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Abstract—An important problem in the study of sensor
networks is how to select a set of sensors that maximizes
coverage of other sensors. Given pairwise coverage values, three
commonly found functions give some estimate of the aggregate
coverage possible by a set of sensors: maximum coverage by
any selected sensor (MAX), total coverage by all selected sensors
(SUM), and the probability of correct prediction by at least one
sensor (PROB). MAX and SUM are two extremes of possible
coverage, while PROB, based on an independence assumption,
is in the middle. This paper addresses the following question:
what guarantees can be made of coverage that is evaluated by
an unknown sub-modular function of coverage when sensors are
selected according to MAX, SUM, or PROB? We prove that the
guarantees are very bad: In the worst case, coverage differs by a
factor of sqrt(n), where n is the number of sensors. We show in
simulations on synthetic and real data that the differences can
be quite high as well. We show how to potentially address this
problem using a hybrid of the coverage functions.

I. INTRODUCTION

An ongoing research topic in sensor networks is how to
use the data from a limited number of sensors to predict
the data of all remaining sensors [1]-[3]. Given a function
of the prediction quality by a set of sensors, the problem is
to select the set of sensors under some budget constraints
that maximizes the total prediction quality. This problem is
closely related to the sensor placement problem [4]-[8], which
is to select a subset of locations that best cover all locations
given a function of sensor coverage. Coverage in these cases
is typically defined as the probability of detecting events at
these locations rather than estimating sensor values.

Such problems are typically NP-hard, and approximation
guarantees are not always possible. According to most for-
mulations, the coverage function is sub-modular [1], [3], [9],
which means the sum of the coverage by two different sets is
no less than the prediction quality by their union. An example
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of sub-modularity is geometric coverage by sensors. Each
additional sensor increases total coverage by the entire area it
covers at best, but sometimes less if it overlaps areas already
covered by other sensors [10]. For sub-modular functions,
greedy selection guarantees a constant factor of approximation
and the best possible by any algorithm [11], [12].

Greedy selection depends on pairwise coverage values, at
least for selection of the first sensor or location [1]-[3], [9].
Three common ways of aggregating pairwise coverage values
are by taking the maximum coverage by any selected sensor
(denoted max) [1], [2], the total coverage by all selected
sensors (denoted sum)) [13]-[15], and the probability of
correct prediction by at least one selected sensor (denoted
prob) [4]-[8]. max is based on a pessimistic assumption
where coverages overlap, while sum is based on an optimistic
assumption where coverages are disjoint. prob is in the mid-
dle, and it is based on an independence assumption. These
functions can help determine which sensors to select if the
final coverage function is unknown or too difficult to calculate
The advantage of using them is that they depend on pairwise
values of coverage between sensors only, a minimal amount
of information for any selection algorithm.

In this paper, we would like to understand what guarantees
can be made about coverage by one function when selection
is made according to another. This helps determine how
useful selection is based on these assumptions, and what
can be said in general about selection when the coverage
function is unknown or subject to change. We take a graph
theoretic approach to the selection problem, modeling sensors
as nodes and predictability relationships as weighted directed
edges. Since max, sum, and prob are all sub-modular, greedy
selection is the most natural algorithm to be applied. We
use this to prove bounds on the approximation of selection
according to one function when evaluating by another. We
prove that in extreme cases, selection by max is ©(y/n) times
better than selection by sum and prob when evaluated by
max, where n is the number of nodes and each node has a
unit value, and likewise in reverse, while selection by prob
and sum approximate each other within a constant factor. We
apply the greedy algorithm to synthetic and real data sets and
show that the error can be as much as 50%.

While the solution found using one function can be very



bad for another, a hybrid algorithm that switches the selection
criteria between the max and sum functions works very well.
For the three functions max, sum, and prob, it approximates
the greedy solution according to the correct function by a
constant factor, and in practice reduces the error by 66% and
almost entirely in some cases. Since maz and sum are the two
extremes in sub-modular functions that aggregate edge weight
values, it would seem that this approach would be a good
approximation for any sub-modular function. Unfortunately, it
only has an Q(n'/4) approximation guarantee, as we prove.

The remainder of the paper is organized as follows. We
formally describe the problem in Section III and solutions in
Section IV. In Section V we show the price of using the wrong
selection criteria, and study the hybrid algorithm in Section VI.
Section II is a brief review of related work, and the conclusion
and discussion is in Section VII.

II. RELATED WORK

The prob and sum criteria are mostly commonly found in
the literature on sensor coverage. Selection under the prob
criterion directly corresponds to sensor deployment on a grid
[4]-[8]. In this problem, the objective is to deploy sensors
to the locations that maximize total coverage of the grid.
For every pair of points, there is a probability of a sensor
located at one point detecting an event at the other, and
coverage is defined by the probability that at least one sensor
detects an event. Value fusion is a different way to detect
events [13]-[15]. A decision that an event occurred is made
if the sum of all signal strengths is above some threshold.
This corresponds directly to the sum criterion. Under both
coverage models, link values between points are based on the
signal strength between points, which means that the sum
and prob criteria equally apply to the same link values. The
maz criteria is more commonly found in the literature on
sensor selection. [1], [2] only use pairwise coverage values,
just as in the max criteria, under the assumption that only one
sensor is used to predict the value of another. Other approaches
use more complex aggregate functions of sensor prediction
[3], [9], whose coverage values are defined by sub-modular
functions. [1], [3], [6]-[8], [10] all use greedy selection under
the assumption of sub-modular coverage functions.

The % approximation factor of maximizing submodular
functions by greedy selection was proven by Nemhauser, et al.
[12]. This result only applies when unit costs are associated
with selecting a location. Hochbaum, et al. [16] give a simpler
proof for a specific case of the problem, maximum k-coverage,
which is to maximum weighted coverage of objects by k sets.
Khuller, et al. [11] extend this result to the general case of
budgeted maximum coverage (by non-unit cost sets) using a
modified greedy algorithm. They further prove that this is the
best possible factor unless P = N P based on a result of Feige,
et al. [17]. This result in turn is extended to all submodular
functions by Sviridenko [18], effectively extending the result
of Nemhauser to instances with non-unit costs.

III. PROBLEM FORMULATION

We model the sensor selection problem as follows. Given
is a directed graph G = (V, E) whose nodes have positive
weights and costs and whose edges have weights in [0, 1];
also given is a budget k. The task is to choose a subset of
nodes of total cost at most k. The coverage value of a node
v; is a function of which nodes are selected; specifically a
function of which chosen nodes have edges directed toward
v; and of the weights of those edges. We will consider several
such functions. The value of a solution is the weighted sum
of all nodes’ coverage values. The objective is to maximize
this value.

In this model, each node v; represents a sensor. There are
n such nodes. The cost ¢; of v; is the cost of selecting
the corresponding sensor, such as its cost of deployment or
bandwidth consumption. The weight w; of v; is its value in
monitoring the network. For example, some sensors monitor
more critical areas than others and thus have higher weight.
The weight w;; of edge (i,7) is the fraction of v;’s value
that can be predicted by v;. The aggregate coverage of v; is
the fraction of its value than can be predicted by the selected
nodes.

Because all functions will have the property that a zero-
weight edge contributes zero to coverage, we assume for
notational convenience and without loss of generality that
the graph is complete. We also assume that all nodes have
weight-1 self-loops, meaning that selecting a node gives it
full coverage.

Let S be a given solution and W,(S,v;) be the coverage
of node v; by S under coverage function a. The coverage
functions are max, sum, and prob. Under maz, v; is predicted
by only one node—the one in S with the maximum weighted
edge to v;—so coverage under max is the weight of that edge.
Under sum and prob, v; is predicted collectively by all nodes
in S. Under sum, the edge weights represent the fraction of
the value of v; predicted by each node in S, so coverage is the
sum total of those edge weights up to the value 1. Under prob,
the edge weight w;; represents the probability of correctly
predicting the value of v; by v;, so coverage is the probability
of correct prediction by at least one sensor in S. These are
more formally defined as follows:

o Winaz(S,v;) = max,, es wj;

° Wsum(S, ’Ui) = min{zvjes wji» 1}

° mob(S,vi) = 1—ijeg(1—wji)

For a given coverage function a, the value of a selection S,
denoted W, (S), is:

Wa(S) = > wiWa(S, i) (1)

v; €V

The objective is to find the set S that maximizes W, (.5)
such that Zm esCi < k. A problem instance [ is defined
by the graph G = (V, E), including the vertex costs, vertex
weights, edge weights, and budget k. For problem instance I,
let ALG,(I) indicate a solution for I obtained by running the
adaptive greedy algorithm (described in Section IV) according



V. list of all sensors v;
S« {}
for i < 1,k do
Select v € V' that maximizes W, (S U {v}) — W,(S5)

S+ Su{v}
V+V—{v}
end for
return S

Fig. 1. Adaptive greedy selection

to Wo(-), for a € {max, sum,prob}, and Wy,(ALG,(I))
indicate the value of this solution according to criteria b €
{max, sum, prob}.

IV. PROBLEM ANALYSIS

Here we analyze the sensor selection problem and solutions.
There are four categories of problem instances to consider:
when nodes have unit (uniform) costs and weights (w; = ¢; =
1 for all 7), unit costs and arbitrary weights, arbitrary costs
and arbitrary weights, and arbitrary costs and unit weights.
Maximizing W, (.S) can be shown to be NP-hard by a simple
reduction from the dominating set problem, setting all node
weights and costs to one and edge weights to one or zero, or
from the knapsack problem, setting all edge weights to zero.

The natural selection algorithm for these coverage functions
is adaptive greedy selection because it has the best approxima-
tion guarantee of all algorithms, egl [11]. For instances with
unit costs, the algorithm selects k£ nodes one-by-one, each time
selecting the node with the maximum increase in coverage by
nodes already selected (Fig. 1). For instances with arbitrary
costs, the best of two categories of sets is selected: all feasible
subsets of one and two nodes, and all feasible sets of three
nodes greedily appended by nodes with the maximum increase
in coverage density, which is the coverage increase divided
by the cost [11], [18]. Note that the asymptotic runtime of
greedy selection is O(n®) when nodes have unit costs and
O(n%) when nodes have arbitrary costs. This can be reduced
for W42, but the best known approximation factor in this
case is \/Egl [11].

Another natural algorithm is to select nodes in descending
order of their initial coverage density (i.e., coverage by each
node on its own), which we call static greedy selection
(denoted STAT) because the nodes are ordered a priori. This
is a natural choice because it selects nodes by their maximum
possible contribution. However, the approximation bounds are
far worse than adaptive greedy selection—/n when nodes have
unit weights, as proven in the next section.

V. PRICE OF USING THE WRONG OBJECTIVE FUNCTION

Now consider the following scenario. We compute a solu-
tion by running ALG,, for some objective function a, but in
fact the solution is evaluated based on a second objective b.
Since we could not have expected to find an optimal solution
according to either objective, we would have liked to at least
use the greedy algorithm optimizing for the correct objective

function. In this section, we analyze the error in using the
wrong objective function. We limit our study to cases with
unit node costs because of the complexity of implementing
and executing the greedy solution for arbitrary costs.

We define the price of using the wrong objective function,
analogously to Price of Anarchy, as the maximum ratio of the
correct values of solutions computed by the two algorithms.

Definition V.1. For any two objective functions a and b, let
d(a,b) = max; %@m be the maximum ratio between
solutions obtained by the greedy algorithm optimized inde-
pendently for objectives a and b but evaluated according to

objective a.

The “distance function” d(a,b) is the worst case when
selecting according to b and evaluating according to a, but it is
expressed as how well selecting according to a is for a cleaner
presentation. We first study the bounds on d(a, b) for all pairs
between max, sum, and prob in Section V-A, and compare
static and adaptive greedy selection. What is most noteworthy
is that the distance between max and either sum or prob is
in the order of O(y/n) when nodes have unit weights, which
is just as bad as approximation of the optimal solution by
static greedy selection. Because the cases used to prove the
bounds on d(a,b) are pathological, meaning that they do not
necessarily represent common cases, in Section V-B we study
the ratios on randomly generated graphs. Here, too, the error
is large, in some cases up to 50% and more as the size of the
graph increases. In Section V-C, we go one step further and
show that even in graphs whose edge weights are set according
to real data sets, there is a large gap in the total value when
nodes are selected by the wrong criteria.

A. Worst-Case Analysis

In this section, we prove upper and lower bounds on d(a, b)
for all pairs (a,b) € {maz, sum,prob}?. An upper bound is
proven by showing that it holds for all instances, while a lower
bound is proven by providing an infinite family of instances,
for all values of n, that satisfy it. To simplify the constructions
and arguments for the lower bounds, we assume the existence
of an adversary who decides how to break ties when several
nodes have the same marginal value. It can be shown how to
modify these instances to accommodate any tie breaking rule.
The loss in the bounds will be ©(3).

We first prove upper and lower bounds on d(a, b) for graphs
with unit node weights, then for graphs with arbitrary node
weights, and finally on static greedy selection. Note again that
our study is limited to graphs with unit node costs.

Unit node weights

The bounds on d(a,b) for graphs with unit node weights
are not tight, but they are tight up to a constant. The general
observation is that the relationship between max and either
sum or prob is ©(y/n), while the relationship between sum
and prob is ©(1), and that these relationships are nearly
symmetric. Later we show that this is not so when nodes have
arbitrary values.



The following is a universal upper bound for all pairs of
objectives for graphs with unit costs and weights.

Theorem V.1. When nodes have unit weights and for all
ordered pairs (a,b) € {max, sum,prob}?, d(a,b) < /n.

Proof: First, the value of the optimal solution is < n
and the value of any solution with budget & is at least k, so
d(a,b) < %. Second, the same node is selected first according
to all three objectives, so its value A is necessarily the same for
all three greedy algorithms. Since the best the “right” greedy
algorithm could possibly do is get that value £k — 1 more
times for a total of Ak, and the worst the “wrong” greedy
algorithm could do is get nothing else at all, for a total of just
A, d(a,b) < k. Since % is a decreasing function of k and k is
an increasing function of k, the lower bound of the worst case
of these bounds is when these two equal each other (when
% = k), meaning k = Vn. [ |

The upper bound can be strengthened for d(sum, prob) and
d(prob, sum).

Theorem V2. When nodes have unit weights,
d(sum, prob), d(prob, sum) < (ﬁ)2
Proof: Let z = efl. For every subset R C V,
Wprob(R) S Wsum(R) (2)
and
Wsum (R) S z - Wprob(R) (3)

To prove (2), note that for any node v;,

1— H(l_wji): Z H (1 — wgi) wjiézwji

v;ER v;ER \vk<;ER
4)
and
1-JJ@—w) <1 (5)
J
To prove (3), let y = ZUJ_E r Wj; for any node v; and note
that
Y erl—wi)\"
H (1—wj) < (JER”
n
UjER

() 0 e o

The first inequality is a consequence of the arithmetic-
geometric mean inequality, and the last inequality can be
proven by setting a = £ and noting that 1 —a < e™* when
a < 1. From the above inequality and the definition of W,

we have
Wsum(R)
Wprab(R) B

Taking the derivative of (7) shows that it increases with y
when y < 1 and decreases with y when y > 1. Therefore, the
maximum value of (7) is _<;, when y = 1.

Now let S be the set found by ALG gy, P be the set found

by ALGprop, S’ be the optimal set under sum, and P’ be the

min(y, 1]
1—e Y

)

=

Fig. 2. Instance satisfying %\/ﬁ lower bound on d(max,sum) and
d(max, prob) when nodes have unit weights

optimal set under prob. By the above inequalities and by the
guaranteed approximations of ALGypyop and ALG gy, We get:

Wsum(S) S zZ - Wprob(‘s’) by (3) (8)
<z Wpyrop(P')  optimality of P’ )
< 2% Wy,ob(P) approximation guarantee (10)
< 2% Weum(P) by (2) (11)

implying
d(sum, prob) = Weum (S)/Weum (P) < 2 (12)

and

Wprob(P) S Wsum(P) b}’ (2) (13)
< Weum (S") optimality of S’ (14)
<z Wsum(S) approximation guarantee (15)
<22 Wyob(S) by (3) (16)

implying
d(prob, sum) = Wprob (P)/Wprot (S) < 22 (17)
| ]

Next we describe the instances satisfying lower bounds on
all these pairs.

Theorem V3. When nodes have unit weights,
d(maz, sum) > 1/n.
Theorem V4. When nodes have unit weights,

d(maz, prob) > L/n.

Proof: Create three sets of nodes, {u ... ug}, {v1... v},
and {w; ... w2}, for a total of n = k2 +2k nodes. From each
u;, create a 1-weighted edge to every wg;_1)p41 -+ - Wi—1)k+k>
and from each wv;, create a %—weighted edge to every w;.
See Fig. 2. Both u; and v; have coverage value k + 1 when
selected first, so the adversary forces ALG,,4, to select ug
first and ALG gy and ALG0p to select vg first. ALGraq
then selects all remaining u;, and ALG,,, selects all remain-
ing v;. Under Wy,0p, both u; and v; increase coverage by
(1 —1/k)""'k + 1 when vy ...v;_; are selected first, so the



ESI[
=

EeN
=

®

=
=

Bl

=

Fig. 3. Instance satisfying %\/ﬁ lower bound on d(sum,maz) and
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Fig. 4. Instance satisfying 4/3 lower bound on d(sum, prob) when nodes
have unit weights

adversary forces ALG 05 to keep selecting from v;. The total
value of ALG 4, Will be k(k + 1) = k? + k, and the total
value of ALG gy, and ALG o Will be k + k = 2k. Since
k+1 = +/n + 1, the ratio between them will be % = @,
which is greater than Ry ]

2
Theorem V.5. When
d(sum,maz) > 1/n.

nodes  have unit weights,

Proof: Create three sets of nodes, {uy ... ug}, {v1 ... v},
and {w; ... w2}, for a total of n = k? + 2k nodes. From w4
create a %—weighted edge to every wj, and from each v;, create
a %-weighted edge to every w;. See Fig. 3. The adversary
forces ALGgym to select all v; and ALG ;42 to select all u;.
Therefore, the total value of ALGy,n Will be k2 + k, while
the total value of ALG,, 4, Will be 2k. The ratio between them

will be % or —V”QH which is greater than @ [ |
Theorem V.6. When nodes have unit weights,

d(sum, prob) > 4/3.

Proof: Create the two graphs in Fig. 4:

o a complete bipartite graph (G; between k = 2 nodes and
x nodes, with all edge weights equal to 1/2

o a star graph G with x/4+42 nodes, with all edge weights
equal to 1

Then ALG ., will choose both left nodes of G for a total

u

®
®

U1

(%

®

node weight:

=0
®
Bl

V2

node weight

Fig. 5. Instance satisfying in lower bound on d(max, sum) and
d(maz, prob) when nodes have arbitrary weights

Bl

value of x + 2, whereas ALG o, Will choose one left node
of GG1 and the center node of (G5 for a total value of %x + 3.
|

Theorem  V.7. When
d(prob, maz) > <1 \/n.

Proof: Create the graph in Fig. 3. ALG,,, will select
v1...vg, with total value k + (1 — (1 — £)*)k%, while
the adversary forces ALG,,q, to select uy ... ug, with total
value 2k. The ratio between them as k approaches oo is

nodes  have unit weights,

-]

1+ %7”12H which is greater than 521 @ [ |
Theorem V.8. When nodes have wunit weights,
d(prob, sum) > 5.

Proof: Create the graph in Fig. 2. The adversary forces
ALGpp to select all u; with a total value of k% + k, and
ALG g, to select all v; with a total value of k& + (1 — (1 —
1)k k2 ]
- .

Arbitrary node weights

When the nodes have arbitrary values, the bounds on
d(maz, sum) and d(mazx, prob) are higher, as follows.

Theorem V.9. When nodes
d(maz, sum) > in

have arbitrary weights,

Proof: Create two sets of sets of nodes, {v; ... v}, all
weighted 0, and {w;...ug}, all weighted k, for a total of
n = 2k nodes. From each v;, create a %—weighted edge to
every u;. See Fig. 5. ALG 4. selects all u; with a value of
k, but the adversary forces ALG g, to select all v; with the
coverage value of k under the sum metric. ALG 4, Will have
total coverage k -k = k2, while ALG sy wgll only have total

coverage of k. The ratio between them is % =k orZ ®H

2
Theorem V.10. When nodes
d(maz, prob) > in

have arbitrary weights,

Proof: Create the same graph as in Theorem V.9. Note
that under W, selecting v; or u; increases coverage by
(%)(’_1)16. The adversary forces ALGprop to select vy ... vy
for total coverage k while ALG,op selects from wy . .. ug with



the total coverage of k2. The ratio between them is k, or %
|
However, the reverse—d(sum,max) and d(prob, maz)-
appears not to change, i.e., to remain bounded by O(\/n).
Also, d(sum,prob) and d(prob,sum) seem to not much
change. Intuitively, the reason seems to be that even absent unit
values the n/k bound still holds in the cases of d(sum, mazx)
and d(prob,mazx) because the error is conservative, and so
(intuitively) ALG,, 4, can anyway choose the k highest-value
nodes, in which case the worst case for that bound is actually
when values are unit.

Static greedy selection

An alternative comparison is between adaptive selection and
static selection, by analogy to online and offline algorithms.
Note that when v; is covered by only one node, its coverage
is the same under all functions—w;;—so the static greedy
algorithm provides the same solution for all three functions.
Nonetheless, we compare the value of the static algorithm’s
result, evaluated under a given objective, compared to the
value of the corresponding dynamic algorithm, as above.

Note that the same node is selected first by the static
and dynamic algorithm, regardless of the objective function,
SO % < /n according to Theorem V.1. In the
following theorem, we prove that this is the lower bound as
well.

Theorem  V.11.

Wa(ALGa(D) ~
MAaXy —37 (ST AT)

When

>/n

Proof: Create a complete graph with k£ nodes and k — 1
star graphs with k& nodes. Set all edges weights to 1. The
total number of nodes is k + k- (k — 1) = k%, ALG, will
select one of the nodes of the complete graph with a coverage
value of k£ and then select the center of each star graph with
the coverage value k for each center. The adversary forces
ALG 444+ to select only from the complete graph for a total
value of k, while ALG,, will have a total value of k+ k- (k —
1) = k2. The ratio between them is k, which equals \/n. ®

A peculiar situation arises when ALG,,q, and ST AT are
applied, but the result is evaluated according the Wy,,,. For
the graph in the proof of Theorem V.5, ST AT will make
the same selection as ALG gy, thus the same ratio applies.
Formally stated, max; % > @ So we see
that the static algorithm is sometimes better than the dynamic
algorithm, albeit when both are applied to the wrong objective
function.

nodes have unit weights,

B. Randomly Generated Graphs

We study the error in selecting by the wrong criteria for
graphs with randomly assigned node and edge values. This
allows us to study the factors that contribute to the error in
a controlled manner. We tried the four network topologies
listed in Table 1. The bipartite topology was chosen to reflect
the topologies in the examples in Section V. The node and
edge weights were both drawn from either the uniform dis-
tribution or the power law distribution as defined in Table II.

TABLE I
NETWORK TOPOLOGIES USED IN RANDOM SIMULATIONS

name description

complete  all edges

sparse X  edge (,7) exists with probability X

triangle edge (i, 7) exists when ¢ < j

bipartite  edge (4, ) exists when ¢ < y/n and j > /n

TABLE I
PROBABILITY DISTRIBUTIONS OF NODE AND EDGE WEIGHTS

distribution ~ parameters
uniform flx) = biam
for w;: a € {0,0.2,0.4,0.6,0.8,1},b=1
for wij: a =0, b € {0.2,0.4,0.6,0.8,1.0}
power law  f(z) = ﬁx*a

a€{0,1,2,3,4}
for wi:a=0b=1
for w;;: a =0,b=0.2

The complete and sparse topologies and uniform distribution
are obvious starting points, while the triangle and bipartite
topologies and power law distribution highlight some of the
extremes in error. All node costs were set to one and the
networks contained 100 nodes or more.

For each set of parameters, we created up to 20 ran-
dom instances, derived the adaptive greedy solution accord-
ing to each criteria a € {max, sum,prob}, and calculated
the ratio ;Vva(ﬁégbj denoted 7(a,b), for all pairs (a,b) €
{maz, sum,prob}*. This ratio is a measure of how bad
selection by a is with respect to criteria b, which is done by
comparing its value under criteria b to the value of selection
according to the “right” criteria b. Below we discuss the
average of all instances for a specific set of parameters and
budget value.

We first look at sum and prob evaluated by max. Fig. 6(b)
shows the average ratios r(sum, maz) and r(prob, max) for
each budget value for the complete graph using uniform
distributions, with node weights in the range [0,1], edge
weights in the range [0,0.2], and n = 500. r(sum,max) is
as low as 0.72 and r(prob, max) is as low as 0.82. As z or y
increase, these values increase and r(prob, max) approaches
r(sum,max) (Table II). Fig. 6(a) is for the same parameters
in Fig. 6(b), except that n = 100. While r(sum,max)
is not much different, r(prob, max) is much further from
r(sum, mazx), which is the case over all combinations of z and
y. This suggests that r(prob, mazx) converges to r(sum, maz)
as n increases. Under the power law distribution, not only
does r(sum, max) decrease as « increases for either the edge
or node weight distributions, but it decreases as n increases
as well. Similar results were found for the other topologies.
Sparseness was not a contributing factor to the ratios.

When evaluating by the other two criteria, sum and prob,
the error of using the wrong criteria was minimal in the com-
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TABLE III
WORSE APPROXIMATION OF ALGpaz FOR A COMPLETE GRAPH,
UNIFORM DISTRIBUTION, . = 500, AND DIFFERENT VALUES OF NODE
WEIGHT PARAMETER a (ALONG ROWS) AND EDGE WEIGHT PARAMETER b
(ALONG COLUMNS)

approximation by ALGsum
0.2 0.4 0.6 0.8 1.0

0 0.719 0.815 0886 0947 0.973
02 079 0872 0922 0964 0.973
04 0.863 0914 0949 0977 0974
0.6 0912 0946 097 0977 0974
0.8 096 0976  0.98 0978  0.975
1.0 098 0984 0981 0975 0.975

approximation by ALG 0
0.2 0.4 0.6 0.8 1.0

0 0.822 0.838 0.887 0946 0.989
02 0844 0.884 0923 0964 0.99
04 0879 0918 0.95 0977  0.989
0.6 092 0.95 0.97 0986 0.991
08 0962 0976 0986 0.99 0.99
1.0 0987 0989 0991 0.99 0.99

plete and sparse graphs, with (sum, max) and r(prob, mazx)
being above 0.95 in most cases. In the bipartite (Fig. 7) and
triangle (Fig. 8) graph with uniform distribution and node
weights in [0, 1], there was a significant error when selecting
by maz and evaluating by either criteria, with r(max, sum)
as low as 0.6 when edge weights are in [0, 0.2]. While there
was minimal error for r(prob, sum) and r(sum, prob) in the
bipartite graph, we see a nice dichotomy in the triangle graph.

budget

(b) compared to prob

Fig. 7. Comparisons for a bipartite graph, uniform
distribution, node range [0, 1], edge range [0,0.2],

budget

(b) compared to prob

Fig. 8. Comparisons for a triangle graph, uniform
distribution, node range [0, 1], edge range [0,0.2],
and n = 100

r(prob, sum) is minimal, but r(sum, prob) is nearly as low
as r(max, sum). In both graphs, r(sum, prob) became lower
than r(mazx, sum) as x and y increase.

C. Real Data Sets

Since the study of randomly generated graphs leaves us with
a question if these errors occur in reality, we also studied
the error in graphs based on real data sets. We tried many
publicly available data sets [19]-[21] and present the six most
significant results. We focus on the gap between max and sum
and exclude prob from the evaluation. Even here, selecting by
the wrong criteria is as low as 50%. What was interesting is
that when the gap is large under one criteria, it is small under
the other. In each case, a different approach was used to set
the edge weights, showing that these results are independent
of how the edges weights are set.

Intel Berkeley Research lab [3], [19]. We used the first
30,000 epochs from 48 out of 54 sensors (motes 5, 15, 16, 17,
18, and 28 were excluded) to calculate regression coefficients
between pairs of data streams for both light and humidity data.
We linearly interpolated the missing data and normalized the
data by replacing each sample in a stream with the number
of standard deviations it falls from the mean for that stream.
We set the edge weights to 1 minus the mean-squared error
of the predicted data along each link. In Fig. 9, we can see
for both that coverage under max of the selection by sum is
about 10% to 15% less than that of the selection by max.

EPANET Water Data [22]. We used EPANET 2.0 [22]
to simulate water flow in a pipe network with 125 junctions
between various pipes [23]. The chlorine concentrations in the
sensors were used for the prediction process. We normalized
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the data and set the link weights as we did for the Intel
Berkeley data, and had similar results (Fig. 9).

EIES networks [24], [25]. This network was constructed
from a matrix with the number of messages sent among 32
researchers. This network represents how much information
we can get from this operation. Since the maximum number
of messages on one edge is 559, we divided the number of
messages on each edge by 600. In Fig. 10, we see a gap as
large as 26% when evaluating by sum but a small gap when
evaluating by max.

Intra-organisational networks [26], [27]. This is a network
of 46 employees in a consulting company that rank each other
on a scale from O to 5 based on how often they turned to them
for work-related information or advice. We used this dataset as
a relationship graph between all employees, setting the edge
weights to the ranks divided by 5. The idea would be to select
the set of employees that have received the most information
from other employees. In Fig. 11, we see a gap as large as
20% when evaluating by max but a small gap when evaluating
by sum, as opposed to the EIES network.

SPECT Heart [21]. The dataset describes cardiac Single
Proton Emission Computed Tomography (SPECT) images.
The database of 267 SPECT image sets (patients) was pro-
cessed to obtain 22 binary feature patterns. We used 80
instances to test the selection algorithms. The goal is to select a
subset of images that gives as much information of the entire
dataset, so a researcher only needs to study those subset of
images instead of studying the entire image dataset. We set
the edge weights according to the Kendall Tau rank distance
between the binary feature vectors of each pair of images.
In Fig. 12, we see a gap as large as 50% when evaluating
by sum but a small gap when evaluating by maz. The
experiment shows under the sum evaluation using adaptive
sum algorithms we need only 6 images to predict the whole
network but under the adaptive max algorithm we need 25
images (Changing the metric from sum to maz results in 80
for adaptive sum and 80 for adaptive max algorithm).
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based on another objective. Since the greedy solution itself
gives an %-approximation of the optimal solution, we obtain
that if we optimize for a and evaluate according to b, then the

vk ko k kvVE+1 solution satisfies an approximation guarantee of d(l - =L
a,b) e
nodes nodes  nodes nodes . . . . 1 . . .
Since hybrid selection is a g-approximation of selection by
the right criteria, it is also a % : ezl—approximation of the

Graph B

Type A (Vk copies)
Oo——0

Type C (k copies)

Fig. 14. Instance proving n'/4 lower bound approximation ratio of maz-
sum hybrid selection of arbitrary sub-modular functions

VI. HYBRID GREEDY SELECTION

We saw in the previous section that the approximation error
in the worst case can be O(y/n) or even more when nodes
have arbitrary weights, and even in practice can be large.
One way to avoid this problem is to use a hybrid of the
criteria. In the hybrid solution, the criteria by which nodes
are selected is switched between maz and sum round-robin.
That is, the second node selected is the one that increases the
value according to sum, the third according to max, the fourth
back to sum, and so on. It can be easily proved that this gives a
%—approximation of the greedy solution according to the right
criteria out of max and sum. Since the selection is greedy
and half the budget is dedicated to each criteria, then at least
half of the solution is approximated.

In practice, the hybrid solution is very good. For the real
data sets in Section V-C, the value of the hybrid solution is
remarkably close to the value of solution by the right criteria
(Figures 10, 11, and 12). Fig. 13 revisits the triangle graph of
Fig. 8 with coverage by the hybrid selection added. It shows
that it reduces the gap between max and the other criteria by
up to 2/3. This trend was seen throughout all the simulations.

The Wild Conjecture and Why it’s Wrong

One motivation for the analysis in this paper is to see
how well we do if we optimize for one objective and then it
unfortunately turns out that the solution is actually evaluated

optimal solution. Now, maz and sum are the two extremes
in submodular functions that aggregate edge weight values.
We therefore posed the wild conjecture the hybrid solution
is even a % . egl-approximation of the optimal solution for
any submodular function. It turns out that this is wrong. Even
worse, the approximation ratio is Q(n'/), as we prove in the
following theorem.

Theorem VI.1. No hybrid algorithm that greedily selects half
the nodes according to the max criteria and the other half
according to the sum criteria can guarantee approximation
of the optimal solution for an arbitrary sub-modular function
by a factor less than n*/*.

Proof: Construct vk graphs (denoted A graphs) with vk
nodes pointing to k+v/k other nodes. Create another graph (de-
noted Graph B) with k nodes pointing to kv/k+1 other nodes,
and finally another graph (denoted Graph C) with k& nodes
pointing to k other nodes. All edge weights are set to 1/k.
The total number of nodes is in the order of k2. The budget
is k, and the evaluation function is f(v) = min{sum, ik}
ALG pq. Will select one pointing node from each graph of
Type A, one pointing node from Graph B, and k — vk — 1
pointing nodes from Graph C, while sum will choose all
pointing nodes from Graph B. The total coverage under f(v)
in both cases is in the order of O(k), so coverage by hybrid
selection is also in the order of ©(k). The optimal solution
is to choose all pointing nodes in all Type A graphs, with
coverage in the order of @(k\/ﬁ), so the approximation ratio

is Vk = nlt/4. ]

VII. CONCLUSION

We presented the problem of selecting sensors for prediction
by the wrong evaluation criteria. We proved the worst-case ap-
proximation ratios when the nodes have uniform cost, showing
that the ratio is as high as ©(y/n), when nodes have unit costs
and weights and either the selection or evaluation criteria is



maz, and even higher when nodes have arbitrary weights. We
showed that this is a problem in practice and not just theory
by running the algorithms on randomly generated graphs and
graphs that represent the relationships in real data sets. In
something as basic as a complete graph with random node and
edge weights, coverage when selecting by the wrong criteria
is up to 35% less than when selecting by the right criteria.
We then showed that splitting the budget between criteria in a
hybrid greedy selection algorithm does very well in practice.
In theory, it guarantees a %-approximation of selection by the
right criteria, but in practice coverage error was less than half
than selection by one of the “wrong” criteria and in one case as
good as selection by the “right” criteria. However, this cannot
be used as a %egl-approximation of the optimal solution for
general evaluation functions, as proven.

Some of these bounds need to be tightened, and the more
challenging case of arbitrary node costs still needs to be
analyzed. We can analyze the problem differently by removing
the assumption of self-loops (full coverage of a node by itself).
The hybrid algorithm can be studied further. One problem
to begin with is how to divide the budget between criteria.
Some alternatives to round-robin selection, used in this paper,
are to first select half the nodes by one criteria and then
the other half by the other, or to randomly choose between
criteria. The questions again are how these techniques perform
in theory and practice, and if there is any practical difference
at all. The interesting question is how this can be used as
an approximation algorithm for the optimal solution when the
evaluation criteria is not known. Is it possible to guarantee
a good approximation factor by splitting the budget between
several known criteria?
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