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Abstract—In many situations it is important to deliver infor-
mation to personnel as they work in the field. We consider such
a specialized content distribution application in wireless mesh
networks. When a new mission arrives–for example, when an
alarm for a fire is reported–data is pushed to storage nodes at
the mission site where it may be retrieved locally by responding
personnel (e.g., police, firefighters, paramedics, government offi-
cials, and the media). It is important that information is available
at low latency, when requested orpulled by the personnel. The
total latency experienced will be a combination of the push delay
(if the personnel arrive at the mission site before all the data can
be pushed), and the pull delay. Each delay component will in
turn be a function of 1) the hop distance traveled by the data
when pushed or pulled and 2) the congestion on the links. In
this paper, we define algorithms and protocols that trade-off the
push and pull latencies depending on the type of application. Our
goal is to choose a storage node assignment minimizing the total
latency-based cost. We start with a simple model in which cost
is a function of distance, and then extend the model explicitly
taking congestion into account. Since the problem is NP-hard
to approximate, our focus is on developing efficient algorithms
and distributed protocols that can be easily deployed in wireless
mesh networks. In NS2 simulations, we find that our heuristic
algorithms achieve on average a cost within at most 15% of the
optimum.

I. I NTRODUCTION

Timely dissemination of information in wireless mesh net-
works required to execute missions is critical in many circum-
stances. In an example scenario, a search and rescue mission
is commenced by personnel who make use of various kinds
of information, e.g., maps, road conditions, medical records.
Each class of personnel requires access to some (possibly
overlapping) subset of the available information, which should
be made available to them as quickly as possible upon their
arrival at the mission site. The network model works as
follows: 1) a mission site lies within a wireless mesh network;
2) data sources push required data into some storage nodes
in the network; and 3) personnel (data users) traveling to the
mission site pull the data from these storage nodes upon arrival
at the mission site. Since the number and storage capacity of
storage nodes are limited, intelligent decisions must be made
in allocating storage space to the various personnel types.
Also, in the context of wireless mesh networks, bandwidth
and energy are scarce resources, so we desire our algorithms
to be scalable and energy-efficient, with low overhead.

This setting differs from other content distribution environ-
ments in which data is pushed to storage nodes on a regular
basis. In the applications considered here, the need for data at a
specific location arises suddenly with the creation of a mission.

Since we push the data only once the information requirements
are clear, we can reduce latency costs and congestion by
pushing only the data actually needed.

The goal of this paper is to minimize the latency and cost
incurred by the ultimate recipient when retrieving the data,
while respecting the limitations on storage node capacities.
Note that if the users are already at the mission site when
data becomes ready, the latency experienced by them is the
sum of the pushing and pulling latency. If the users are far
from the mission site when data becomes ready, the data may
be pushed before the users arrive at the mission site. For this
case, the latency to the users is only the pulling latency. We
will show how our algorithms handle both these situations.

We start with a simple setting in which the push/pull cost
is defined as a function of data item size and the distance
between the data’s source, destination, and storage nodes.A
related problem, called the Data Placement Problem (DPP), is
studied in [1]. The goal in one variant of that problem, which
is NP-hard even to approximate, is minimizing the sum of
installation (push) cost and access (pull) cost. Although our
problem formulation differs in some respects, the hardness
result carries over to it. Since no constant approximation al-
gorithms are possible unless P=NP, our goal is to find efficient
and distributed heuristics which perform well in general cases.

We define heuristics that allow a trade-off between push
and pull costs and show that in the general case, where the
number of data items is bounded by the number of nodes, we
can achieve average costs within 15% of the optimum.

We then consider a more realistic setting in which both the
location of the storage nodes and the congestion experienced
in pushing and pulling the data contribute to the latency. We
refine our model by including constraints that take congestion
into account, and develop a corresponding heuristic algorithm.
We show that we can effectively trade-off pull and push
costs, depending on the type of mission, and that by tuning
a parameter we achieve low latencies. Finally, to put the
algorithms into the context of wireless mesh networks, we
develop a fully distributed protocol and show that it is scalable
with little overhead.

II. RELATED WORK

Our work relates to a body of work on Content Distribution
Networks (CDNs) and data dissemination in sensor networks.
A CDN consists of a group of servers that try to offload
work from origin servers by delivering their content to other
servers that are close to expected data request originators[2].



Its goal is to reduce the latency for a user requesting data,
which may be formulated as an optimization problem, whether
minimizing latency-based costs or maximizing the value to
users of stored data. Baev et al. [1] formulated and gave
approximation algorithms for a related but simpler variant
of the problem we consider. A similar problem in the area
of Internet data requests (specifically, using the IP Anycast
protocol), in which minimizing time for “redirection” to data
item was one of multiple goals, was recently studied by
Alzoubi et al. [3]. Our model differs from a typical CDN in
that the information needs in our system arise suddenly, and
the location of the information requestors is only known once
the data need arises. Moreover, we consider both the cost of
pushing and pulling data, unlike CDNs in which the pull cost
only is typically optimized.

In the networking literature, three canonical data dissemina-
tion approaches have appeared for sensor networks. External
Storage (ES) stores all event data at an external storage point
so queries for data needs to go out of the network; Local
Storage (LS) stores all event information locally so queries
for data have to flood the network to find the data source;
and Data-Centric Storage (DCS) stores different types of data
within the network at designated nodes; queries for data can
then be sent directly to the node without flooding the network.

Directed diffusion [4] is an example of LS, in which a
source stores data locally and sends data only when a sink has
sent a query for the data. One example of DCS is Geographic
Hash Table (GHT) [5], which hashes key values (such as data
names) into geographic coordinates, and stores the data at
the sensor node geographically nearest the hash of its key.
Queries are directed to that area based on the same procedure.
The solution we present is most similar to DCS but differs
in that we choose storage nodes based on a cost value. The
dissemination isproactivein that we push data to these storage
nodes ahead of time, so that the user can pull the data when
needed at the mission site. Our goal is to minimize the total
cost of pushing and pulling and to reduce latency.

At the core of our problem is selecting the correct storage
nodes. This requires assigning data items of various sizes
to the best nodes. The core optimization problem here is
the well studied Generalized Assignment Problem (GAP) [6],
which lies in a family of related problems including Multiple
Knapsack, Bin Packing and Facility Location.

A natural greedy strategy for the maximization variant of
GAP [7], [8] is to take bins one at a time and solve each near-
optimally. This provides a 2+ǫ-approximation when the single-
bin problem is approximated within 1+ǫ. [9] gave LP-rounding
and local-search algorithms for GAP and its generalization
the Separable Assignment Problem (SAP), and was motivated
by a Distributed Caching Problem (DCP). In that problem,
there are data items, caches, and requests; caches have storage
capacities and bandwidth limits. Therefore there are two sets
of decisions: the assignment of data items copies to each cache
and the assignment of each request to some cache (containing
data of that type). They choose a request assignment profit
based on the associated assignment cost. [1], [10] (see also

[11]) studied a minimization caching problem similar to both
DCP and our problem in which caches have integral (degree)
bounds on the number of assigned data items and clients have
numeric demands for data items. The objective is to minimize
storage and access costs. They obtain an LP-rounding-based
10-approximation obeying the hard capacity constraints, but
with the restriction that data items are unit-size.

Shmoys and collaborators [12], [13] gave approximation
algorithms for various special cases and relaxations of GAP,
including a polynomial-time (though LP-rounding-based) al-
gorithm that either finds an assignment of cost at mostC
while possibly violating capacity constraints by as much asthe
maximum data item sizeor determines that no such solution
exists. The work [3] cited above uses this algorithm and then
shifts assignments from overloaded nodes as needed. Recently,
[14] gave bicriteria algorithms for a setting allowing capacity
constraints to be violated slightly, optimizing both totalcost
and the amount of capacity violation. Given a hard constraint
on either goal, the other can be taken as the optimization goal.
Given a cost bound, the problem of minimizing the violation
of capacities (or in terms of machine scheduling, minimizing
makespan) is known to be NP-hard to approximate better than
3/2 [13]; when capacities are strictly enforced, it is NP-hard
to approximate the cost minimization problem to any constant
factor, as in our stated formulation.

In this work, we enforce capacities strictly, and we re-
quire efficient, combinatorial algorithms that do not require
LP-rounding. We therefore develop heuristic algorithms and
evaluate them experimentally through simulation.

III. B ASIC PROBLEM FORMULATION

In this section we introduce the basic problem. Our goal
is to minimize the push-pull cost of the data dissemination
where cost is defined as a function of the size of the data
and distance it must travel. We extend the basic problem to
incorporate congestion costs in Section V.

The number of hops taken by the wireless mesh networks
to deliver the data is a natural metric for cost. In our specific
mission scenario, because we want to route to a specific
area (similar to GHT), we use a geographic routing protocol,
similar to GPSR [15], [16], which makes greedy choices based
on geographical information, without needing to flood the
network. An analytical approach was introduced in [17] to
bound the number of hops for a given source-to-destination
Euclidean distance, which allows us to use distance as a proxy
for hops and avoid having to compute optimal hop counts.

A. The Integer Programming (IP) formulation

Let D = {di : i = 1 . . .m} be a set of data items and
S = {sj : j = 1 . . . n} be a set of storage nodes orcaches.
Each data itemdi has a sizewi and a source locationpi.
Each storage node has a storage capacitybj. The network is
designed to benefit a group of usersU = {uk : k = 1 . . . l},
each of which must retrieve some subset of the data items
Dk ⊆ D at somewhere in the mission site. Each potential
placement of a data itemdi at a nodesj is associated with



some costcij , which initially is taken to be simply a property
of the pair(i, j), i.e. the sum of the cost of placing itemdi in
nodesj and the costs of accessing it from there, for all users
who desire it.

min
∑

i,j

cijxij (1)

s.t.
∑

j

xij = 1 ∀i,

∑

i

wixij ≤ bj ∀j,

xij ∈ {0, 1}

The objective is to minimize the total costs, consistent with
the storage capacities. For each pair(i, j), the decision variable
xij indicates whether this assignment is chosen. The first set
of constraints indicate that each data item must be placed
once. The second set of constraints indicate that each node’s
storage capacity is respected. If data items can be divided
fractionally, then this problem can be solved optimally by
Linear Programming (LP). In this case, the relaxed decision
variablexij indicates the fraction ofdi that is placed insj .

We assume that there are enough nodes to store all items.
One way of justifying this assumption in practice would be to
place a cache at each data item’s source location. This way,
even if the storage nodes are full, the data may be cached at
the source itself.

B. The cost function

The costcij to store data itemi on storage nodej has two
components, the push costsij and the pull costrij (in total,
for all users requiring this item). In cases in which users are far
from the mission site, and hence will not start pulling data for
a much longer time period than the push time, the push cost
may not be important. In this case the pull cost is prioritized.
Contrariwise, if the users are at or near the storage nodes when
the mission is started, then the push cost must be balanced with
the pull cost. If we take priority between pushing and pulling
into consideration and let the priority of pushing beα and that
of pulling be1 − α, then the cost is:

cij = α · sij + (1 − α) · rij 0 ≤ α ≤ 1 (2)

C. Approximate cost

Now we approximate the number of hops by distance.
Define d(x, y) to be the distance from objectx to object
y (where objects may be nodes, users, and/or data sources).
With Ui denote the subset of users requesting datai, the cost
function can be written as:

cij = α · d(i, j)wi + (1 − α) ·
∑

k:uk∈Ui

d(j, k)wk (3)

If α is a constant for each provider, the cost depends on
four factors: the source it belongs to, the users who requestit,
the storage node, and its size.

D. Hardness

A special case of this problem with (metric) access costs
only (i.e., α = 1) and unit weights was shown to be NP-
hard in [1]. That paper showed a non-unit weight version of
their problem to be NP-hard to approximate, by proving it
NP-hard to determine whether a feasible solution exists, given
capacity constraints, by reduction from the Partition problem.
That result does notdirectly apply here since, as just stated, we
assume a feasible solution always exists. Still, their hardness
argument can be adapted as follows, which indicates that no
constant-approximation algorithm exists unless P=NP.

Proposition 3.1:Our problem is NP-hard to approximate.
Proof: Given is an instance of Partition, i.e., a setA of n

numbers such that
∑

ai∈A = 2S. We then construct a problem
with two users and two unit-capacity storage nodes, all four
objects located in the same positionP ; n data items, with data
item i of size ai/S whose providers are located somewhere
other thanP ; and α = 1. Then determining whether there
exists a zero-cost solution is the same as solving the Partition
problem.

Rather than seeking an optimal solution, therefore, our
interest in this paper is efficient algorithms that perform well
on realistic problem instances.

IV. H EURISTICS

In this section, we motivate and present a simple heuristic
algorithm for the basic storage node selection problem. The
costs involved in choosing a particular storage location form
contours on a plane. We first discuss these contours and then
turn to the algorithm itself.

A. Cost contours

As described above, there are two kinds of costs involved
in the basic problem formulation, costs for pushing data from
sources to storage nodes and costs for pulling from storage
nodes to users. Each point in the plane will correspond to a
possible cost value, representing the combined push and pull
cost involved in storing a (unit-size) data item in a cache at
that location. This ensemble of cost values forms a system of
contours on the plane.

We draw the contour lines by Eq. 3. In the example shown
in Fig. 1, we place three users and one source (with users
indicated by ‘*’ and sources by ‘o’). The three users request
one data item from this source, so storing this data item
at different places incurs different costs which forms a set
of contour lines. The inner lines of the contours always
have lower costs than the outter lines. With pull and push
costs weighted equally, the shape of the contour resembles
a misshapen ellipse lying close to the users (see Fig. 1(a)).
The contours converge to misshapen circles as the pull weight
increases relative to the push weight (see Fig. 1(b)). The
contours lie closer to the users even when we put slightly
more weight on pushing (see Fig. 1(c)).
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Fig. 1. Cost Contours

B. The heuristic algorithms

Motivated by the contours, we design our heuristics to work
greedily and independently on each data source. Each source
determines its best storage nodes, i.e., those with the lowest
cost (on the innermost contour line), and attempts to push its
data to these nodes in a greedy manner. Because source nodes
act independently, conflicts may occur at storage nodes. To
manage these conflicts, storage nodes follow a “first come,
first serve” rule. If the storage node has enough space, it will
accept the storage request; otherwise it rejects the request, and
the source has to continue looking for a storage node greedily
until it is satisfied.

One thing to consider is that several data items may share
a single source, so we need to decide the order of data items
to push from a source as well. The base algorithm selects
data items for placement in arbitrary order. We consider two
variants:big-to-smallselects items in order of decreasing size
while small-to-bigdoes the reverse.

Algorithm 1 Greedy Algorithm
1: for eachdi on the same source in arbitrary orderdo
2: if di can be placed more cheaply in another node than

its sourcethen
3: placedi in a nodej minimizing cij and decreasesj ’s

capacity bywi

4: else
5: di stays at its source
6: end if
7: end for

Every data source calculates a table with entriescij (see Eq.
3), which is the cost to put each of its data itemi to storage
nodej. Each row of this table is sorted in order of increasing
cost. The source starts to send requests for its data to the
nodes corresponding to the first column of the table. Each
node follows a “first come, first serve” rule and the source
greedily continues requesting storage space until all its data
are placed.

C. Performance evaluation

Here we show the evaluation results for the heuristics for the
basic problem. When conflicts occur preventing the placement
of data items in the same node due to memory constraints, the
selection of storage nodes may not be globally optimal. That
is, the first data item arriving at a node and occupying its

memory might better be replaced by a more important data
item to minimize the overall cost. Nonetheless, we find the
performance of the heuristics to be quite good.

To test the performance of these heuristics, we conduct
two series of simulations: varying problem size and varying
problem hardness. For each set of parameters we test, there are
10 randomly generated mesh grids and the results presented
are the average. In the first series of tests, we have a varying
size of grids while in the second we have a fixed size of
grids with 50 storage nodes. All storage nodes have a uniform
capacity of 10 units and data item sizes are selected uniformly
at random from[1, 10] units. Each source holds a fixed number
of data items and each user requests a fixed number. Which
user requests which data items is randomly decided. The
location of each source, storage node and user is uniformly
distributed in the grid. We test the performance of the heuristic
algorithms mentioned above including the two variants: big-
to-small and small-to-big.

We compare the performance of the heuristic to a bound
we compute on the optimal performance. This bound is
the optimal solution valueOPTLP to the LP relaxation of
Problem 1, i.e., an optimal solution to the easier problem in
which data items may be stored fractionally in multiple caches.
Note that we do not allow such fragmenting of data items for
storage, soOPTLP can only be better than the true optimal
value, thus giving us an easy-to-compute lower bound on the
optimal cost to compare to.

In Fig. 2(a), we vary the size of the problem instance,
while holding the “hardness” constant. That is, we increase
the number of nodes along the X axis, holding the relationship
between the number of data items and nodes fixed at 1:1 (this
ratio is very high). The purpose of this experiment is to test
how well the heuristics do for different sizes or complexities of
problem instances. We find that the heuristic typically achieves
15% more costs than the optimal.

In Fig. 2(b), we vary the difficulty of the problem instance.
That is, we increase the number of data items along the X axis,
while holding the number of nodes constant. A complication
here is that it may happen that the algorithm runs out of space
and fails to place one or more of the data items at all. Although
this sort of algorithm failure seems like a natural outcome to
test for, due to NP-hardness, we cannot in general be sure
that even the optimal algorithm would succeed. Therefore for
this test we modify the constraints slightly, introducing the
assumption that, if there is no remaining feasible node in
which to place a data item, or if all such placements would be
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Fig. 2. Performance Tests

more expensive, then a source may hold the data item locally
for direct access by the user. In this case, the placement cost
is simply the pull cost experienced by that data item’s user(s).
Note that we do not introduce an official node co-located with
the source; there is no capacity, and other providers may not
place their items here.

The performance shown in Fig. 2(b) differs markedly from
that in Fig. 2(a). First, when the problem is not too hard, that is,
when the ratio of number of data items over number of nodes is
below 1, the heuristics perform very close to the optimal. The
lower the ratio, the closer to optimal the heuristics perform.
For the specific ratio 1:1, as we have also seen from Fig. 2(a),
the heuristics incurs about 15% more cost.

As the problem becomes harder, i.e., as it becomes more
difficult to find storage nodes because of memory constraints,
the heuristic performs more poorly. In the case with a ratio of
about 3.3:1, the heuristic actually incurs twice the cost asthe
optimal.

In these results, we see thatbig-to-smalloutperforms the
other two in most cases. This may be because placing the
largest items first reduces the chance that they will be rejected
from their optimal storage node and be placed in a node that
incurs higher cost. Because the largest data items suffer the
highest penalty for being misplaced, the big-to-small heuristic
accommodates them first. However, this algorithm still does
not match the optimal due to inefficiencies of packing data
into storage nodes. Because data fragmentation is not allowed,
in some cases space in storage nodes is wasted because no
remaining data items may fit, whereas in an optimal solution
some alternative packing would be used. For example, one
extreme case occurs when storage nodes have capacity of 10
units and three data items of size5 + ǫ, 5, and 5 are placed
sequentially. The data item of size5+ǫ will occupy the lowest
cost node, thus blocking the two data items of size 5 which
will occupy the second best storage node. In this example,
nearly half the storage space of the nearby node is wasted.

We conclude that when the problem is not too hard (there is
sufficient memory for storing data items), the heuristics tend
to perform well regardless of problem instance size.

V. CONGESTION

In this section we extend our formulation and heuristics to
explicitly consider the challenge of congestion. This allows us
to compare algorithms in terms of the latency experienced by
users when retrieving the data.

A. Congestion models

Since latency is theoretically proportional to number of
hops, minimizing the costs as discussed in Section III should
tend in practice to minimize latency. Latency can also be
increased, however, by congestion. For pushing data, the
connection model is one-to-many: a source may several data
items to their storing nodes simultaneously. Congestion is
likely to happen for three reasons: 1) the sources are positioned
close to one other; 2) the storage nodes positioned are close
to one other; or 3) the routes between the sources and storage
nodes cross and interfere with one another. For pulling data,
the model is many-to-one: several users may request data from
the same node. In this case, congestion may occur for three
similar reasons: 1) the users are close to each other; 2) the
nodes from which data is being pulled are close together; or
3) the routes between the different storage and users pairs
interfere with each other.

Cause 3 in both cases may be handled by specialized
routing protocols which are not addressed here. We focus on
addressing cause 2: how to pick storage nodes that are close
to the ultimate pulling nodes considering the congestion that
may be caused during the push and pull operations. Our basic
solution is to discourage sources from picking storage nodes
that are within close range of other heavily used nodes.

B. New constraints to the problem

To reduce this type of congestion, we add new constraints
to formulation (1), which limit the total data size in a certain
area. In the following problem formulation, the third set of
constraints limit the total data size within a one-hop neighbor-
hood.



min
∑

i,j

cijxij (4)

s.t.
∑

j

xij = 1 ∀i,

∑

i

wixij ≤ bj ∀j,

∑

k∈Hj

∑

i

wixik ≤ e ∀j

xij ∈ {0, 1}

In this formulationHj is {k|sk is one hop fromsj}, i.e.,
the indices of the nodes within one hop ofsj .

C. Virtual Occupation for the heuristics

Next, we extend our heuristics to deal with congestion. The
goal of this extension is to disperse data around the field, in
order to avoid congestion, so that heavily used nodes do not
lie too near to one another. To discourage this, we introduce
the concept ofVirtual Occupation (VO), which works as
follows. When a storage node accepts data, we record that
it occupies its own memory, as usual, but also “virtually”
occupies some space on its neighbors. When neighboring
nodes receive requests to store data, they treat the virtually
occupied space as being unavailable. This reduces the amount
of data they can store, which naturally spreads data around
the mission site. While this may increase the number of hops
required for a user to pull data, it may reduce congestion at
the storage nodes and thus reduce overall latency.

Algorithm 2, which is performed by each source, behaves
as follows. When a nodej stores data itemdi of size wi, it
reduces the available space in its one-hop neighbors byp ·wi

as seen by other data sources. Note that the available memory
of the one-hop neighbors is not reduced with respect to the
source of data itemdi because a source will not interfere with
itself, and although multiple users may request the same data
item, e.g.di, this is less likely than different users requesting
data items from different sources.

Algorithm 2 Greedy Algorithm with VO (single source)
1: for eachdi in order of decreasing sizedo
2: if di can be placed more cheaply in another node than

its sourcethen
3: placedi in a nodej minimizing cij

4: increasesj ’s one-hop neighbors’ VO byp · wi

5: decreasesj ’s capacity bywi

6: else
7: di stays at its source
8: end if
9: end for

Figure 3 shows an illustrative example of the use of the
virtual occupation algorithm. There are four source-user pairs.
The sources are located at the four corners of the field while
the users are close to each other. The darker the shading of the
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(a) Placing without VO
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(b) Placing with VO

Fig. 3. An example of how VO effects the placement of data items
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Fig. 4. Pull latency with/without VO

squares in the figure, the larger the amount of data stored in
this area. Without using the virtual occupation (Fig. 3(a)), the
area between the two users experiences heavy load (the darker
squares). When using virtual occupation (Fig. 3(b)), this area
becomes more lightly used, which will reduce the congestion
among these source-user pairs.

D. Evaluation

In this subsection we evaluate the virtual occupation al-
gorithm and its effectiveness in mitigating congestion, and
evaluate the ability of the cost contours in trading off the pull
and push costs when congestion is considered.

1) Virtual Occupation: To see the effect of the virtual
occupation clearly, we conducted the following tests in NS2:
we fix the four source-user pairs as in Fig. 3 but vary the
number of requests from each user. The size of each data item
is still uniformly distributed from 1 to 10. The latency results
with and without VO are shown in Fig. 4. The users request a
varying number of data items as fast as possible; for example,
a value of 5 on the X-axis in Fig. 4 corresponds to each user
requesting 5 data items. In this example we setα of Eq. 3 to
0 to see the effects of the virtual occupation algorithm when
the pull costs are emphasized. We tune the parameterp (as in
Algorithm 2) from 0 to 1.

We see that when the request load from each user is low, the
virtual occupation technique does not improve performance
because there is little congestion near the storage nodes.
When the rate of requests increases, in most cases the virtual
occupation technique reduces the pull latency. In some cases
the reduction in latency is dramatic (40%). Even with high
loads, however, in some cases (e.g., with 11 requests) the
virtual occupation technique does not improve performance.
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Fig. 5. Latency vs.α with/without VM

This is because the virtual occupation technique may increase
the number of hops required to retrieve data to a point that
the additional latency caused by the increased number of hops
outweighs the benefits of reduced congestion.

2) Trade-off between pushing and pulling:As seen in
equation 3, a trade-off may be made between the push and pull
costs by adjusting the weightα. Similarly, putting different
weights on pushing and pulling will cause different latencies.
This trade-off is important when considering different appli-
cation scenarios. In general, the latencyTr in retrieving data
as seen by a user may be expressed as:

Tr =

{

Tps − Tu + Tpl if Tps > Tu

Tpl otherwise
(5)

where Tps is the time to push the data,Tpl is the time to
pull the data andTu is the movement time for the user to
the mission site. Note that if the movement time of the user is
longer than the push time of the data, it will not experience any
push delay because it cannot retrieve the data until it arrives
at the mission site. In this case the latency experienced by the
user is just the pull latencyTpl. If the user is at the mission
site when the mission arrives,Tu is zero and the latency
experienced by the user is a combination of the push time
and pull time. If the user arrives during the time when the
data is still being pushed, then the latency experienced by the
user is a combination of a portion of the push cost and the
full pull cost.

To evaluate the ability of our algorithms to balance this
trade-off, we conducted a series of simulations in NS2 using
an 802.11 network in which we use one fixed scenario as in
Fig. 3 while changingα from 1 to 0, i.e., we vary the cost
smoothly from depending solely on push to depending solely
on pull. The number of requests from each user is 12.

The non-VO latency results are shown in Fig. 5(a). As
α decreases, the push latency increases and the pull latency
decreases, as expected. We also notice that the the sum of the
two latencies decreases asα decreases from1 to 0.5, and then
increases. The effect of congestion is also evident in this figure.
Note that the pull latency rises slightly asα is decreased from
0.1 to 0; this is a result of increased congestion at the storage
nodes when there is a high number of requests.

We also evaluated the impact of theα value with VO turned
on (see Fig. 5(b)). The parameterp (as in Algorithm 2) is

tuned from1 to 0. In these simulations, sources are located
far from one another while the users are relatively close to one
another. Therefore the primary expected cause of congestion is
closely spaced storage nodes, i.e., the second congestion type
discussed in Subsection V-A. Whenα is large (> 0.5) and the
data is not pushed all the way to the mission site, the chosen
storage nodes are likely to lie near the sources and there will
be little congestion of this type. Whenα is smaller, the storage
nodes will tend to lie near to the mission sites and hence close
to one another, in which case this type of congestion is likelier
to appear.

In this case, the virtual occupancy algorithms work to reduce
the congestion, and hence latency, for both push and pull.
The reduction in push latency asα decreases in Fig. 5(b) as
compared to Fig. 5(a) is clear, as is the reduction in total
latency (e.g., whenα = 0, the total latency is reduced from
over 50 seconds in Fig 5(a) to under 40 in Fig 5(b)). There
is also reduction in the pull latency (as shown in bar 12 of
Figure 4), but this is not as visible in Figs. 5(b) and 5(a) dueto
scaling. We observe that the pull latency does not reduce much
when the virtual occupation algorithm is used asα decreases
beyond 0.2. This is because although the reduction inα drives
data closer to the mission site, the virtual occupation algorithm
is preventing the data from completely reaching the mission
site, thus maintaining the lowest pull latency, unlike the case
in Fig. 5(a) in which the pull latency increases slightly when
α = 0.

The the sum of push and pull latency is minimized when
α = 0.5. We draw the following conclusions. First, if a user
has a longer time to travel to the mission site than the push
time, i.e.Tu > Tps, then settingα = 0 tends to result in the
lowest latency because the user only experiences pull latency.
If the user is at the mission site when the mission occurs, i.e.
Tu = 0, then a setting ofα = 0.5 results in the best latency
because the user will experience the sum ofTps andTpl. If the
user arrives at the mission site while the data is being pushed,
the optimal setting ofα depends onTps − Tu which is then
added toTpl.

These observations suggest the following guidelines. If the
mission is of a type in which personnel typically must travelto
the mission site after a mission commences, for example, fire
fighters and police responding to a fire, a setting ofα = 0 is



appropriate. If the personnel are already at a mission site when
the mission commences, for example guards in a building
noticing an alarm, thenα should be set to 0.5.

VI. PROTOCOLS

In the following subsections we present protocols to imple-
ment the algorithms previously discussed.

A. Centralized Protocols

To implement a centralized protocol for this problem, an
offline agent makes the optimization and then distributes the
results to sources and users so that they can send or respond
to requests to the right nodes. As noted above, computational
hardness prevents us from guaranteeing an optimal solution.
Beyond the time requirements, another challenge in producing
a (near-)optimal solution is to do so without the benefit of
global knowledge of such things as node locations and ca-
pacities, data item sizes, and source locations. If implemented
in a wireless mesh network, this information must be passed
among nodes and users which will incur high overhead.

B. Distributed Protocols

In the context of wireless mesh networks, we prefer a
distributed protocol. In this section we define two distributed
protocols that are differentiated by which nodes execute the
distributed heuristics. These protocols do not require global
knowledge. We assume the sources know the size of all the
data items they will push, the location of storage nodes, and
have a reasonable approximation of the location of their users.
In the first protocol, the data sources run the heuristic and
pick the candidate storage nodes. In the second, a node near
the mission site called the center node (CN) runs the heuristic
and directs the source on where to store its data. The CN may
be a node in the center of the expected storage area or the first
node to which a source sends a storage request.

1) Directed by the source:A simple protocol is shown in
Fig. 6(a). The source runs the heuristic and determines the
best candidate node for each of its data items. It then requests
that each candidate node store its data, and if they accept
the request, pushes the data items. There will be at least as
many such requests as there are data items because if the
storage nodes are already occupied, the provider will contact
its subsequent choices for storage. When the user desires to
pull data, it contacts the Provider to get an index of where all
data is stored and then requests the data it requires from each
storage node directly.

2) Directed by the CN:In the general case, storage nodes
are likely to be near the users, e.g. when there is more weight
on pulling. In this case the source-directed protocol described
above will cause request and reply messages from sources to
storage nodes to travel many hops. To reduce this effect, we
develop a CN-directed protocol in which every source picks
a CN as its delegate near the user. Users will retrieve the
location index from the CN and pull desired data directly from
the nodes (see Fig. 6(b)).

C. Overhead Simulation

To see how the overhead values depend on the problem
instance, we conduct two experiments: increasing the number
of users and increasing the number of requests from each
user. In the tests, all storage nodes have a uniform capacity
of 10 units and data items are randomly generated with sizes
between 1 and 10 units. Each user requests a certain number
of data items randomly from all the data items.

In the first test (see Fig. 7(a)), we increase the number
of users with each user having a fixed number of requests.
The total overheads increase nearly linearly. In the second
test, we increase the number of requests from each user while
holding the number of sources, users and data items constant.
As we can see from Fig. 7(b), the overheads also increase
linearly. When each user only requests one data item, the
source-directed protocol has slightly less overhead than the
CN-directed protocol.

We conclude that as the number of requests rises, either
by increasing the number of users or the number of requests
per user, the overhead increases linearly. In both of the two
tests, the source-directed protocol is outperformed by theCN-
directed protocol, again as expected.

VII. C ONCLUSION

To disseminate data to mission sites for efficient access,
two latency factors are taken into consideration: hop distance
and congestion. In this paper we developed heuristics to
minimize hop distances and use a virtual occupation technique
to disperse data and thereby reduce congestion. We find
that our heuristics achieve good performance in a distributed
way and that latency can be reduced effectively. We also
discussed how a trade-off between push and pull cost/latency
can be made, so that in varying kinds of situations, users
may consistently experience low data-retrieval latency. Finally,
we define distributed protocols to implement these algorithms
and show that they exhibit acceptable overheads even as the
problem size grows.

Several open problems and extensions suggest themselves:
• We deal with congestion in the IP formulation by proxy,

using the “virtual occupation” technique to discourage
packing items too densely together. Given a linear (or
perhaps merely convex) model of congestion costs, the
congestion influence could be placed directly in the IP
formulation.

• Algorithms could be tailored to more complex cost func-
tions (as are allowed in our problem definition), such as
costs depending on varying importance of missions.

• In difficult problem instances, it may be prohibitively
expensive to place all data items. In some situations it
may be preferable to refuse some items rather than pay
this cost, thus transforming the hard placement constraint
into a soft constraint, i.e.filtering the data.

• Finally, geometry could be invoked in new ways. If users
are moving towards mission sites while data is being
pushed, for example, it is more proactive if we push data
on their path.
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