proposition 7. 2-SMD is in P.

Proof. We reduce to the (weighted) maximum matching problem (see Figure
3). The node set for the resulting graph will consist of the 2-SMD instance’s sensors
and missions. Whenever a mission Mj will be satisfied only by both its neighbors
Si1, Si2, draw an edge (Si1, Si2) with weight equal to the mission profit; whenever
a mission Mj will be satisfied by a single sensor Si, draw an edge (Si,Mj) with
weight equal to the mission profit. Now find a maximum weighted matching in
this (non-bipartite) graph in polynomial time. Each selected edge corresponds to
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Fig. 3. Converting SMD to graph.

a satisfied mission. It is clear that no sensor or mission will be used more than
once. The optimal solution values of the matching graph and the SMD are by
construction the same.

Since the graph of a 2-SMD instance is sparse, the maximum weighted matching
can be found in time O(m2 logm) [Galil et al. 1986], where m is the number of
missions. The time for finding the maximum matching is the dominant component
of the running time.

We now relate ∆-SMD and ∆-Set Packing. These problems turn out to be
equivalent for small enough ∆. In the Set Packing problem, we are given a family
of subsets of a universe of elements. Each subset has a positive weight. The goal
is to choose a max-weight family of subsets without using any element more than
once. ∆-Set Packing is the variant of Set Packing in which each set has at
most ∆ elements.2

Proposition 8. ∆-SMD reduces to ∆-Set Packing, when ∆ = O(log nm).

Proof. The idea of the reduction is that each star in our SMD instance will
become a set in the Set Packing instance. (Since a given mission may have
degree ∆, it can have O(2∆) many stars. Because of the bound on ∆, however,
the resulting Set Packing instance will be at most polynomially larger than the
initial SMD instance size.) Specifically, a star with s < ∆ sensors will become an
s + 1-element set containing the star’s sensors and mission; a star with ∆ sensors
will become a ∆-element set containing only the star’s sensors. Since a mission
can have only one tight star of size ∆, the mission need not be included in the
resulting star. Choosing a max-weight family of disjoint sets will now be the same
as choosing a max-weight set of disjoint stars.

An existing local search algorithm from Berman [Berman ] gives a (∆+1
2 +ε)-

approximation for ∆+1-Claw-Free MIS, which ∆-Set Packing reduces to. (ε
is a running-time parameter, specifically, a k

(k−1)
∆+1

2 approximation can be found
in time polynomial in O(kn).) Hence there is a ∆+1

2 approximation for ∆-SMD (for
small ∆). It was recently shown [Hazan et al. 2006] that even for the cardinality

2The parameter used is typically k, but we are interested in the case k = ∆.
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version, approximating ∆-Set Packing within a factor better than ∆
ln ∆ is NP-

hard.

4.2 Geometric Problem

We now introduce GeomSMD, a variant in which geometrically inspired constraints
are imposed. First, each sensor and mission now lie at a particular point in the
plane. Second, we assume sensors have a bounded sensing range (RS), i.e., eij can
only be non-zero when the distance between Si and Mj is less than this bound.
Without loss of generality, let the sensing range be 1. In this case, every star
will lie in a unit disk. We also assume a geometric analog to bounded degree,
specifically an upper bound on the number of sensors or missions contained in any
unit disk. This constraint will be satisfied automatically if the graph is drawn in
a civilized manner [Hunt et al. 1998], i.e., so that any two nodes are separated by
some minimum distance λ > 0. In this case, the problem instance will satisfy the
∆-SMD bounded degree requirement for some constant ∆.

The NP-hardness argument below involves the Unit-Disk MIS (UD-MIS) prob-
lem [Clark et al. 1990], which is an MIS variant in which the problem instance is the
intersection graph for a set of unit disks lying in the plane. Equivalently, UD-MIS
can be defined so that given a set of points in the plane, two points are connected
by an edge iff their distance is strictly less than a global constant. We argue that
the NP-hardness proof for UD-MIS also applies to a density-bounded UD-MIS.

Proposition 9. GeomSMD is strongly NP-hard.

Proof. We reduce from Planar 3SAT to UD-MIS to GeomSMD. Given the
Planar 3SAT instance, we first apply the UD-MIS reduction of [Clark et al. 1990;
Marathe et al. 1997], which results in a UD-MIS graph and a number k (there is
an independent set of size k iff the formula was satisfiable). It can be verified
by consulting the proof of [Clark et al. 1990] that the resulting UD-MIS instance
can be drawn with at most O(1) disks per unit square resulting a density-bounded
UD-MIS.

Now, we convert the UD-MIS decision-problem instance (G, k) into a GeomSMD
decision-problem instance (G′, k), by replacing each disk with a mission at the disk’s
center, and every maximal intersection of disks with a sensor needed by all of them.
Since each mission needs all the sensors lying in its disk in order to be satisfied,
k missions can be satisfied iff k independent disks can be chosen. Since in the
UD-MIS construction each unit square contains at most O(1) such intersections,
in the resulting GeomSMD instance, each unit square will contain at most O(1)
missions and O(1) sensors, and the sensing distance is respected by construction.
Thus Planar 3SAT is reduced to GeomSMD.

Since GeomSMD is strongly NP-hard, it follows that a Fully Polynomial-Time
Approximation Scheme (FPTAS) is unlikely for it. A PTAS, however, is possi-
ble. To achieve this, we employ the shifting technique originally introduced in
[Hochbaum and Maass 1985] which imposes a grid that partitions the region into
cells. The portion of the problem instance lying within a given cell has bounded
size, which allows the cell to be solved optimally (e.g., by brute force). The por-
tion of the problem instance (in our problem, sensor-mission edges) lying on the
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Algorithm 2 Shifting PTAS (error ε)

k ← d2/εe; S = ∅
for each (i, j) ∈ [0, k)2

lay the mesh with offset (i, j); Sij ← ∅
for each cell Ct within the mesh

Sij ← Sij ∪ opt(Ct)
if val(S) < val(Sij) then S ← Sij

boundary of a cell will be discarded, but for a large enough cell size, the perimeter
of the cell will be small compared to its area. Although it could happen that much
of the problem instance lies near to cell boundaries for a given positioning of the
grid, many different grid positions are considered to avoid this problem.

We now give the shifting PTAS3 (see Algorithm 2), which is similar to the UD-
MIS [Matsui 1998] PTAS (following the presentation in [Erlebach and Fiala 2001]).
For now, assume for simplicity that all points are inside a square region I whose
size is polynomial in the input size. Then for a desired error bound ε, we can
choose parameter c = d2/εe. Now, we lay a square grid on the plane, carving the
region into square cells of size c × c. Each integer pair (i, j) ∈ [0, c)2 corresponds
to a possible offset for the coarse-grain grid, i.e., one of the grid positions to be
considered. For a given grid position, we eliminate all sensor-mission edges not
fully contained within a single cell. Within any cell, there are O(∆c2) sensors and
missions; therefore we can find the optimal assignment restricted to that cell by
enumerating all O((∆c2)∆c2) possible assignments. The solution for a given offset
pair (i, j) is the union of the solutions for the individual cells. We compute the
solution for each possible offset pair.

If the points lie in an extremely large region, then the method as stated may not
run in polynomial time, since there may be exponentially many cells to check. This
can be easily fixed. First, notice that there will be at most polynomially many non-
empty cells, which can be found by iterating through the point coordinates. For
each non-empty cell, we can “grow” it outward, to obtain a maximally non-empty
region. Performing this action on every non-empty cell (i.e., Union-Find) produces
a polynomial collection of independent regions. Now simply run the original algo-
rithm on each independent region, rather than on the entire space.

Proposition 10. Algorithm 2 is a PTAS.

Proof. Consider the optimal star-set OPT with total profit Popt. By the Shift-
ing Lemma [Hochbaum and Maass 1985], there must be some vertical offset j that
crosses a subset of OPT with total profit at most Popt/c. Similarly, there must
be some horizontal offset i that crosses a subset of OPT with total profit at most
Popt/c. Therefore the union of the cell-optimal solutions for this (i, j) will be within
factor (1− 1/c)2 ≥ 1− 2/c ≥ 1− ε of the optimal.

3Although we focus on the plane, it is easy to extend to a fixed higher dimension D.
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4.3 Threshold Problem

We now generalize the core problem so that profit may be awarded fractionally, once
a threshold is reached. Each mission Mj is still associated with a positive demand
value dj and a positive profit value pj . The demand may now be interpreted as
the total utility the mission desires. Profit for mission Mj indicates the importance
of the mission and is awarded based on the percentage of satisfied demand, but
only if this percentage reaches a satisfaction threshold T ; pj is the maximum profit
receivable for mission Mj .

The goal is again to maximize total profits. We call this problem Threshold
SMD. Threshold-1 SMD (i.e., T = 1) is simply the original problem. The problem
instance and goal are defined as follows:

Instance: A global threshold T ∈ [0, 1] and a weighted bipartite graph G =
(S,M,P,D,E), where S = {S1, ..., Sn} is a collection of sensors andM = {M1, ...,Mm}
is a collection of missions; each mission Mj is associated with a profit {pj} and a
demand {di}; each edge in S ×M has an edge-weight eij indicating utility.

Goal: Find a semi-matching F ⊆ S ×M (no two chosen edges share the same
sensor), in which

∑
j pj(uj) is maximized, where uj is the total utility received by

mission Mj divided by demand dj . The profit functions are defined as follows:

pj(uj) =


pj , if uj ≥ 1
pj · uj , if T ≤ uj < 1
0, if uj < T

(3)

Finally, the IP formulation is the same as the original SMD, except for the
objective function:

Maximize:
P

j pj(uj)

Although the objective function is piecewise linear, it is not concave. In fact, it
is neither concave nor convex. Intuitively, the profit function for a single mission is
specified by the entire curve in Figure 4(b), as the allocated utility to mission Mj

(uj) (represented by the fraction of met demand) ranges from 0 to infinity. In fact,
the objective function is only defined from 0 to 1, as a result of the range constraints
on the uj variables in the linear program. Since this is a maximization problem
with a non-concave objective, standard LP and IP techniques do not directly apply.
It is important to note, that if our profit function were concave on the region [T, 1],
it need not be concave overall.

Although we do not consider them in this article, there are many other profit
functions that may warrant study. For the range lying between profit percentages
of 0 and 1, natural options include: linear, full profit only for fully met demands,
linear only after crossing a threshold, smooth convex (difficult to optimize) and
smooth concave (easy to optimize). A more general family of profit functions de-
pends on two thresholds (see Figure 4(c)): before threshold T1, there is no partial
credit; after threshold T2, full credit is received; in between the two thresholds,
the profit function could be piecewise convex, linear, or concave, as the application
demands, and the profit values at the extremes of this middle range need not equal
the corresponding threshold values. Note, however, that strictly speaking, profit
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Fig. 4. Modeling missions profits

functions that go to full profit after crossing a threshold can be ignored without
loss of generality, since in this case the threshold is simply a lower demand.

The threshold-based problem generalizes both all-or-nothing profits (with T=1)
and fully fractional profits (with T=0). When T=1, profit pj is received only for
fully satisfying mission Mj (see Figure 4(a)). In this case, the program reduces to
an Integer Program (IP) with mission variable constraints uj ∈ {0, 1}, which is the
strict SMD problem. Treating T as part of the problem instance therefore means
that this formulation can only be harder than the original strict version (which
was shown to be NP-Complete in Section 3). Intuitively, lowering the threshold
should make the problem easier. The problem, however, is NP-Complete even with
threshold 0.

Proposition 11. Threshold-0 SMD is strongly NP-Complete.

Proof. We do a reduction from the 3-Partition problem [Garey and Johnson
1979]. Let A = {a1, ..., a3m} be a multiset of positive integers with

∑
a∈A a = mS,

satisfying S
4 < a < S

2 for each a ∈ A. The goal in 3-Partition is to partition the
set A into m triples so that each triple sums to S.

The resulting problem instance has m missions M1, ...,Mm, with demands d1 =
... = dm = S, unit profits, and 3m sensors corresponding to the elements of A.
Set all weights for edges (Si,Mj), to ai. Then the only way to meet all demands
is, by construction, to meet them exactly. Thus the 3-Partition instance has an
equal-sum m-partition iff in the resulting SMD instance all missions can be fully
satisfied. Finally, it is clear that an assignment that satisfies all missions can be
checked in polynomial time.

We now discuss how the greedy algorithm given above in Algorithm 1 adapts to
the threshold setting (see Algorithm 3). The algorithm will repeatedly satisfy the
most currently profitable mission, i.e. the mission that can be satisfied with the
greatest profit, using the currently available sensors. If S′ ⊂ S is the set of not-yet-
assigned sensors (initially S′ = S) and uj =

∑
Si∈S′ eij , then the profit currently

achievable by mission Mj is pj(uj). (Of course, it may be that not all sensors are
needed to achieve this profit; conversely, if the demand threshold is not met, this
profit is 0.) The algorithm repeatedly select a mission Mj of maximum current
profitability, and then satisfies it with available sensors (which are removed from
S′), in order of decreasing contribution value eij , until either Mj is fully satisfied or
ACM Transactions on Sensor Networks, Vol. , No. , 20.
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Algorithm 3 Greedy Algorithm for Threshold-SMD
while true

for each available mission Mj

uj ←
P

Siunused eij

j ← arg maxj pj(uj)
if pj(uj) = 0 then break
uj ← 0
for each unused Si in decreasing order of eij

if uj ≥ dj or eij = 0 then break
assign Si to Mj

uj = uj + eij

all sensors with non-zero offers to Mj have been used. When there are no remaining
missions with non-zero current profitability, the algorithm completes. The running
time of the algorithm as written is O(n(m + log n)) but it is easy to improve this
to O(mn log n) by updating the uj values over time rather than computing them
from scratch. This greedy algorithm has the same ∆-approximation performance
guarantee.

Proposition 12. Algorithm 3 produces a ∆-approximation for the problem.

Proof. The proof of Theorem 6 goes through essentially unchanged.

When T = 1, this algorithm produces the same result as the simpler greedy algo-
rithm of Algorithm 1. We note that this algorithm also can be given a distributed
rounds-based implementation, similar to that for Algorithm 1. The only difference
is that the value each mission broadcasts to its distance 2RS neighbors is now its
current profitability value, rather than its profit value.

For geographic settings with limited sensing range, we can also extend the ap-
proximation scheme (PTAS) of the previous subsection to the threshold problem
(see [Rowaihy et al. 2007]). Although it is theoretically efficient, we found in our
experiments that achieving performance competitive with the greedy algorithm’s
requires an unreasonable time, and so we do not include its results in this article.

4.4 Dynamic Problem Model

We now provide an orthogonal generalization of the original problem in terms of
time to model more realistic scenarios in which missions arrive and depart over time.
The problem statement is the same, except that now each mission is associated with
a start time and an end time. A mission’s demand and maximum profit are constant
over time. Awarded profit for a mission is computed at each discrete timestep, based
on the satisfaction level at that instant. Total profit for a mission is simply the
sum of the instantaneous profits. We do not require that a mission’s demand be
met over its entire lifetime in order to receive profit. Our profit model is in this
sense fractional in terms of time. The dynamic version is thus given by essentially
the same mathematical program given above except that each variable now has an
additional time index.

As a generalization of the static problem, previous hardness results apply also
ACM Transactions on Sensor Networks, Vol. , No. , 20.
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to the dynamic version. Indeed, a natural strategy for the dynamic problem is to
solve the static problem at each timestep.

5. DISTRIBUTED SOLUTIONS

Although centralized algorithms such as the greedy algorithm and the PTAS dis-
cussed in the previous section may provide better solutions to the matching problem
due to their global view of the field, they can be expensive in terms of communi-
cation cost. Because a centralized algorithm requires global information about all
sensors in the network such as their locations, utilities to the different missions and
other stats, the number of messages required to be sent to the base station can
become very large, especially in dense networks. This communication cost becomes
even higher for dynamic environments in which missions arrive and depart at dif-
ferent points in time, requiring the base station to continually gather information
about sensors in the field.

To avoid this cost, we consider distributed algorithms to solve the problem. In
such an approach, a mission leader is selected for each mission. This should be
a sensor that is close to the mission’s location. Finding the leader can be done
using a geographic-based routing techniques such as [Bose et al. 2001] or [Karp and
Kung 2000]. (In our simulations, we simply choose the closest unused sensor to
serve in this role.) The leaders are informed about the missions’ demands, profits
and locations by the base station. Then they run a local protocol to match nearby
sensors to their respective missions. We assume that the contribution a sensor can
provide to a mission is a function of the geographic distance between them and
hence only nearby sensors are considered. In this section we consider a multi-round
proposal algorithm that works on static settings, which we then adapt to dynamic
cases. We also propose an energy-aware extension to the dynamic algorithm which
helps in prolonging the network lifetime.

5.1 Multi-Round Proposal Algorithm (MRPA)

In this algorithm, each mission leader advertises its mission information (demand,
profit and location) to the nearby sensors by means of broadcast. If the advertise-
ment message needs to be sent over multiple hops then neighboring sensors rebroad-
cast the message so their neighbors can hear it. The number of hops over which the
advertisement message is sent depends on the relation between the communication
range, which is the maximum distance over which two sensors can communicate,
and the sensing range. If the sensing range is larger than the communication range
then sensors that are further away should be notified.

When a nearby sensor hears such an advertisement message for one or more
missions, it sends a single proposal to the mission it perceives to be its best match.
The ranking of missions is based on the profit of a mission weighted by the fraction
of the mission’s demand that the sensor can satisfy. Using the notation introduced
in Section 3, sensor Si ranks mission Mj according to Bij where Bij = eij/dj ×
pj . The leader, on the other hand, selects proposing sensors in a greedy fashion
according to their contribution to the mission. If the leader of a mission does not
select a proposing sensor, then in the next round the sensor proposes to the next
mission on its list. This algorithm consists of a series of proposal-reply rounds. The
more rounds, the better the matching may be. However, as the number of rounds
ACM Transactions on Sensor Networks, Vol. , No. , 20.
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Algorithm 4 Multi-Round Proposal
For leader of mission Mj:

for each round k
wait for proposing sensors
sort proposing sensors in decreasing order of eij
while uj < dj

assign the next Si (in sorted order) to Mj

uj = uj + eij
if Mj ’s satisfaction level < α(k) then

release all sensors assigned to Mj

For sensor Si:
for each round k

if Si is unassigned then
receive advertisement from all nearby missions
ignore any mission already considered
j ← arg maxj Bj = (eij/dj)× pj
send proposal to Mj

else break

increases, the communication cost grows and we may obtain diminishing returns.
Hence, there is a trade-off between solution quality and communication cost.

Since our aim is to achieve the highest profit from successful missions, we use
a mechanism to prevent missions that will never be fully successful from holding
up sensors that can help other missions. In each round, mission leaders assess the
satisfaction level of their missions. If the level is not greater than an increasing
threshold (α(k) for round k) then the mission is assumed to be unattainable and
all its sensors are released. The threshold is initialized to a fixed value (e.g. 10%
satisfaction) and incremented each round (e.g. by 10%). After a sufficient number
of rounds, it will reach T , the preset value of the success threshold, at which time
all missions that are not yet successful release their sensors. The rising threshold
therefore yields two benefits: increasing the chance that the most satisfied missions
will become fully satisfied and preventing sensors from spending their energy on
missions that will not reach the minimum success threshold (for which we receive
no profit). Algorithm 4 summarizes the steps taken by mission leaders.

We now analyze the both the runtime complexity and message complexity of
Algorithm 4. We assume that the number of sensors is n, number of missions is m
and number of rounds is k. The running time for sensor Si is O(km) as in each
round a sensor may consider up to m missions. The mission leader’s complexity
is O(n log n) as in each round the mission leader has to sort up to n proposing
sensors and select the best ones but over all the rounds each sensor proposes to
a mission at most one time. If we assume that advertisement messages are only
broadcast to immediate neighbors, then the message complexity of the algorithm
including both sides, the sensor and the mission, is O(m + kn) as we have m
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advertisement messages, O(kn) proposals by sensors and O(n) reply messages from
mission leaders.

5.2 Dynamic Proposal Algorithm (DPA)

MRPA is designed to work in the cases in which we have prior knowledge about the
missions. The multiple rounds allow it to work well even if there are several missions
that compete for the same sensing resources. Since it requires complete knowledge
about missions it can also work in an environment that does not need fast response
to new missions. An example would be a system that batches together a number
of missions and runs the matching algorithm periodically, e.g. every few hours.
However, in a fully dynamic setting, the network needs to have a fast response to
incoming and outgoing missions. By handling missions as they arrive, we expect
to encounter less competition for sensing resources, and so we can opt for a lighter-
weight algorithm that does not need multiple rounds to complete. We call this
algorithm the Dynamic Proposal Algorithm or DPA.

As in MRPA each mission has a leader which advertises mission information to
nearby sensors. A sensor that hears this announcement can be in one of two states:
(1) not assigned, in which case it proposes to the mission with its utility or (2)
assigned to a mission, in which case the sensor calculates its effective profit for
both missions (which is the Bij value found above) and chooses either to stay with
the current mission or to propose to the new mission, depending on which value
is higher. So, this algorithm allows a mission to preempt an ongoing mission to
increase the overall profit of the network.

After the mission leader collects the proposals, it tries first to satisfy the mission
demands with sensors in the not assigned state by greedily picking sensors with
highest utility. If these sensors are not sufficient, it tries to steal sensors from other
ongoing missions, i.e., it chooses from sensors in the assigned state. If the collected
utility at that time is at least T , then the mission leader sends assignment messages
to the respective sensors which start collecting information to support the mission.
If a sensor is selected which preempts an existing mission, the procedure below is
followed.

Let us say that a new mission, Mj with leader Lj , started in an area close to an
ongoing mission, Mk with leader Lk. If a sensor Si that is currently assigned to
Mk decides that its contribution will generate better profit if it is assigned to Mj ,
it notifies Lk of its intention. Lk then tries to find one or more sensors to replace
Si. If no such sensor(s) are found, the leader will agree on the reassignment as long
as its current satisfaction level does not drop below T , which will cause the mission
to fail. If the release of Si will bring the allocated utility to lower than T then the
reassignment is temporarily denied. If sensor Si is critical to the new mission Mj ,
i.e. without it the mission will fail, a second test is performed. If the current profit
value of Mj with Si assigned to it is greater than that of Mk, the leader of Mk will
release its hold on Si and agree on the reassignment even if it will cause its own
mission to fail. The reassignment becomes final once Si is selected by Mj . Only at
that time are the replacement sensor(s) activated. Algorithm 5 summarizes sensor
Si’s response to the reception of an advertisement message.

To reduce both the interruption of ongoing missions and the communication
overhead, preemption is limited to one level. That is if mission Mj preempted
ACM Transactions on Sensor Networks, Vol. , No. , 20.
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Algorithm 5 Dynamic Proposal
For leader of mission Mj:

send advertisement of mission Mj

sort proposing sesnors in decreasing order of eij
while uj < dj

assign the next Si (in sorted order) to Mj

uj = uj + eij

For sensor Si:
receive advertisement of mission Mj

if Si is not active then
propose to Mj with offer eij

else if Si is assigned to Mk with eik

dk
× pk < eij

dj
× pj then

ask current leader Lk for reassignment
propose to Mj with offer eij only if current leader agrees, i.e. if

Lk can find replacements or
Mk will still reach its threshold without replacements or
Si is critical to Mj and Mj obtains greater profit than Mk

if selected for mission Mj then
notify leader of Mk to assign replacement(s)

else
continue operation on Mk

mission Mk, Mk will try to satisfy its demand with only available sensors and will
not try to steal sensors that are already assigned. When a mission ends, the leader
sends out a message to announce that the mission has ended and all assigned sensors
are released.

Because the system is dynamic, missions that are not fully satisfied after the first
assignment process will retry to obtain more sensors after some time. However, they
only retry if there will be more available sensors. This can happen in the case when
a nearby mission terminates and has its sensors released. This information can
either be learned from the base station or by overhearing the message announcing
the end of a mission.

We now analyze the runtime complexity and message complexity of Algorithm
5. If we assume that the number of sensors is n and number of missions is m, then
the running time for sensor Si is O(m) as it may consider up to m missions. The
reassignment takes constant time for the sensor. The mission leader’s complexity,
on the other hand, is O(n log n) as the mission leader has to sort up to n proposing
sensors and select the best ones. Again, if we assumes that mission advertisement
messages are only broadcast to immediate neighbors, then the message complexity
of the algorithm including both sides, the sensor and the mission, is O(m+n) as we
have m advertisement messages, O(n) proposals by sensors, and O(n) replies from
mission leaders. As the algorithm does not need several rounds to complete, we see
a saving of factor k in the number of messages sent by the sensors over MRPA.
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5.3 Energy-aware Dynamic Proposal Algorithm (EDPA)

A drawback of DPA is that it does not consider the remaining energy in sensors
when making assignment decisions. It selects a sensor based only on the utility
it provides. However, the energy level of such a sensor may have been depleted
over time and using it for sensing will consume its remaining energy leading to its
death. This can happen while other sensors around it that provide lower utility
may still have full energy. With this observation, we extend DPA to make it
energy-aware and call it the Energy-aware Dynamic Proposal Algorithm (EDPA)
Algorithm. EDPA uses information about the proposing sensors current remaining
energy level to make better assignment decisions which would ultimately lead to a
longer lifetime.

Instead of using the utility of a sensor to the mission alone to make assignment
decision, EDPA uses a function (f) of utility (U) and fraction of remaining energy
(E). We define:

f(U,E) = U × Eβ (4)

where β is a design parameter. If β is zero, EDPA becomes DPA and hence only
the utility is considered. A higher value of β gives more preference to sensors with
more remaining energy.

To consume energy more evenly among sensors, after the initial assignment, pos-
sible sensor candidates for a mission send periodic updates to the leader including
their current energy levels. The leader then checks if it has consumed energy un-
evenly among all sensors that can contribute to the mission. At that time, the
leader may choose to change the assignments of sensors by reapplying the decision
function f . The periodic updates increase the communication overhead, but as will
be shown in Section 6, this increase is not very high. As expected, this algorithm
works better in a dense network in which there are many sensors that apply to a
mission and hence more choices are available to the leader.

6. PERFORMANCE EVALUATION

To evaluate our algorithms we built a simulator in Java and tested them using
randomly generated problem instances. We perform two sets of experiments. For
both cases we test and compare the performance of the centralized greedy scheme
and the distributed schemes. In the first set we test the static case. That is, we
assume that the entire problem instance, including all sensors and all missions, is
given simultaneously. In the second set we consider the dynamic problem in which
missions arrive over time and depart after spending a certain amount of time being
active. For the dynamic case, we also show how EDPA can use information about
remaining energy of sensors to make better selection decisions to improve network
lifetime.

6.1 Assumptions

Each mission has a demand, an abstract value of the amount of sensing resources
it requires, which is exponentially distributed with an average of 2 and a maximum
of 6. Also associated with each mission is a profit value, which measures its impor-
tance. The profit is also exponentially distributed, but with an average of 1. This
ACM Transactions on Sensor Networks, Vol. , No. , 20.
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simulates common scenarios in which many missions demand few sensing resources
and a smaller number demand more resources. The same applies to profit. The
profit obtained from a successful mission Mj is equal to pj(uj) as defined in Section
4.3. We consider a mission successful if it receives at least 50% of its demanded
utility from allocated sensors (i.e. T = 0.5). Each sensor can only be assigned to a
single mission.

The utility that sensor Si provides to mission Mj is defined as a function of
the distance Dij between them. Many types sensors exhibit some kind of quality
deterioration or signal attenuation based on distance. In order to evaluate their
utilities to missions, we assume that all sensors know their geographical locations.
Formally, the potential utility contribution is:

eij =

{
1

1+D2
ij/c,

if Dij ≤ RS
0, otherwise

(5)

where RS = 30m is the global sensing range. This models typical signal attenuation
which is an inverse function of the distance squared. Note that this utility function
is only used for testing in our experiments and is not a property of our algorithms;
it is not meant to model the exact behavior of any sensor. In our experiments we
set c = 60.

Sensors are deployed in uniformly random locations in a 400m× 400m field (the
base station is located in the center of the left edge). Missions also are created in
uniformly random locations in the field. The communication range of sensors is set
to 40m. When sensors are deployed we ensure that the network is connected. If a
randomly created instance is not connected, it is discarded by the simulator.

As an upper-bound we include the profit results for the optimal fractional solu-
tion, described in Section 4. This is the optimal solution for the relaxed fractional
problem in which sensors may divide their utility between multiple missions and all
fractional profits are counted, regardless of whether the success threshold is reached
or not. Our algorithms’ performance may be judged in comparison to this upper
bound. We have also find the optimal sensor assignments for several configurations.

Finally, we assume perfect communication channels with no errors or collisions.
Hence, each message is sent only once and its delivery is guaranteed. All messages
have the same size and hence only the number is considered when studying the
communication overhead. For messages that travel over multiple hops, each hop
counts as a single message in the total. When a broadcast message (e.g. mission
advertisements by mission leaders or base station) is sent, it is received by all one-
hop neighboring sensors and so we count it as one. All routing decisions are made
based on a pre-configured routing table that follows the shortest path to destination.

6.2 Static Scenarios

6.2.1 Setup. In this experiment all missions occur simultaneously, with the same
start and end times. We fix the number of sensors in the field to 500 and vary the
number of missions from 10 to 100. In the following results we show the average of
10 runs.

For the centralized approaches, we show results for the greedy scheme. Based
on the field size and the sensing range and ignoring the boundaries, the expected
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number of sensors within sensing range of a mission is ∆̄ = 8.8. Note that the
maximum mission degree ∆ defined in Section 4.1 will in general be greater than
∆̄, and so the greedy approximation guarantee will be at most 1/8.8 ≈ 11% of the
optimal. The approximation ratio achieved empirically by the greedy algorithm
is in fact much stronger than this worst-case guarantee. In our experiments, it
achieves at least 85% of the optimal, based on a comparison to an upper bound on
the optimal solution value.

Since such a comparison is necessarily conservative, to gain better insight on the
algorithm’s performance we tested it on several smaller problem instances for which
we were able to find the actual optimal sensor assignments. The difference in the
achieved profits between optimal and greedy was between 0 and 1.2%. Note that, as
mentioned in Section 4.3, we do not show the results of the shifting PTAS algorithm
because we found that its performance gain over the simple greedy algorithm to be
insignificant relative to its very high computational cost.

For the distributed approach, we show results for MRPA with one round, three
rounds and six rounds. These results illustrate the trade-off between solution qual-
ity and communication overhead. The growing threshold α for a mission to release
sensors in MRPA is set to 10% in the first round and is increased by 10% for each
subsequent round until it reaches T , or 50%. Advertisement messages are sent from
mission leaders to all sensors within two hops.

6.2.2 Results. The first set of results (Figure 5) shows the fraction of the max-
imum mission profits achieved by the different schemes compared to the optimal
fractional profits. The maximum profit is the sum of all missions profits. Note that
when we create missions we do not guarantee that all of them can be satisfied by
available sensors, i.e. some missions might not be satisfiable even if all available
sensors are assigned to them. This can happen if a mission is located on the edge
of the field with few surrounding sensors, for example. Furthermore, even if each
mission is individually satisfiable, in a sparse network there may not be enough
nearby sensors to mutually satisfy all missions.

The greedy centralized solution performs best followed by the 6-round proposal.
However, its advantage lessens as the density of the sensors increases. For a same-
ACM Transactions on Sensor Networks, Vol. , No. , 20.
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sized field with 1000 sensors deployed (not shown in the Figures), all the curves
except the one-round proposal become nearly aligned. This is expected since there
are more sensors that can be assigned to the different missions. We note that
the improvement in MRPA when going from a single round to 3 rounds is very
pronounced. However, the improvement gained when jumping to 6 rounds is less
apparent and may not justify the necessary communications overhead.

Figure 6 shows the communication overhead of the different schemes. As ex-
pected, the centralized scheme has the highest overhead. With MRPA, as the
number of rounds increase more messages are exchanged. The savings in number
of exchanged messages becomes more evident if we consider a dynamic system, in
which sensor-mission utility values can change over time. In this case, the central-
ized scheme needs to collect information about current sensor utility values before
running a matching process for each new mission that arrives. Distributed schemes,
on the other hand, require the exchange of fewer messages since information about
utility values only needs to be sent to the leader of the new mission, which is just
a few hops away.

As the number of sensors and missions increase, the distributed schemes en-
counter greater overlap in the areas of local matching, which leads to more ex-
changed messages. This is true because as densities of sensors and missions increase
more sensors can contribute to each mission and at the same time each sensor can
contribute to more missions.

The number of sensors assigned can be used as a proxy for the amount of energy
used (shown in Figure 7). The number of sensors used by the centralized scheme
is very close to that of the 6-round proposal scheme. For MRPA, few sensors are
assigned if one round is used. This is because this setting does not allow sensors
that were rejected in this round to re-propose to other missions. With 3 rounds,
the mission leaders release sensors that are not useful which allows these sensors
to re-propose to other missions and hence the number of assigned sensors becomes
higher. With 6 rounds most of the unused sensors are released which brings the
number of the assigned sensors down to about that of the centralized scheme. Note
that the schemes do not use all the available sensors even when the number of
missions is large. This is because some sensors are not within the sensing range
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of any mission and hence remain idle. When we consider the results in this figure
we should take into consideration the achieved profits in Figure 5. For example,
even though the centralized greedy algorithm assigns close to 250 sensors when 100
missions are present, it achieves less than 60% of the possible profits.

Finally, Figure 8 show the fraction of satisfied missions for the different schemes.
Note that our goal is not to maximize this number but rather to achieve the highest
profit. The centralized scheme is successful in achieving the highest profit values but
not always the largest fraction of satisfied missions. The 6-round proposal achieves
higher fraction when the number of missions is large. This happens because the
greedy centralized algorithm assigns sensors to missions in order of profit and hence
may stop satisfying missions after a certain point because no sensors are longer
available. So, even though the fraction of satisfied missions is less than that of
the 6-round proposal, the amount of profits is higher as more profitable missions
were picked. Because of its lack of global view, the 6-round proposal algorithm
is satisfying more missions but with lower profits. Between the three multi-round
schemes tested, there is a significant increase in the fraction of satisfied missions
between one round and three rounds and less improvement between three rounds
and six rounds.

From the above results, we see that the distributed schemes perform well. The
difference in achieved profit values compared to the centralized scheme we tested is
less than 8%. At the same time, it saves as much as 50% of the messages.

6.2.3 Number of rounds. To study the effect of the number of rounds in MRPA,
we fix the number of sensors to 500 and perform two experiments with 50 and 100
missions. Figure 9 shows the relation between achieved profits and number of
rounds. As can be expected, achieved profits initially increase with the number of
rounds. However, the additional gains beyond 8 rounds is small since by that time
all attainable missions have reached their success threshold. Figure 10 shows the
communication overhead which increases linearly with the number of rounds.
ACM Transactions on Sensor Networks, Vol. , No. , 20.
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6.3 Dynamic Scenarios

6.3.1 Setup. Now we show the performance of our distributed proposal scheme
in a dynamic setting in which missions arrive over time. The same aforementioned
assumptions apply here. Moreover, we assume that missions arrive according to a
Poisson distribution. The mission lifetimes are selected according to an exponential
distribution with an average lifetime of one hour and a maximum of four hours. The
exponential distribution is heavy-tailed which models realistic scenarios in which
there are many short-lived missions and few long-lived ones. Although a centralized
scheme is impractical in dynamic scenarios, due to high communication cost, we
include its results to measure the performance of the distributed scheme. We assume
that the centralized scheme is rerun for each mission arrival and departure.

6.3.2 Results. We compare the performance of DPA to results achieved by the
greedy centralized scheme and the optimal fractional solution. Figures 11 and 12
show a trace of the achieved network profits during a period of 12 hours for arrival
rate, λ = 3 missions/hour and 6 missions/hour respectively with a network of 500
sensors. We start the simulation at time zero and start recording the trace after
10 hours. As can be seen from the figures, the performance of DPA, which utilizes
local information about missions, is very close to that of the centralized scheme.

Figures 13 and 14 show the average performance over a period of 50 hours (av-
eraged over 10 runs) for a network with 500 sensors and 1000 sensors. Figure 13
shows the average achieved profits per unit of time (fraction of maximum) as the
mission arrival rate is varied. We see that both the centralized and DPA perform
almost equally. Note that, as expected, with a larger number of sensors the network
can achieve higher profits.

The communication overhead of DPA is shown in Figure 14. The number of
ACM Transactions on Sensor Networks, Vol. , No. , 20.
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messages grows linearly as the number of missions in the network increases. We do
not show number of messages for the centralized scheme as this value will be very
large compared to DPA. For each mission arrival and departure, the base station
needs to collect information from all sensors that can contribute to the arriving
mission to get status updates. The average number of messages exchanged per
mission is around 40 for 500 sensors and 80 for 1000 sensors. This includes all the
messages needed to advertise the mission and make all the assignment decisions
including reassignments.

6.3.3 Network Lifetime. Figures 15-17 show the results for EDPA in a network
a network of 500 sensors and 1000 sensors (average of 10 runs). The mission ar-
rival rate is set to 6 missions/hour. All sensors start with energy to support 10
hours of continues sensing. We consider only energy consumed for sensing. Sen-
sor reassignment is performed every 20 minutes to balance energy consumption.
Choosing a smaller period may yield a more uniform assignment but will have a
larger communication overhead.
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We define the network lifetime as the time until the first sensor dies. Figure 15
shows the lifetime of the network for different values of β, a parameter used to
control dependence on remaining energy. Recall that when β = 0, EDPA becomes
DPA. The results show that when EDPA is used, network lifetime increases by 50%
and 70%, for networks with 500 sensors and 1000 sensors, respectively. The increase
is notable when β goes from 0 to 1, i.e when we start taking energy into account.
After that point, the increase in lifetime is not very pronounced. The denser the
network the more options the assignment scheme has and hence it is able to achieve
longer lifetime.

Figure 16 shows the total achieved profits (sum of profit in every second during
lifetime) for the different values of β. This can be thought of as the area under
the curves for the two schemes shown in Figures 11 and 12. As expected, the
profits increase when lifetime increases. But when there are more sensors the profit
increase in more prominent due to the longer lifetime and the fact that more sensors
allows for more satisfaction for missions.

Due to periodic updates, the communication overhead increases when EDPA is
used (β > 0). Figure 17 shows the average number of messages per each attempted
mission. We see an average increase of around 50% for both network sizes. Although
the percentage increase may seem high, the actual number of exchanged messages
per mission (around 60 for 500 sensors and 120 for 1000 sensors) is relatively small,
especially if we consider that this number includes all the messages exchanged to
setup a mission and is amortized over its lifetime.

7. CONCLUSION

In this article, we introduced a sensor-mission matching problem. We analyzed its
complexity, defined constrained versions, and presented approximation algorithms
for them. We showed that it is strongly NP-hard, even in the special case of zero suc-
cess threshold. As such, we turned to approximation algorithms and heuristics. We
considered a greedy centralized algorithm and several distributed schemes, which
we then adapted to the dynamic setting. Our simulation results demonstrate that
in spite of the theoretical difficulty, under realistic conditions the greedy algorithm
performs near-optimally and the distributed schemes perform almost as well.
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In our algorithms and experiments, we make the simplifying assumption that
utilities from different sensors can be combined additively. Clearly this assumption
applies to some but far from all settings. Building on the work presented here, we
are currently investigating joint utility functions in which the combined utility of
multiple sensors could be either greater than or less than the sum of the individual
utilities. The joint utility setting is more complex and will require substantially
revised algorithms. The algorithms presented here represent a first step towards a
solution to this more general problem, but we also believe the additive utility setting
is interesting in its own right. In the future, we also plan to perform additional
experiments, using real-world data from applications in which additivity or similarly
assumptions apply.
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