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Abstract—In many situations it is important to deliver infor-  Since we push the data only once the information requiresent
mation to personnel as they work in the field. We consider such gre clear, we can reduce latency costs and congestion by
a specialized content distribution application in wireles mesh pushing only the data actually needed

networks. When a new mission arrives—for example, when an Th | of thi is 1 inimize the lat d ;
alarm for a fire is reported—data is pushed to storage nodes at € goal of this paper I1s [0 minimize the latency and cos

the mission site where it may be retrieved locally by responisig  incurred by the ultimate recipient when retrieving the data
personnel (e.g., police, firefighters, paramedics, goverrent offi-  while respecting the limitations on storage node capacitie
cials, and the media). It is important that information is available  Note that if the users are already at the mission site when
at low latency, when requested orpulled by the personnel. The - yo15 hecomes ready, the latency experienced by them is the
total latency experienced will be a combination of the push dlay f th hi d oulling | f th f

(if the personnel arrive at the mission site before all the dea can SUM Of the pushing and pulling latency. If the users are far
be pushed), and the pull delay. Each delay component will in from the mission site when data becomes ready, the data may
turn be a function of 1) the hop distance traveled by the data be pushed before the users arrive at the mission site. For thi
when pushed or pulled and 2) the congestion on the links. In case, the latency to the users is only the pulling latency. We
this paper, we define algorithms and protocols that trade-dfthe iy show how our algorithms handle both these situations.
push and pull latencies depending on the type of applicatiorOur . . . .

goal is to choose a storage node assignment minimizing thetab VW€ Start with a simple setting in which the push/pull cost
latency-based cost. We start with a simple model in which cos is defined as a function of data item size and the distance
is a function of distance, and then extend the model explidi between the data’s source, destination, and storage nades.
taking congestion into account. Since the problem is NP-har rg|ated problem, called the Data Placement Problem (DBP), i

to approximate, our focus is on developing efficient algorttms P : ; ;
and distributed protocols that can be easily deployed in wieless studied in [1]. The goal in one variant of that problem, which

mesh networks. In NS2 simulations, we find that our heuristic 1S NP-hard even to approximate, is minimizing the sum of
algorithms achieve on average a cost within at most 15% of the installation (push) cost and access (pull) cost. Although o
optimum. problem formulation differs in some respects, the hardness
result carries over to it. Since no constant approximatien a
gorithms are possible unless P=NP, our goal is to find efficien
Timely dissemination of information in wireless mesh netand distributed heuristics which perform well in generaesa
works required to execute missions is critical in many aimeu  We define heuristics that allow a trade-off between push
stances. In an example scenario, a search and rescue misgith pull costs and show that in the general case, where the
is commenced by personnel who make use of various kinfigmber of data items is bounded by the number of nodes, we
of information, e.g., maps, road conditions, medical rdsor can achieve average costs within 15% of the optimum.
Each class of personnel requires access to some (possiblye then consider a more realistic setting in which both the
overlapping) subset of the available information, whicbll  |ocation of the storage nodes and the congestion experdence
be made available to them as quickly as possible upon thgirpushing and pulling the data contribute to the latency. We
arrival at the mission site. The network model works agfine our model by including constraints that take congesti
follows: 1) a mission site lies within a wireless mesh networ into account, and develop a corresponding heuristic atyori
2) data sources push required data into some storage nogles show that we can effectively trade-off pull and push
in the network; and 3) personnel (data users) traveling €0 tBosts, depending on the type of mission, and that by tuning
mission site pull the data from these storage nodes uporabirria parameter we achieve low latencies. Finally, to put the
at the mission site. Since the number and storage capacityafiforithms into the context of wireless mesh networks, we
storage nodes are limited, intelligent decisions must bdemagevelop a fully distributed protocol and show that it is st
in allocating storage space to the various personnel typ@sth little overhead.
Also, in the context of wireless mesh networks, bandwidth
and energy are scarce resources, so we desire our algorithms
to be scalable and energy-efficient, with low overhead. Our work relates to a body of work on Content Distribution
This setting differs from other content distribution emvir Networks (CDNs) and data dissemination in sensor networks.
ments in which data is pushed to storage nodes on a regilaCDN consists of a group of servers that try to offload
basis. In the applications considered here, the need farada@ work from origin servers by delivering their content to athe
specific location arises suddenly with the creation of aimiss servers that are close to expected data request originafors

I. INTRODUCTION

Il. RELATED WORK



Its goal is to reduce the latency for a user requesting dafal]) studied a minimization caching problem similar to ot
which may be formulated as an optimization problem, whethBXCP and our problem in which caches have integral (degree)
minimizing latency-based costs or maximizing the value tmounds on the number of assigned data items and clients have
users of stored data. Baev et al. [1] formulated and gamemeric demands for data items. The objective is to minimize
approximation algorithms for a related but simpler variarstorage and access costs. They obtain an LP-rounding-based
of the problem we consider. A similar problem in the ared0-approximation obeying the hard capacity constraints, b
of Internet data requests (specifically, using the IP Antycasith the restriction that data items are unit-size.
protocol), in which minimizing time for “redirection” to da Shmoys and collaborators [12], [13] gave approximation
item was one of multiple goals, was recently studied bglgorithms for various special cases and relaxations of , GAP
Alzoubi et al. [3]. Our model differs from a typical CDN inincluding a polynomial-time (though LP-rounding-basell) a
that the information needs in our system arise suddenly, agorithm that either finds an assignment of cost at m@st
the location of the information requestors is only known@navhile possibly violating capacity constraints by as muchhes
the data need arises. Moreover, we consider both the costraximum data item sizer determines that no such solution
pushing and pulling data, unlike CDNs in which the pull costxists. The work [3] cited above uses this algorithm and then
only is typically optimized. shifts assignments from overloaded nodes as needed. Recent
In the networking literature, three canonical data diss@mi [14] gave bicriteria algorithms for a setting allowing cajiga
tion approaches have appeared for sensor networks. Ektemmstraints to be violated slightly, optimizing both totaist
Storage (ES) stores all event data at an external storagé pand the amount of capacity violation. Given a hard constrain
so queries for data needs to go out of the network; Locah either goal, the other can be taken as the optimizatioh goa
Storage (LS) stores all event information locally so queriéSiven a cost bound, the problem of minimizing the violation
for data have to flood the network to find the data sourcef capacities (or in terms of machine scheduling, miningzin
and Data-Centric Storage (DCS) stores different types tf danakespan) is known to be NP-hard to approximate better than
within the network at designated nodes; queries for data caf2 [13]; when capacities are strictly enforced, it is NReha
then be sent directly to the node without flooding the networto approximate the cost minimization problem to any cortstan
Directed diffusion [4] is an example of LS, in which afactor, as in our stated formulation.
source stores data locally and sends data only when a sink has this work, we enforce capacities strictly, and we re-
sent a query for the data. One example of DCS is Geographyigre efficient, combinatorial algorithms that do not requi
Hash Table (GHT) [5], which hashes key values (such as dat@-rounding. We therefore develop heuristic algorithms an
names) into geographic coordinates, and stores the dataewatluate them experimentally through simulation.
the sensor node geographically nearest the hash of its key.
Queries are directed to that area based on the same procedure I1l. BASIC PROBLEM FORMULATION
The solution we present is most similar to DCS but differs In this section we introduce the basic problem. Our goal
in that we choose storage nodes based on a cost value. Eh&o minimize the push-pull cost of the data dissemination
dissemination iproactivein that we push data to these storageshere cost is defined as a function of the size of the data
nodes ahead of time, so that the user can pull the data wizemd distance it must travel. We extend the basic problem to
needed at the mission site. Our goal is to minimize the totalcorporate congestion costs in Section V.
cost of pushing and pulling and to reduce latency. The number of hops taken by the wireless mesh networks
At the core of our problem is selecting the correct storage deliver the data is a natural metric for cost. In our specifi
nodes. This requires assigning data items of various sizai&sion scenario, because we want to route to a specific
to the best nodes. The core optimization problem here dsea (similar to GHT), we use a geographic routing protocol,
the well studied Generalized Assignment Problem (GAP) [&imilar to GPSR [15], [16], which makes greedy choices based
which lies in a family of related problems including Multipl on geographical information, without needing to flood the
Knapsack, Bin Packing and Facility Location. network. An analytical approach was introduced in [17] to
A natural greedy strategy for the maximization variant diound the number of hops for a given source-to-destination
GAP [7], [8] is to take bins one at a time and solve each nedtuclidean distance, which allows us to use distance as a/prox
optimally. This provides a 2+approximation when the single-for hops and avoid having to compute optimal hop counts.
bin problem is approximated within ¥+9] gave LP-rounding _ )
and local-search algorithms for GAP and its generalizatigh 1he Integer Programming (IP) formulation
the Separable Assignment Problem (SAP), and was motivatedet D = {d; : ¢ = 1...m} be a set of data items and
by a Distributed Caching Problem (DCP). In that problen§ = {s; : j = 1...n} be a set of storage nodes caches
there are data items, caches, and requests; caches hagest@ach data itemi; has a sizew; and a source locatiop;.
capacities and bandwidth limits. Therefore there are twe s&ach storage node has a storage capdgityrhe network is
of decisions: the assignment of data items copies to eadtecadesigned to benefit a group of uséfs= {u : k = 1...1},
and the assignment of each request to some cache (contaigiagh of which must retrieve some subset of the data items
data of that type). They choose a request assignment prdif C D at somewhere in the mission site. Each potential
based on the associated assignment cost. [1], [10] (see gisrement of a data itend; at a nodes; is associated with



some cost;;, which initially is taken to be simply a propertyD. Hardness

of the pair(i, 7), i.e. the sum of the cost of placing itetf in . . . .
nodes; and the costs of accessing it from there, for all users® spemal case of this problgm with (metric) access costs
' only (i.e., « = 1) and unit weights was shown to be NP-

who desire it. hard in [1]. That paper showed a non-unit weight version of
min Zcijxij (1) their problem to be NP-hard to approximate, by proving it
i NP-hard to determine whether a feasible solution exist&mi
st Zx _q Vi capacity constraints, by reduction from the Partition eob
LT ’ That result does ndtirectly apply here since, as just stated, we
! assume a feasible solution always exists. Still, their hesd
Zwixij <b; vJ, argument can be adapted as follows, which indicates that no
i constant-approximation algorithm exists unless P=NP.
xij € {0,1} Proposition 3.1:Our problem is NP-hard to approximate.

The objective is to minimize the total costs, consistenhwit Proof: Given is an instance of Partition, i.e., a sebf n

the storage capacities. For each fajy), the decision variable nL_meers suchthal, .4 = 2.5' we t_hen construct a problem
WIEh two users and two unit-capacity storage nodes, all four

;; indicates whether this assignment is chosen. The first s . i ) i
g 9 ?&]ects located in the same positién n data items, with data

of constraints indicate that each data item must be plac D F Sizea./S whose broviders are located somewhere
once. The second set of constraints indicate that each snod«%e ! ai/ P

storage capacity is respected. If data items can be divid%g‘er thanP; and a = _1' '!'hen determining V\{hether therg
fractionally, then this problem can be solved optimally bgmsts a zero-cost solution is the same as solving the iPartit

Linear Programming (LP). In this case, the relaxed decisi foblem. -

n . . :
variablez;; indicates the fraction of; that is placed ins;. Rather than seeking an optimal solution, therefore, our
We assume that there are enough nodes to store all ite

I'Lngrest in this paper is efficient algorithms that performllw
One way of justifying this assumption in practice would be t

gn realistic problem instances.
place a cache at each data item’s source location. This way,
even if the storage nodes are full, the data may be cached at IV. HEURISTICS

the source itself. ) ) . ) o
In this section, we motivate and present a simple heuristic

B. The cost function algorithm for the basic storage node selection problem. The
costs involved in choosing a particular storage locatiamfo

The costc;; to store data item on storage nodg has tWo  ,ntqurs on a plane. We first discuss these contours and then
components, the push casy and the pull cost; (in total, {4 to the algorithm itself.

for all users requiring this item). In cases in which useesfar
from the mission site, and hence will not start pulling data f
a much longer time period than the push time, the push cdst

may not be important. In this case the pull cost is priordize  ag described above, there are two kinds of costs involved
Contrgriyvisg, if the users are at or near the storage noden W'ih the basic problem formulation, costs for pushing datanfro
the mission is started, then the push cost must be balanted W rces to storage nodes and costs for pulling from storage
the pull cost. If we take priority between pushing and pgllinngdes to users. Each point in the plane will correspond to a
into co_nsideration and let the prior_ity of pushingdeand that possible cost value, representing the combined push and pul
of pulling be1 — «, then the cost is: cost involved in storing a (unit-size) data item in a cache at
that location. This ensemble of cost values forms a system of
contours on the plane.
C. Approximate cost We draw the contour lines by Eqg. 3. In the example shown
. ) in Fig. 1, we place three users and one source (with users
Now we approximate the number of hops by distancggicated by “*' and sources by ‘0"). The three users request
Define d(z, y) to be the distance from objeat to object ne gata item from this source, so storing this data item
y (where objects may be nodes, users, and/or data sourcgs)yitterent places incurs different costs which forms a set
With U; denote the subset of users requesting dathe cost o contour lines. The inner lines of the contours always
function can be written as: have lower costs than the outter lines. With pull and push
cij = a-d(iy j)ws + (1 —a) - Z dG,kyws  (3) cost; weighted _equally_, the shape of the contour rgsembles
J T = ’ a misshapen ellipse lying close to the users (see Fig. 1(a)).
e The contours converge to misshapen circles as the pull weigh
If « is a constant for each provider, the cost depends orcreases relative to the push weight (see Fig. 1(b)). The
four factors: the source it belongs to, the users who reqtjestcontours lie closer to the users even when we put slightly
the storage node, and its size. more weight on pushing (see Fig. 1(c)).

Cost contours

Cij:Oé'Sij—F(l—Oé)"l’ij OSOLSl (2)
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(a) Weight 0.5 on pulling (b) Weight 0.9 on pulling (c) Weight 0.3 on pulling
Fig. 1. Cost Contours
B. The heuristic algorithms memory might better be replaced by a more important data

Motivated by the contours, we design our heuristics to wofle™ 0 minimize the overall cost. Nonetheless, we find the
greedily and independently on each data source. Each Smﬂgg‘ormance of the heuristics to be quite gpqd.
determines its best storage nodes, i.e., those with thestowe 10 (est the performance of these heuristics, we conduct
cost (on the innermost contour line), and attempts to push VO Series of simulations: varying problem size and varying
data to these nodes in a greedy manner. Because source nBi¥em hardness. For each set of parameters we test, fieere a
act independently, conflicts may occur at storage nodes. 9 randomly generated mesh grids and the results presented
manage these conflicts, storage nodes follow a “first conff® the average. In the first series of tests, we have a varying
first serve” rule. If the storage node has enough space, lit wil2€ ©f grids while in the second we have a fixed size of
accept the storage request; otherwise it rejects the requres grids with 50 storage nodes. All storage nodes have a uniform

the source has to continue looking for a storage node ggeedifPacity of 10 units and data item sizes are selected urljorm
until it is satisfied. at random fronil, 10] units. Each source holds a fixed number

One thing to consider is that several data items may shé]rfedata items and each user requests a fixed number. Which

a single source, so we need to decide the order of data ite#7§" redquests which data items is randomly decided. The

to push from a source as well. The base algorithm seleé:?gaﬁon of_each source, storage node and user is un@fo_rmly
data items for placement in arbitrary order. We consider t Str'b‘;md in the_g”d('ng test _thel pde_rforrrr:ance of th_e m’f”t').
variants:big-to-smallselects items in order of decreasing siz8'90rthms mentioned above including the two variants: big

while small-to-bigdoes the reverse. to-small and small-to-big. L
We compare the performance of the heuristic to a bound

we compute on the optimal performance. This bound is
the optimal solution value® PTp to the LP relaxation of
Problem 1, i.e., an optimal solution to the easier problem in
Which data items may be stored fractionally in multiple ech
Note that we do not allow such fragmenting of data items for

Algorithm 1 Greedy Algorithm
1: for eachd; on the same source in arbitrary ordy
2: if d; can be placed more cheaply in another node th
its sourcethen

3 E;a;caeg;;nb;:\.odej minimizing c;; and decrease;’s i, 06 SOPT;p can only be better than the true optimal

4 else B vaIL_Je, thus giving us an easy-to-compute lower bound on the
_ . optimal cost to compare to.

Z' en(clii i?tays atits source I_n Fig. g(a), we vary the size of the pro_blem ir!stance,
7 end for while holding the “hardness” constant. That is, we increase

the number of nodes along the X axis, holding the relatignshi
between the number of data items and nodes fixed at 1:1 (this
Every data source calculates a table with entrje¢see Ed. ratio is very high). The purpose of this experiment is to test
3), which is the cost to put each of its data itérto storage how well the heuristics do for different sizes or complesstof
node;. Each row of this table is sorted in order of increasingroblem instances. We find that the heuristic typically aets
cost. The source starts to send requests for its data to #8% more costs than the optimal.
nodes corresponding to the first column of the table. Eachp Fig. 2(b), we vary the difficulty of the problem instance.
node follows a “first come, first serve” rule and the sourCehat is, we increase the number of data items along the X axis,
greedily continues requesting storage space until all @ d hile holding the number of nodes constant. A complication
are placed. here is that it may happen that the algorithm runs out of space
and fails to place one or more of the data items at all. Althoug
this sort of algorithm failure seems like a natural outcome t
Here we show the evaluation results for the heuristics fer tiest for, due to NP-hardness, we cannot in general be sure
basic problem. When conflicts occur preventing the placémehat even the optimal algorithm would succeed. Therefore fo
of data items in the same node due to memory constraints, this test we modify the constraints slightly, introducirget
selection of storage nodes may not be globally optimal. Thassumption that, if there is no remaining feasible node in
is, the first data item arriving at a node and occupying itghich to place a data item, or if all such placements would be

C. Performance evaluation
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Fig. 2. Performance Tests

more expensive, then a source may hold the data item locally V. CONGESTION
for direct access by the user. In this case, the placement cos

is simply the pull cost experienced by that data item’s er(  In this section we extend our formulation and heuristics to
Note that we do not introduce an official node co-located witkplicitly consider the challenge of congestion. Thisabais

the source; there is no capacity, and other providers may f@tcompare algorithms in terms of the latency experienced by
place their items here. users when retrieving the data.

The performance shown in Fig. 2(b) differs markedly from
that in Fig. 2(a). First, when the problem is not too hard{ tha A Congestion models
when the ratio of number of data items over number of nodes is
below 1, the heuristics perform very close to the optimak Th Since latency is theoretically proportional to number of
lower the ratio, the closer to optimal the heuristics perfor hops, minimizing the costs as discussed in Section Iil shoul
For the specific ratio 1:1, as we have also seen from Fig. 2(&nd in practice to minimize latency. Latency can also be
the heuristics incurs about 15% more cost. increased, however, by congestion. For pushing data, the
. . connection model is one-to-many: a source may several data
As the problem becomes harder, i.e., as it becomes mqgre . ; . o
e ! . ltems to their storing nodes simultaneously. Congestion is
difficult to find storage nodes because of memory constr,alnfﬁ . e
- ! . likely to happen for three reasons: 1) the sources are posti
the heuristic performs more poorly. In the case with a ratio g

about 3.3:1, the heuristic actually incurs twice the cost Close to one. other; 2) the storage nodes positioned are close
optimal. to one other; or 3) the routes between the sources and storage

nodes cross and interfere with one another. For pulling,data
In these results, we see thhig-to-small outperforms the the model is many-to-one: several users may request data fro

other two in most cases. This may be because placing the same node. In this case, congestion may occur for three

largest items first reduces the chance that they will be tegec Similar reasons: 1) the users are close to each other; 2) the

from their optimal storage node and be placed in a node thdes from which data is being pulled are close together; or

incurs higher cost. Because the largest data items suféer & the routes between the different storage and users pairs

highest penalty for being misplaced, the big-to-small fstier interfere with each other.

accommodates them first. However, this algorithm still doesCause 3 in both cases may be handled by specialized

not match the optimal due to inefficiencies of packing datauting protocols which are not addressed here. We focus on

into storage nodes. Because data fragmentation is notedlowaddressing cause 2: how to pick storage nodes that are close

in some cases space in storage nodes is wasted because ribe ultimate pulling nodes considering the congestiat th

remaining data items may fit, whereas in an optimal solutianay be caused during the push and pull operations. Our basic

some alternative packing would be used. For example, os@ution is to discourage sources from picking storage sode

extreme case occurs when storage nodes have capacity ofHH) are within close range of other heavily used nodes.

units and three data items of sidet ¢, 5, and 5 are placed

sequentially. The data item of sie-e will occupy the lowest

cost node, thus blocking the two data items of size 5 whidh New constraints to the problem

will occupy the second best storage node. In this example,_l_ q hi ¢ ) dd )
nearly half the storage space of the nearby node is wasted. 0 reduce this type_ 0 (_:or_lgestlon, we add new cons_,tralnts
to formulation (1), which limit the total data size in a cénta

We conclude that when the problem is not too hard (thereasea. In the following problem formulation, the third set of
sufficient memory for storing data items), the heuristiasdte constraints limit the total data size within a one-hop nbh
to perform well regardless of problem instance size. hood.
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In this formulationH; is {k|sy is one hop froms;}, i.e.,
the indices of the nodes within one hop ot

C. Virtual Occupation for the heuristics

Next, we extend our heuristics to deal with congestion. Thi
goal of this extension is to disperse data around the field, i
order to avoid congestion, so that heavily used nodes do n
lie too near to one another. To discourage this, we introduc LR R R R R R R R R
the concept ofVirtual Occupation (VO), which works as Number of requests from each user
follows. When a storage node accepts data, we record that
it occupies its own memory, as usual, but also “virtually”
occupies some space on its neighbors. When neighboring

nodes receive requests to store data, they treat the wrtu%lj(uares in the figure, the larger the amount of data stored in

Latency (Sec)

Fig. 4. Pull latency with/without VO

occupied space as being un_available. This reduces the am HIX area. Without using the virtual occupation (Fig. 3(e)k
of dat_a t_hey can stqre, Wh'Ch ngturally spreads data aro a between the two users experiences heavy load (therdarke
the mission site. While this may increase the number of th uares). When using virtual occupation (Fig. 3(b)), thisaa

rﬁquwed for a (ijser todpl;]II dat?j’ It may reﬁillJce congestion @ :omes more lightly used, which will reduce the congestion
the storage nodes and thus reduce overall latency. among these source-user pairs.

Algorithm 2, which is performed by each source, behaves
as follows. When a nodg stores data itend; of sizew;, it D. Evaluation

reduces the available space in its one-hop neighboys- by In this subsection we evaluate the virtual occupation al-
as seen by other data sources. Note that the available memgkithm and its effectiveness in mitigating congestiond an
of the one-hop neighbors is not reduced with respect to tBgajuate the ability of the cost contours in trading off thal p
source of data iterd; because a source will not interfere withgng push costs when congestion is considered.
itself, and although multiple users may request the samee dat1) \jrtual Occupation: To see the effect of the virtual
item, e.g.d;, this is less likely than different users requestingccupation clearly, we conducted the following tests in NS2
data items from different sources. we fix the four source-user pairs as in Fig. 3 but vary the
- - . - number of requests from each user. The size of each data item
Algorithm 2 Gr.eedy Algorithm W'tr_‘ VO.(smgIe source) is still uniformly distributed from 1 to 10. The latency rdisu
1. for eachd; in order of decreasing siz#o with and without VO are shown in Fig. 4. The users request a
2. if d; can be placed more cheaply in another node thggying number of data items as fast as possible; for example
its sourcethen a value of 5 on the X-axis in Fig. 4 corresponds to each user

3 placed; in a nodej minimizing c;; requesting 5 data items. In this example we seif Eq. 3 to

4 increases;'s one-hop neighbors’ VO by - w; 0 to see the effects of the virtual occupation algorithm when

5 decrease;'s capacity byw; the pull costs are emphasized. We tune the parame(@s in

6: else _ Algorithm 2) from 0 to 1.

! di _stays at its source We see that when the request load from each user is low, the
g end if virtual occupation technique does not improve performance

- end for because there is little congestion near the storage nodes.

When the rate of requests increases, in most cases thelvirtua

Figure 3 shows an illustrative example of the use of theccupation technique reduces the pull latency. In somescase
virtual occupation algorithm. There are four source-usgrsp the reduction in latency is dramatic (40%). Even with high

The sources are located at the four corners of the field whiteads, however, in some cases (e.g., with 11 requests) the
the users are close to each other. The darker the shading ofwintual occupation technique does not improve performance
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This is because the virtual occupation technique may isereduned from1 to 0. In these simulations, sources are located
the number of hops required to retrieve data to a point thiar from one another while the users are relatively closa® o
the additional latency caused by the increased number of h@mother. Therefore the primary expected cause of congestio
outweighs the benefits of reduced congestion. closely spaced storage nodes, i.e., the second congegtien t
2) Trade-off between pushing and pullindAs seen in discussed in Subsection V-A. Whenis large ¢ 0.5) and the
equation 3, a trade-off may be made between the push and piaifa is not pushed all the way to the mission site, the chosen
costs by adjusting the weighi. Similarly, putting different storage nodes are likely to lie near the sources and thete wil
weights on pushing and pulling will cause different latexsci be little congestion of this type. Whenis smaller, the storage
This trade-off is important when considering different Bpp nodes will tend to lie near to the mission sites and henceeclos
cation scenarios. In general, the laterfGyin retrieving data to one another, in which case this type of congestion isiékel

as seen by a user may be expressed as: to appear.
T Tps — Ty + Ty, if Tps > T, 5 In this case, the virtual occupancy algorithms work to reduc
L Ty otherwise ®) the congestion, and hence latency, for both push and pull.

where T,,, is the time to push the datd}, is the time to The reduction i|_'1 push Igtency a:sdec_reases in Fig. 5(_b) as
pull the data andr, is the movement time for the user tocompared to Fig. 5(a) is clear, as is the _reductlon in total
the mission site. Note that if the movement time of the user &€ncy (€.g., whem = 0, the total latency is reduced from
longer than the push time of the data, it will not experienoe a Vel 50 seconds in Fig 5(a) to under 40 in Fig 5(b)). There
push delay because it cannot retrieve the data until it esrivVS also reduction in the pull latency (as shown in bar 12 of
at the mission site. In this case the latency experiencetidy f19Ure 4), but this is not as visible in Figs. 5(b) and 5(a) tue
user is just the pull latenc§,,. If the user is at the mission scaling. We_observe that _the pull Iatenc_y does not reducéamuc
site when the mission arrived), is zero and the latency when the V|rtua_\l (_)ccupanon algorithm is usedcagiec_re_ases
experienced by the user is a combination of the push tif§Y0nd 0.2. This is because although the reduction dnives
and pull time. If the user arrives during the time when th@ata closer to the mission site, the virtual occupationritigm
data is still being pushed, then the latency experiencedidy {5 preventing the data from completely reaching the mission
user is a combination of a portion of the push cost and tjé€: thus maintaining the lowest pull latency, unlike thee
full pull cost. in Fig. 5(a) in which the pull latency increases slightly wwhe
To evaluate the ability of our algorithms to balance thi§ = 0.
trade-off, we conducted a series of simulations in NS2 usingThe the sum of push and pull latency is minimized when
an 802.11 network in which we use one fixed scenario asdn= 0.5. We draw the following conclusions. First, if a user
Fig. 3 while changingy from 1 to 0, i.e., we vary the costhas a longer time to travel to the mission site than the push
smoothly from depending solely on push to depending soldijne, i.e.T, > T, then settingy = 0 tends to result in the
on pull. The number of requests from each user is 12.  lowest latency because the user only experiences pulldgaten
The non-VO latency results are shown in Fig. 5(a). A8 the user is at the mission site when the mission occurs, i.e
o decreases, the push latency increases and the pull latehey= 0, then a setting ofv = 0.5 results in the best latency
decreases, as expected. We also notice that the the sum ofogeause the user will experience the surifjpfandT},. If the
two latencies decreases aslecreases from to 0.5, and then User arrives at the mission site while the data is being she
increases. The effect of congestion is also evident in thisdi. the optimal setting ofx depends o7}, — T, which is then
Note that the pull latency rises slightly asis decreased from added toZ},.
0.1 to 0; this is a result of increased congestion at the géora These observations suggest the following guidelines.df th
nodes when there is a high number of requests. mission is of a type in which personnel typically must trateel
We also evaluated the impact of thevalue with VO turned the mission site after a mission commences, for example, fire
on (see Fig. 5(b)). The parametegr(as in Algorithm 2) is fighters and police responding to a fire, a settingvcf 0 is



appropriate. If the personnel are already at a mission $ienw C. Overhead Simulation

the mission commences, for example guards in a buildingTp see how the overhead values depend on the problem
noticing an alarm, thea should be set to 0.5. instance, we conduct two experiments: increasing the numbe
of users and increasing the number of requests from each
user. In the tests, all storage nodes have a uniform capacity
In the following subsections we present protocols to impl@f 10 units and data items are randomly generated with sizes

VI. PROTOCOLS

ment the algorithms previously discussed. between 1 and 10 units. Each user requests a certain number
of data items randomly from all the data items.
A. Centralized Protocols In the first test (see Fig. 7(a)), we increase the number

To implement a centralized protocol for this problem, a f users with each user having a flxec_zl number of requests.
he total overheads increase nearly linearly. In the second

offline agent makes the optimization and then distributes t X )
tgﬁ we increase the number of requests from each user while
q

results to sources and users so that they can send or res;1q ing th ber of d data it tant
to requests to the right nodes. As noted above, computatio Ing the numper of sources, users and data items constan
we can see from Fig. 7(b), the overheads also increase

hardness prevents us from guaranteeing an optimal soluti v, Wh h | ‘ data it h
Beyond the time requirements, another challenge in prmjy.;ciInear Y- €n each user only requests one data item, the

a (near-)optimal solution is to do so without the benefit Ozyurce-dwected protocol has slightly less overhead then t

global knowledge of such things as node locations and c N-directed protocol.

pacities, data item sizes, and source locations. If impleate We conclude that as the number of requests rises, either

in a wireless mesh network, this information must be passg}eﬂr"?fsrsf‘st'gg g\'/irﬂigg?;;‘;::g;ii?e:f nll;n:)kz)eﬂr] %ff r;qeute;gs
among nodes and users which will incur high overhead. P ' . . Y-
tests, the source-directed protocol is outperformed byCiRe

B. Distributed Protocols directed protocol, again as expected.

In the context of wireless mesh networks, we prefer a VIl. CONCLUSION
distributed protocol. In this section we define two disttéms ~ To disseminate data to mission sites for efficient access,
protocols that are differentiated by which nodes execuge thwo latency factors are taken into consideration: hop dista
distributed heuristics. These protocols do not requirébglo and congestion. In this paper we developed heuristics to
knowledge. We assume the sources know the size of all thénimize hop distances and use a virtual occupation tecteniq
data items they will push, the location of storage nodes, at@l disperse data and thereby reduce congestion. We find
have a reasonable approximation of the location of theirsusethat our heuristics achieve good performance in a disgibut
In the first protocol, the data sources run the heuristic amély and that latency can be reduced effectively. We also
pick the candidate storage nodes. In the second, a node riiagussed how a trade-off between push and pull cost/katenc
the mission site called the center node (CN) runs the heuristan be made, so that in varying kinds of situations, users
and directs the source on where to store its data. The CN magy consistently experience low data-retrieval latenyalfy,
be a node in the center of the expected storage area or the fetdefine distributed protocols to implement these algorth
node to which a source sends a storage request. and show that they exhibit acceptable overheads even as the

1) Directed by the sourceA simple protocol is shown in problem size grows.

Fig. 6(a). The source runs the heuristic and determines theSeveral open problems and extensions suggest themselves:
best candidate node for each of its data items. It then résjues « We deal with congestion in the IP formulation by proxy,
that each candidate node store its data, and if they accept using the “virtual occupation” technique to discourage
the request, pushes the data items. There will be at least as packing items too densely together. Given a linear (or
many such requests as there are data items because if the perhaps merely convex) model of congestion costs, the
storage nodes are already occupied, the provider will dbnta ~ congestion influence could be placed directly in the 1P
its subsequent choices for storage. When the user desires to formulation.

pull data, it contacts the Provider to get an index of whefe al « Algorithms could be tailored to more complex cost func-
data is stored and then requests the data it requires from eac tions (as are allowed in our problem definition), such as
storage node directly. costs depending on varying importance of missions.

2) Directed by the CN:n the general case, storage nodes ¢ In difficult problem instances, it may be prohibitively
are likely to be near the users, e.g. when there is more weight €xpensive to place all data items. In some situations it
on pulling. In this case the source-directed protocol dbsdr may be preferable to refuse some items rather than pay
above will cause request and reply messages from sources to this cost, thus transforming the hard placement constraint
storage nodes to travel many hops. To reduce this effect, we into a soft constraint, i.diltering the data.
develop a CN-directed protocol in which every source picks * Finally, geometry could be invoked in new ways. If users
a CN as its delegate near the user. Users will retrieve the are moving towards mission sites while data is being
location index from the CN and pull desired data directlyniro pushed, for example, it is more proactive if we push data
the nodes (see Fig. 6(b)). on their path.
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