
Secluded Path via Shortest Path

Matthew P. Johnson1, Ou Liu2, and George Rabanca2

1 Department of Math and Computer Science, Lehman College, CUNY
2 PhD Program in Computer Science, The Graduate Center, CUNY

Abstract. We provide several new algorithmic results for the secluded
path problem, specifically approximation and optimality results for the
static algorithm of [3, 5], and an extension (h-Memory) of it based on
de Bruijn graphs, when applied to bounded degree graphs and some
other special graph classes which can model wireless communication and
line-of-sight settings. Our primary result is that h-Memory is a PTAS for

degree-∆ unweighted, undirected graphs, providing a
⌈√

∆+1
h+1

⌉
-approximation

in time O(hhn logn); in particular, 0-Memory (i.e., static) provides a√
∆+ 1-approximation (i.e., ε =

√
∆+ 1 − 1), tightening the previous

analysis of this algorithm, and ∆-Memory is optimal (i.e., ε = 0), and is
faster than the known optimal algorithm for this setting [3].
We also show that 0-Memory and 1-Memory give constant approxima-
tions for unit-disk graphs and planar graphs, and that an extension of
h-Memory solves many other tessellation graphs. Finally, we prove that
the problem is NP-hard on node-weighted graphs of degree 3.

1 Introduction

Let the neighborhood N [P] of a path P be the set of all nodes within distance
at most 1 from some node on the path. Equivalently (for paths of length greater
than 1), this is the union of the neighborhoods of all the nodes on the path. The
secluded path problem be defined as follows: given a graph on n nodes and two
specified nodes s and t, find a path from s to t of minimum size neighborhood.

Earlier work showed the problem is very hard to approximate in general and
gave some approximation results where the factor typically was not constant but
depended on parameters of the graph. Recently, an optimal dynamic program-
ming algorithm [3] was given for the (unweighted, undirected) setting where the
degree is bounded by a constant ∆, with a running time of O(n2). The DP
sub-instances represent being at a node and implicitly “remembering” the ∆
previous nodes you have visited. If ∆ is not treated as a constant, however, then
the O(∆∆) previous node sequences yield a running time of O(∆∆ · n2).

Consider the situation where ∆ is fixed, but is large enough that the O(∆∆ ·
n2) running time is prohibitive. If the ∆∆ factor comes from “remembering”
∆ previous steps, then a natural question is whether remembering a smaller
number of steps would give us some approximation guarantee. That is, despite
the fixed-∆ problem being polynomial solvable, because of the sort of polynomial
it is, there may nonetheless be value in a PTAS. In this paper we provide such

a PTAS, providing the usual tradeoff between approximation guarantee and
running time, except in this case providing a (1 + ε)-approximation for ε ≥ 0
rather than ε > 0.

Our algorithm relates to de Bruijn graphs [4], specifically constructing de
Bruijn subgraphs based on the input graph G and on a memory parameter h.
Each node in the constructed graph Gh corresponds to a length-h (or, for nodes
closed to the source, length≤ h) walk within G. That is, these fixed-length walks
in G are interpreted as “k-mers” on symbols V generating an h-dimensional de
Bruijn subgraph.

Intuitively, many of our arguments in this paper take the following form. We
wish to optimize for some function cost(·), but this is hard. Instead we optimize
for some alternative function cost′(·), which is easy. Although cost′(·) may differ
from cost(·) on many inputs (i.e., it may be inaccurate), it will match cost(·) on
optimal solutions, or nearly matches it on optimal solutions, or nearly match it
on some optimal solutions, and so by optimally solving according to cost′(·) we
will find a good solution under cost(·).

We also apply this algorithm (and extensions) to certain special graph classes
that correspond to two application settings. The first is wireless communication,
where nodes of the graph correspond to unit disks located in the plane and two
nodes share an edge if their disks intersect. For problem instances in which the
nodes may occur at arbitrary locations in the plane the corresponding graph
class is that of unit disk graphs. Alternatively, nodes may be placed in a regular
arrangement, corresponding to a grid graph. A natural family of such graphs
is yielded by considering tilings or tessellations of the plane, which partition
the area of the plane into (regular) polygons. In this case, each tile can be
interpreted as the unit disk kissing the tile’s corners, in which case tiles share
and edge iff the corresponding disks overlap. (This graph is the dual graph of
the tessellation interpreted as a planar graph drawing.) Two fundamental types
of tessellations are a) regular or Platonic and b) semiregular of Archimedean
(see [7, 2]). There are three Platonic tessellations: those whose tiles are triangles,
squares, and hexagons. A relaxation of the technical geometric definition of such
tilings yields the 8 Archimedean tilings, each of which consist of two types of
tiles. The resulting disk graph will then have disks of two sizes.

A second application setting is the movement through city streets. Suppose
we can travel along streets from intersection to intersection, there is an observer
at each intersection, and that when we are at an intersection we are visible to
the observers at the next intersection for each adjoining street. That is visibility
is determined by line of sight between intersections, where the city blocks are
obstacles and when there are multiple collinear intersections, each is visible only
to its neighboring intersections. This setting is modeled by planar graphs, where
intersections become nodes, streets become edges, and city blocks become faces.
Note that the (non-dual) graph of a tessellation is a special case of planar graphs
that can be interpreted in this way.

Related work. The problem considered in this paper, recently introduced by
[3], is a variation of the classical shortest path. In the standard version of this

problem, a cost measure is associated with edges, e.g., representing length and
the task is to identify a shortest path form s to t. The cost of the path is a linear
sum of its constituent edges.

In this problem, the cost is on the nodes “seeing” the message rather than on
the edges. Selecting an edge (u, v) means that u will transmit to v, but also to
its entire neighborhood. The deeper difference, therefore, is that we pay not just
for the nodes constituent to the path itself but for neighboring nodes as well,
which results in the total cost being a nonlinear function of the chosen nodes’
transmission costs.

Chechik et al. [3] gave a number of negative and positive results, includ-
ing the following. They showed, by reduction from Red-Blue Set Cover [1,
13], the problem is strongly inapproximable on unweighted undirected graphs
with unbounded degree (more specifically, is hard to approximate with ratio

O(2log
1−ε n), where n is the number of nodes in the graph G, assuming NP 6⊆

DTIME
(
npoly logn

)
). Conversely, they showed that the static algorithm gives

a (
√
∆+ 3)-approximation.

They showed that the problem is NP-hard already on node-weighted graphs
of degree 4 graphs and directed graphs of degree 3;3 for the unweighted undi-
rected setting with any constant maximum degree ∆, they gave a polynomial-
time (albeit exponential in ∆) optimal dynamic programming algorithm. They
also gave a result implying a 6-approximation for planar graphs as a special case,
and noted without proof that a 3-approximation can be obtained. (We provide
a proof here for completeness.)

A variant of the problem was also recently introduced as the Thinnest Path
Problem [6], which involves hypergraphs and subsumes the secluded path prob-
lem. They gave a

√
n
2 -approximation result for the static algorithm (see Sec.

2) applied to the hypergraph setting and a 19-approximation analysis of this
algorithm for the case of unit-disk graphs.

Finally, turning to geometric settings, similarly motivated problems have
been studied in the networking and sensor networks communities, where sen-
sors are often modeled as unit disks. For example, the Maximal Breach Path
problem [12] is defined in the context of traversing a region of the plane that
contains sensor nodes at predetermined points, and its objective is to maximize
the minimum distance between the points on the path and the the sensor nodes.

Similarly motivated problems have been studied in the context of path plan-
ning in AI “stealth” path planning problems, in which the task is to find a
minimum “visibility” path from source to destination, have been considered in
[8, 10, 11]. Although the motivation is similar, such problems are technically quite
different from the graph-based problems studied here; nonetheless, our unit-disk
and planar settings can be viewed as simplified, stylized version of their geomet-
ric settings, where visibility may typically be defined in terms of line-of-sight.
Finally, a dual problem studied extensively is barrier coverage, i.e., the (deter-
ministic or stochastic) placement of sensors in order to make it difficult for an
adversary to cross the region unseen (see [9] and the references therein).

3 Degree 4 is stated but the construction in fact requires only degree 3.

Contributions. Our main result is a PTAS for ∆-degree unweighted undirected

graphs, which provides a
⌈√

∆+1
h+1

⌉
-approximation, where h is the memory pa-

rameter, and its two special cases. First, when ε = 0 it provides an optimal
solution in O(n log n) time, faster than the known O(n2) optimal algorithm of
[3] for this setting (treating h as constant for both), and with a much simpler
analysis. Second, when ε =

√
∆+ 1 − 1, the algorithm collapses to the static

algorithm, which we show provides a
√
∆+ 1 approximation, which is a tighter

than the known analysis of [3] for this algorithm.
Our other positive results are showing that: 1) static is an 8-approximation

for unit-disk graphs, improving on the 19-approximation analysis of [5] for this
case, and that 1-Memory is a 4-approximation; 2) 1-Memory is a 2-approximation
algorithm for (directed) planar graphs (see App. B); and 3) (1,6)-Memory is
optimal for the hexagon grid graph, and (2,12)-Memory is optimal for the square
grid graph (both node-weighted); various other tessellation graphs can be solved
similarly (see App. C). Finally, we prove that the problem is NP-hard on node-
weighted graphs of degree 3, improving on the known degree-4 hardness result
[3].

2 Preliminaries

Definition 1. For a path P in the given graph G = (V,E), let v ∈ P indicate
that v is a node on the path. Let N [P] =

⋃
v∈P N [vi], where N [v] indicates

the neighborhood of v. Let cost(P) = |N [P]| denote the cost of P , P ∗ indicate
an optimal path, and cost0(P) =

∑
v∈P (deg(v) − 1) be the static cost of P .

Observe that cost(P) ≤ cost0(P). Let the static graph G0 = (V0, E0) be a directed
weighted graph where V0 = V and for each {u, v} ∈ E there exist (u, v), (v, u) ∈
E′ with weights deg(u)− 1 and deg(v)− 1, respectively.

We adopt the convention that a path P from s to t is treated as a path from
s to some neighbor of t, so that every node on the path transmits. Thus t ∈ N [P]
but t /∈ P . We call nodes that transmit (i.e., nodes on the path) transmitters,
we call other nodes nontransmitters or non-path nodes; and we call nodes that
receive, i.e., nodes in N [P], receivers. Notice that N [P] includes P itself (unless
P is a single node), so all transmitters are also receivers. The input graph is
assumed to be undirected with unweighted edges and nodes, unless otherwise
stated. The extended graphs we construct will be directed and edge-weighted.
We use OPT and ALG throughout to represent the cost of an optimal solution
and the cost of the (current) algorithm’s solution, respectively. Without loss
of generality, we ignore the cost of the source node (trivially) receiving when
convenient.

Definition 2. A path Q is shifted successor of a path P if P = (v1, v2, ..., vh)
and Q = (v2, v3, ..., vh, u), for some node u.

To motivate the algorithm used in this paper, consider the incremental costs
of each edge ei added, sequentially, to a partial path P . Let ei = (vi, vi+1),

with vertex indices renumbered accordingly, and let Pi indicate the subpath
e1, e2, ..., ei of P . Then the cost of e1 is 1+deg(v1) and for each subsequent edge
ei it is the number of vi’s neighbors being encountered for the first time, i.e.,
|N [vi]−N [Pi−1]|.

Given a graph G, consider the graph G′ constructed as follows: for each node
vi of G, introduced a “column” of O(n!) nodes, corresponding to the different
possible histories of vi (i.e., simple paths from the source to vi). For each edge
(vi, vj) of G, we introduce in G′ two collections of directed edges. First, we

introduce edges of the form vai → va
′

j for all possible histories for vi and vj that
are consistent in the sense that a indicates a simple path from s to a neighbor
of vi and a′ indicates that extended to vi, i.e., to a neighbor of vj . Similarly, for

edges vaj → va
′

i . The cost of edge vai → vbj is set to |N [vi]−N [P ai−1]|. Also, add to
G′ a new source node and destination node, connected with cost 1 (respectively,
0) edges to all the nodes of the source (respectively, destination) column.

By construction, we have that 1) each node vai in G′ corresponds to a simple
path in G from source to node vi, and 2) the cost of each edge vai → vbj of G′

corresponds to the the secluded cost of the transmission of node vi in G after
reaching it by taking subpath a from source to vi. Thus we state:

Observation 1 For each path P in G there will be a corresponding path P ′ in
G′ whose cost (i.e., sum of edge weighs) equals P ’s secluded cost, and vice versa.

Of course, the graph G′ constructed above is larger than G by a factor of
O(n!). We will find that for several graph classes, we can restrict ourselves to
a constant-size memory h, and hence ensure that our expanded graph is only
a constant factor (specifically, O(hh)) larger than the original. That is, each
node v in G now maps to a column of O(hh) nodes in Gh. Each of these nodes
corresponds to some possible length-h subpath reaching a neighbor of v (or
shorter subpath reaching vi in the case of v near to the source, or a null path if
it is the source (see Fig. 3.2). Directed edges in Gh now correspond to “recent
history” of length ≤ h and a shifted successor of it, rather than a monotonic
extension as above. The graph Gh can equivalently be viewed as a subgraph of
a certain h-dimensional de Bruijn graph whose “symbols” are the nodes of G.

We now observe that computing the cost of vai → va
′

j on only some of the
preceding nodes can only increase the cost:

Observation 2 The cost of a path in Gh can be only greater than the cost of the
corresponding path in G′, and thus also the secluded cost of the corresponding
path in G.

We note that in both an optimal solution and in the path returned by Static
and h-Memory, each transmitter will be adjacent to its successor and/or prede-
cessor but to no other nodes on the path, since otherwise a shortcut would have
produced a shorter path. Call a path with no potential shortcuts minimal. By
definition of the edge costs, in Gh we are charged for a non-source node when it
receives the transmission from its predecessor on the path. A path in Gh costs
more than the corresponding path in G when a nontransmitting or non-path
node receives multiple times.

Algorithm 1 Static (0-Memory)

1: for each edge (u, v) do
2: euv ← deg(u)− 1
3: end for
4: run Dijkstra on the graph with edge weights {euv}

Algorithm 2 h-Memory

1: given the input graph, construct the h-dimensional De Bruijn graph Gh, as de-
scribed in the text

2: run Dijkstra on Gh

c

a b d e

cb

cd

cc

ab

aa

bc

bd

ba

bb

dc

db

dc

dd

ed

ee

Fig. 1. Construction of the 1-Memory graph G1 for a simple input graph G. In this
example, all bb’s outgoing edges are given cost 3, ba’s are given cost 2, and bc’s and
bd’s are given cost 1.

3 ∆-degree graphs

3.1 Static

We begin by proving an approximation guarantee for the memoryless static
algorithm, when run on graphs of maximum degree ∆. The proof in this section
is a warmup for Sec. 3.3.

Theorem 1. 0-Memory (i.e., static) gives a
√
∆+ 1-approximation on ∆-degree

unweighted undirected graphs.

See App. A for proof.

3.2 ∆-Memory

Now we consider another extreme, i.e., the h-Memory algorithm with h = ∆.
We will use dP (a, b) to indicate the distance on the path P between a, b ∈ P ,
which we define as the number of edges separating them on P , i.e., the length
of subpath P [a, b].

We will first prove a lemma, slightly strengthening a lemma of [3], which gave
a similar result for ∆ + 1. It tells us there exist optimal solutions in which the
length of the subpath between two nodes with a common neighbor is bounded
by ∆.

Lemma 1. There exists an optimal solution P ∗ in which, if N [u] ∩ N [v] 6= ∅
for u, v ∈ P ∗, we have dP∗(u, v) ≤ ∆.

Proof. Suppose two nodes u0, uk on a (possibly optimal) path P share a neighbor
x /∈ P . Let dP (u0, uk) = k, and name the intermediate nodes so that this subpath
consists of the nodes u0, u1, ..., uk−1, uk. Let δ be the degree of x, and let P ′ a
modification of P that replaces the subpath P [u0, uk] with the subpath u0, x, uk.

Let us now consider the costs of these two paths. First we examine the cost
of P ′. When u0 transmits, u1 and x receive; when x transmits, uk and x’s other
δ − 2 neighbors (ignoring u0) receive; when uk transmits, uk−1 receives, for a
total of δ+2 receivers. (We ignore without loss of generality any other neighbors
of u0 and uk, which will receive from both P ′ and P .)

Now consider P [u0, uk]. Its cost is k for nodes u1, ..., uk plus 1 for x, plus any
other neighbors those nodes may have, for a total of cost(P [u0, uk]) ≥ k + 1. If
k ≥ δ + 1 then

cost(P [u0, uk]) ≥ k + 1 ≥ δ + 2 = cost(u0, x, uk)

and so if P is optimal then P ′ is too. Otherwise, k < δ + 1, and indeed
dP∗(u0, uk) = k ≤ δ ≤ ∆. ut

We are now ready to prove the theorem. It shows that while ∆-Memory
overestimates some paths’ costs—even some optimal paths’ costs—it optimally
computes the costs of a least some optimal path, and so it will find one.

Theorem 2. ∆-Memory is a polynomial-time optimal algorithm for unweighted,
undirected graphs of ∆-bounded degree.

Proof. Let cost(P) indicate the secluded cost of a path P in the input graph G,
and let costh(P) indicate the static cost of the corresponding path in Gh.

The lemma tells us that there is always an optimal solution P ∗ in which the
cost of vi’s transmission is determined by (aside from vi’s neighborhood) not
the entire subpath from source to vi but only the last ∆ nodes visited prior
to reaching vi. Thus the cost of the corresponding path in Gh will equal the
secluded cost of P ∗:

cost(OPT) = costh(OPT) (1)

Obs. 2, however, told us that the cost of a path in Gh (for any h, and so in
particular for G∆) can only be greater than the secluded cost of the correspond-
ing path in G.

Then we have:

cost(ALG) ≤ cost∆(ALG) ≤ cost∆(OPT) = cost(OPT)

The first inequality follows from Obs. 2, the second inequality from the fact
that the algorithm chooses a path of optimal c∆(·) cost, and the equality from
Eq. 1.

Since deg(G) = ∆, the number of length≤ ∆ subpaths to any node of G is
O(∆∆). With ∆ constant, the size of G∆ only a constant larger than G, i.e.,
|V∆| = O(|V |) and |E∆| = O(|E|). Since |E| = O(|V |) (because ∆ is constant),
Dijkstra can be run on G∆ in time O(n log n). ut

√
∆

√
∆

u1 ui ui+1 us

Q

s t

x

Fig. 2. Approximation guarantee of h-Memory.

3.3 h-Memory for 0 ≤ h ≤ ∆

Finally, we generalize the two previous results for for values of the memory pa-
rameter h ranging from 0 to ∆, using an extension of the argument for Theorem
1.

Theorem 3. h-Memory gives a
⌈√

∆+1
h+1

⌉
-approximation on ∆-degree unweighted

undirected graphs in polynomial time.

Proof. Let costh(P) indicate the cost of a path P from the point of view of
h-Memory: the cost when node vi ∈ P transmits is the number of neighbors
receiving who did not receive in the previous h transmissions, i.e., |N(vi) −
∪i−1j=i−hN(vj)|.

We show that an optimal path P ∗ can be converted into a pathQ of costh(Q) ≤⌈√
∆+1
h+1

⌉
· cost(P ∗). The existence of such a path Q establishes that ALG ≤⌈√

∆+1
h+1

⌉
·OPT .

Initialize Q to P ∗ and let all nodes of the graph be unmarked (see Fig. 3.3).
Consider a node x not on Q. Say that nodes u1, ..., us on Q are h-separated
neighbors of x, i.e., they are all in N(x) but for each 2 ≤ i ≤ s, the h nodes
preceding ui on Q are not in N(x). That is, between each successive pair of x’s
neighbors on Q there are at least h nodes on Q that are not neighbors of x.

Now say that a node x not on Q is bad if it has more than
⌈√

∆+1
h+1

⌉
unmarked

h-separated neighbors on Q, say, u1, ..., us. Let the length of x be dQ(u1, us). Say
that x is worst if has maximum length among all bad nodes.

Now we iteratively modify Q by repeatedly doing the following: choose a
worst node x with unmarked h-separated neighbors u1, ..., us on Q. Then we
replace the subpath Q[u1, us] with the subpath (u1, x, us), and we mark x.

Now we examine the final value of costh(Q).
Consider a move that adds a node x to the path. This occurs when x has

s >
⌈√

∆+1
h+1

⌉
neighbors on Q. We now examine how this move changes the

cost of Q. Prior to the move, the nodes succQ(u1), ..., us and x all receive (due
to the transmission of u1, ..., predQ(us)). Recall that u1, ..., us are h-separated,
with at least h nodes in between each successive pair ui, ui+1, and so |[u1, us]| ≥

(s− 1) · (h+ 1) + 1. Therefore the transmissions of u1, ..., predQ(us) contribute

at least (s− 1) · (h+ 1) ≥
√

∆+1
h+1 · (h+ 1) =

√
(∆+ 1) · (h+ 1) to cost(Q).

After the move, the transmission of x (to nodes u2, .., us and possibly others)
is of costh at most ∆− 1. In addition, there is costh 1 each for succQ(u1) and x
to both receive from u1. Altogether, the modified path incurs an h-memory cost
of at most ∆ + 1 due to the transmitters u1, x, replacing the true cost s of the
nodes they replace.

Thus we charge∆+1 to the substring P ∗[u1us−1], which is less than ∆+1√
(∆+1)·(h+1)

=√
∆+1
h+1 times the cost of that substring’s transmissions.

Now consider neighbors y of Q that we never make such moves based on, i.e.,

nodes y that are neighbors of at most
⌈√

∆+1
h+1

⌉
unmarked h-separated nodes

on Q. We pay at most
⌈√

∆+1
h+1

⌉
in h-memory cost for each such node due to

transmissions of unmarked nodes, rather than the true cost of 1. Thus the h-

memory cost of Q is at most
⌈√

∆+1
h+1

⌉
times the true cost of P ∗.

Since h is bounded by the constant ∆, the number of length-h subpaths is
again O(∆∆), and so the running time is again O(n log n). ut

Finally, we observe that for any ε ≥ 0, setting4 e = bεc and h = ∆+1
1+e2 − 1

yields
⌈√

∆+1
h+1

⌉
=
√

∆+1
h+1 = 1 + e ≤ 1 + ε. The second equality is obtained

by algebra, and the first equality holds because 1 + e is an integer. Thus we
conclude:

Corollary 1. h-Memory is a PTAS for the the secluded path problem on un-
weighted, undirected fixed-∆ degree graphs.

4 Unit-disk graphs

We begin by proving a lemma showing that the cost of every (minimal) secluded
path in G is inflated by a factor of a most 8 in G0. Thus there will exist a path
in G0 of length at most 8 times the optimal secluded path cost, which therefore
upper-bounds the cost of the solution returned by the algorithm.

Lemma 2. In the case of a minimal solution, a nontransmitter receives at most
8 times.

Proof. To obtain the bound, first recall that a unit disk can have at most 5
mutually disjoint neighbors, say u1, ..., u5 (see Fig. 3(a)). Therefore there can be
at most 10 transmitting neighbors of v lying on a minimal subpath.

Consider the (minimal) subpaths P10 = (u1, u
′
1, ..., u2, u

′
2, ..., u3, u

′
3, ..., u4, u

′
4, ..., u5, u

′
5)

and P9, with the latter the same except with u1 omitted (assume u′5 is not the
destination), in the instance of Fig. 3(a). First v has no other neighbors. Then

4 e = 0 when ε < 1.

vi

u1

u2

u3

u4

u5
u′1

u′2

u′3

u′4

u′5

(a) 8-approximation.

vi

u1

u′1

u2

u′2 u3

u′3

u4

u′4

u∗

(b) Factor-8 instance.

Fig. 3. 8-approximation of Static on unit disk graphs.

P10 costs more (at least 20: each transmission by one of v’s 10 neighbors trans-
mits to v and has cost at least 2) than the subpath P ′ = (u1, v, u

′
5) does (as

low as 2+9+2=13, with v being paid for only once), and so P10 cannot be a
subpath of a shortest path. (Similarly for P9, with costs 18 versus 12.) In order
to be charged for vi more than once (i.e., in order for it not to lie on the short-
est path), having vi transmit must be prohibitively expensive, i.e., it must have
additional neighbors who do not receive the message when path P transmits,
co-located at, say, node u∗.

If v does have any additional neighbors, they each would necessarily receive
the transmission, at least once, from the nodes of P10 (or P9), since the minimal-
ity property implies that these disks occupy an arc sweeping out greater than
5/6 of v’s, and so there is no space for another disk to intersect v but not P9.

Combined with the minimality property, the constraint that the path’s disks
not intersect with u∗ limits its number to 8 (see Figs. 3(a) and 3(b)). ut

Proposition 1. Static provides an 8-approximation when run on node-weighted
UDGs.

Proof.

cost(ALG) ≤ cost0(ALG) ≤ cost0(OPT) ≤ 8 · cost(OPT)

The inequalities follow from 1) Obs. 2, 2) the fact that the algorithm returns
a path of minimum cost0(·), and 3) the lemma. ut

An example in which the factor-8 approximation obtains is shown in Fig.
3(b). Here u1, u

′
1, ..., u4, u

′
4 are individual nodes; vi indicates n co-located nodes

(for some large n), and u∗ indicates n2 co-located nodes.

Proposition 2. 1-Memory provides a 4-approximation when run on node-weighted
UDGs.

s t

x1

x̄2

x̄3

x′1

x2

x̄4

x1 x′1

x̄1 x̄′1

∞x1 x′1

Fig. 4. Hardness reduction.

Proof. The proof proceeds very similarly to the proof of Proposition 1, this
time showing that we pay for each nontransmitter at most 4 times. Because
of the 1-Memory property, in the instance of Figs. 3(a) and 3(b), path P10 =
(u1, u

′
1, ..., u2, u

′
2, ..., u3, u

′
3, ..., u4, u

′
4, ..., u5, u

′
5) would be charged for node vi only

once. Arrangements such the one shown in Fig. 3(a) can be extended to paths P ′

in which vi receives from the transmissions of multiple noncontiguous subpaths.
We will then be charged for vi once for each such maximal subpath. Recall that a
unit disk can intersect with at most 5 independent unit disks, meaning at most 5
such subpaths. As before, the fact that vi is not chosen to transmit means there
must be a neighbor of vi to avoid, which reduces the worst-case total to 4. ut

5 NP-hardness

Proposition 3. The secluded path problem is NP-hard on node-weighted of de-
gree 3.

Proof. We reduce from the special case of 3-SAT in which each literal appears
at most twice. We create a graph in which the optimal secluded path cost equals
2n if the formula is satisfiable and is more otherwise (see Fig. 4). For each clause
we add a clause gadget, in which the path splits into three length-2 subpaths,
corresponding to the literals of a clause, which then merge back together. (The
first clause gadget from the left in the example shown in the figure is for (x1 ∨
x̄2 ∨ x̄3).) Each clause gadget’s “literal nodes” (xi) have a neighbor of weight 1
(xi or x′i). Those neighbors have very heavy neighbors themselves, so that they
cannot be part of any shortest path. The cost of all other vertices in the graph
is 0. A clause gadget thus forces a good solution path to choose one of three
alternatives corresponding to the clause’s three literals.

To prevent an optimal solution path from visiting both xi and x̄i, we add
variable gadgets at the end of the construction (one variable gadget is shown
in the figure). Each (for variable xi) forces a solution path to make one of two
choices for a variable, which means paying 2 nodes neighboring xi, x

′
i (xi and x′i)

or those neighboring x̄i, x̄
′
i (x̄i and x̄′i). Thus the variable gadgets by themselves

therefore give a cost a total of 2n Thus a path will cost more than 2n iff it
corresponds to a non-satisfying assignment.

6 Discussion

Several of the results in this paper used a lemma that on an optimal solution
path two nodes with a common neighbor cannot be too far apart, which per-
mitted the use of de Bruijn graphs to implement enough memory to correctly
represent transmission costs using edge costs. In a similar spirit, the unit-disk
approximation result depended on showing that there cannot be too many nodes
on an optimal path sharing a neighbor. In all cases, we could then obtain good
results computing shortest paths.

The itchiest open problem is proving the problem to be easy or hard on planar
and/or unit-disk graphs. Note that the triangular grid graph, whose status is also
open, is a special case of both the planar and unit-disk graphs. It appears that
positive results for these settings will require fundamentally different techniques.

References

1. R. D. Carr, S. Doddi, G. Konjevod, and M. V. Marathe. On the red-blue set cover
problem. In SODA, pages 345–353, 2000.

2. D. Chavey. Tilings by regular polygons: A catalog of tilings. Computers & Math-
ematics with Applications, 17(1–3):147–165, 1989.

3. S. Chechik, M. P. Johnson, M. Parter, and D. Peleg. Secluded connectivity prob-
lems. In ESA, 2013.

4. N. G. de Bruijn. A combinatorial problem. Koninklijke Nederlandse Akademie v.
Wetenschappen, 49(49):758–764, 1946.

5. J. Gao, Q. Zhao, and A. Swami. The thinnest path problem for secure communi-
cations: A directed hypergraph approach. In Allerton Conference on Communica-
tions, Control, and Computing, 2012.

6. J. Gao, Q. Zhao, and A. Swami. The thinnest path problem for secure communica-
tions: A directed hypergraph approach. In Allerton Conference on Communication,
Control, and Computing, pages 847–852, 2012.

7. B. Grunbaum and G. C. Shephard. Tilings and Patterns. W. H. Freeman and
Company, 1987.

8. A. Johansson and P. Dell’Acqua. Knowledge-based probability maps for covert
pathfinding. In Proceedings of the Third international conference on Motion in
games, MIG’10, pages 339–350, Berlin, Heidelberg, 2010. Springer-Verlag.

9. B. Liu, O. Dousse, J. Wang, and A. Saipulla. Strong barrier coverage of wireless
sensor networks. In MobiHoc, pages 411–420, 2008.

10. M. Marzouqi and R. Jarvis. New visibility-based path-planning approach for covert
robotic navigation. Robotica, 24(6):759–773, 2006.

11. M. A. Marzouqi and R. A. Jarvis. Robotic covert path planning: A survey. In
RAM, pages 77–82, 2011.

12. S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava. Coverage
problems in wireless ad-hoc sensor networks. In INFOCOM, pages 1380–1387,
2001.

13. D. Peleg. Approximation algorithms for the label-covermax and red-blue set cover
problems. J. Discrete Algorithms, 5(1):55–64, 2007.

A Proof of Theorem 1

Proof. We show that an optimal path P ∗ can be converted into a path Q of
static cost cost0(Q) ≤

√
∆+ 1 · cost(P ∗) by a modification of the argument of

[3]. The existence of such a path Q establishes that ALG ≤
√
∆+ 1 ·OPT .

Initialize Q to P ∗ and let all nodes of the graph be unmarked. Say that a
node x not on Q is bad if it is the neighbor of more than

√
∆+ 1 unmarked

nodes on Q, say, u1, ..., us. Let the length of x be dQ(u1, us). Say that x is worst
if has maximum length among all bad nodes.

Now we iteratively modify Q by repeatedly doing the following: choose a
worst node x with unmarked neighbors u1, ..., us on Q. Then we replace the
subpath Q[u1, us] with the subpath (u1, x, us), and we mark x.

Now we examine the final value of cost0(Q).
Consider a move that adds a node x to the path. This occurs when x has s >√

∆+ 1 neighbors on Q. We now examine how this move changes the cost of Q.
Prior to the move, the nodes u2, ..., us and x all receive (due to the transmission
of nodes u1, ..., us−1), which contributes (s − 1) + 1 = s to cost(Q). After the
move, the transmission of x (to nodes u2, .., us and possibly others) is of cost0
at most ∆ − 1. In addition, there is cost0 1 each for u2 and x to both receive
from u1. Altogether, the modified path incurs a static cost of ∆+ 1 due to the
transmitters u1, x, replacing the true cost s of the transmissions they replace.

Thus we charge∆+1 to the substring P ∗[u1, us−1], which is less than ∆+1√
∆+1

=
√
∆+ 1 times the cost of that substring’s transmissions.

Now consider neighbors y of Q that we never make such moves based on, i.e.,
nodes y that are neighbors of at most

√
∆+ 1 unmarked nodes on Q. We pay at

most
√
∆+ 1 for each such node due to transmissions of unmarked nodes, rather

than the true cost of 1. Thus the static cost of Q is at most
√
∆+ 1 times the

true cost of P ∗. ut

B Planar graphs

Proposition 4. Static provides a 3-approximation when run on (unweighted,
directed) planar graphs.

Proof. We claim that any path P returned by Static—let us say this path has
minimum static cost—will have cost0(P) ≤ 3 · cost(P). The static cost and true
cost differ because in the former we are charged each time a given node receives
the message. Consider a shortest static-cost path P = (v1, ..., vk). Consider how
much worse the static cost cost0(P) can be than the true cost cost(P). No node
on P can be a neighbor of a preceding node on P other than its predecessor,
since otherwise P is not an optimal static-cost path.

Nodes on P may jointly be neighbors of the one or more nodes not on P ,
however (Fig. 5(a)). We claim that if there are multiple such nodes on the same
“side” of the path P instances can be constructed with one fewer node on that
side, with only higher ratio cost0(P)/cost(P). If there are two such nodes ua, ub

uL

uR

v1
· · ·

vk

(a) 3-approximation by Static.

uL

uR

v1
· · ·

vk

(b) 2-approximation by 1-Memory.

Fig. 5. Approximation on planar graphs.

whose neighbors on P are disjoint, then ua, ub can be merged into a single node
u. (A sufficiently large number of new neighbors of u can be added to prevent it
from being possible to to take a “shortcut” via u, thus not changing P ’s status as
optimal static-cost path.) If ua, ub share neighbors among the nodes of P (note
that they can share at most two such neighbors), an adjacent edge of P can be
split to introduce at most 2 new nodes adjacent to the merged node u. Thus by
merging ua, ub we hold cost0(P) fixed, while decreasing cost(P). Without loss
of generality, therefore, we may assume that there is at most one such node on
either side of P . Similarly, any case of a node that neighboring the path “from
both sides” can be made worse by splitting the node into two, and repeating the
above. Therefore the static cost of each transmission is at most 3 times the true
cost.

Note that as k grows large, the approximation factor of the instance shown
in Fig. 5(a) approaches the worst case of 3. ut

Unfortunately, this approximation ratio does not hold in the case of node-
weighted graphs, since we can modify the example as follows. First, delete uR,
and let the destination be a new node vk+1 adjacent only to vk. Let uL have
just one other neighbor besides vi (in which case ∆ = k + 1). Let the weight
of uL be some value w >> k, let uL’s other neighbor have cost w2, and let
all other nodes have unit weight. Then the static cost of the path from v1 to
vk+1 is approximately kw, whereas the true cost is approximately w, yielding an
approximation factor of k = ∆− 1.

Consider what happens when 1-Memory is run on the worst-case example
above. Each transmission after the first remembers that uL, uR have received,
and the path’s cost is computed with no error. The algorithm is vulnerable to
problem instances with gaps, although only at a cost of a factor-2 approximation
rather than 3.

Proposition 5. 1-Memory provides a 2-approximation when run on (unweighted,
directed) planar graphs.

Proof. As in the earlier proof, again consider an optimal path P , from some
node v1 to some node vk, and think about how to make an arbitrary situation
worse.

Algorithm 3 (h, i)-Memory

1: First draw the h-memory graph as before.
2: Now, create 2i copies, called layers, of this graph, each LS corresponding to different

subset of S of a set D = {d1, ..., di} of distinguished nodes having so far received.
The source points to layer L∅ and all layers point to the target.

3: Starting with L∅, modify the edges at any layer S this way: for each node u with
distinguished neighbors D′ ⊆ D redirect u’s outgoing edges to the corresponding
vertices in layer LS∪D′ . The cost of these edges will include the cost of D′ \ S, but
edges in this layer and in all its superset layers will not.

4: Run Dijkstra on this graph.

Clearly no single node o should neighbor two successive nodes u, v ∈ P , since
1-Memory will remember o received from u when v transmits. Then arguments
as above will conclude that a series of modifications making things worse will
converge to a situation where all alternating nodes—the odd nodes v2i+1, say—
should share a common neighbor on one side. Similarly, alternating nodes on
the other side—again, either the odds or the evens—should share a common
neighbor.

Thus we can assume the worst-case instance given in the figure above (or else
one in which uL neighbors the nodes that uR does not) without loss of generality.
The cost for 1-Memory of two successive transmissions will be |N [ui, ui+1]| =
|{vi+1, vi+2, uL, uR}| = 4, whereas the true cost is 2. Overall, the total static
cost will be approximately (k/2) · 4 for static while the true cost is k + 2. ut

Unfortunately, extending to h-Memory for h > 2 improves the performance
no further, since two far-apart nodes could share many neighbors.

C Tessellation graphs

A tessellation of the plane can be interpreted as a network in which tiles
become nodes and adjacent tiles can communicate, which corresponds to the
dual graph of the tessellation. There are three regular tessellations, based on
triangles, squares, and hexagons. The hexagon and triangle tilings are dual to
one another, and the square tiling is self-dual.

Although we show that the problem is hard on the class of node-weighted
graphs of degree 3, we find in this section that some node-weighted grid graphs
(of degree ≥ 3) are optimally solvable. (If the nodes are not weighted, then since
such graphs have constant degree, we already know they are solvable.)

We start by showing that in hexagon and square grid graphs, in general two
nodes u, v ∈ P ∗ with a common neighbor cannot be very apart—apart from a
few exceptions, which we call distinguished nodes D. To handle these nodes that
could have very far-apart neighbors, we also simply keep track of which subset
of these nodes have received so far. This |D| bits of information is stored by
multiplying the constructed graph by a factor of 2|D|, as described in Algorithm
C.

First we consider hexagons.

Lemma 3. In the hexagon grid graph, let o be a nontransmitter in N [P ∗] for
some optimal path P ∗, where o /∈ N [s]. Then if o receives multiple times, it does
so from either 2 or 3 consecutive nodes in P ∗.

Proof. We prove the stated property for all such nodes o by showing that if o does
violate the property, then we can modify P ∗ in such a way that only improves
the solution—that is, the neighborhood of the modified path is a subset of the
neighborhood of the original path—and does not cause any other node to newly
violate the property.

First, we claim that no such node o will receive from 3 of its 6 neighbors, say
m1,m2,m3 (in order) unless those nodes form a path, because if o does receive
from 3 such nodes, then the subpath from m1 to m3 can be replaced with the
path (m1, o,m3), which renders o a transmitter, and which does not result in
any new node violating this property. The transformation for such case, the one
in which o’s 3 transmitting neighbors are independent, is shown in Fig. 6(a).
(One possible path connecting these 3 nodes is shown, for illustrative purposes
only, in light gray.) The other possible cases of 3 receives are similar, as are the
cases of a) more than 3 receives and b) receives for o from 2 neighbors in opposite
directions.

The only remaining case is when o receives from 2 neighbors that are neither
consecutive nor opposite, which is thus 2 transmitting neighbors, say m1,m2 (in
order) of o that share a (nontransmitting) neighbor with o. Since o /∈ N [s], we
know that m1 is not s, and so must receive from some other node, say ua. It must
transmit to some transmitting node ub, which cannot be a neighbor of o because
o’s transmitting neighbors are independent. This leaves 3 possible neighbors
of m1 which could be ua, ub. Those two nodes cannot themselves be neighbors,
however, because otherwise we could replace (ua,m1, ub) with (ua, ub). This fully
determines the locations of ua, ub relative to m1 except that there are two cases
for which is which.

Similarly, m2 cannot be t (since it is transmitting), and must receive from
a transmitter uc /∈ N [o] and must transmit to a node ud /∈ N [o], although ud
may be nontransmitting (because it may be t). Combined with the two possible
assignments of uc and ud, this yields 4 subcases for m2, for a total of 8 subcases.
The transformation for one of these 8 subcases in shown in Fig. 6(b), which
results in o now receiving from 3 consecutive neighbors, and does not result in
any new node violating the property. The other subcases are similar. ut

Proposition 6. (1,6)-Memory is optimal for the hexagon grid graph.

Proof. By the lemma, for all nontransmitters o /∈ N [s], any multiple receives for
o must be consecutive. Therefore for such transmissions, whether o should be
charged depends only on the previous transmission. Hence to determine the cost
of a transmission it suffices to remember the previous transmission and which
subset of N [s] have yet received. ut

(a) Transformation for 3 or more re-
ceives.

(b) Transformation for 2 diagonal
receives.

Fig. 6. Local transformations ensuring that the center node o either a) receives from
either 2 or 3 transmissions by nodes on the path, where such transmissions are in-
terspersed with exactly 1 transmission in which o does not receive or b) becomes a
transmitting node on the path. In each case, the set of transmitting or receiving nodes
on the right is a subset of those on the left.

(a) Transformation for 4 re-
ceives.

or

(b) Transformation for 2 diagonal receives.

or

(c) Transformation for 3 receives. (d) Transformation for 2 op-
posite receives.

Fig. 7. Local transformations ensuring that the center node o either a) receives from
either 2 or 3 transmissions by nodes on the path, where such transmissions are in-
terspersed with exactly 1 transmission in which o does not receive or b) becomes a
transmitting node on the path. In each case, the set of transmitting or receiving nodes
on the right is a subset of those on the left.

We begin by considering the (weighted) square grid graph. We will show
that a version of the Memory algorithm is optimal for such graphs. We begin
by showing that, aside from nodes that are neighbors of s or diagonal neighbors
of either s or t, when nontransmitters hear the message multiple times from an
optimal path, there are either two or three such transmitters, each of which after
the first comes exactly two transmissions after the most recent one.

Lemma 4. In the square grid graph, let o be a nontransmitter in N [P ∗] for
some optimal path P ∗, where o /∈ N [s]∪N/[s]∪N/[t]. Let M(o) = {m1, ...,mk}
be the nodes in P ∗ (in order) that transmit to o. Then |M(o)| is either 2 or 3,
dP∗(m1,m2) = 2, and (in the latter case) dP∗(m2,m3) = 2.

Proof. Let o be such a node. First, we observe that in an optimal solution, we
can never have |M(o)| = 4. Any solution in which the (nontransmitting) node

o hears 4 times, hence from all four of its neighbors, can be transformed into a
solution of only lower cost in which that node is now transmitting, i.e., on the
path, and hence receives exactly twice. Suppose o receives from its neighbors in
order (say) (0,−1), (−1, 0), (0, 1), (1, 0). (See Fig. 7(a), in which these nodes are
shaded dark, nodes receiving from them are ringed, o is marked with a large
ring, placed at the center, and made the origin, and one possible path through
o’s neighbors is shown in gray.) Then we can replace the subpath from (0,−1)
to (1, 0) with the path ((0,−1), o, (1, 0)).

Second, if |M(o)| = 2, with the transmitting neighbors not on opposite sides
of o, located at (say) (0,−1) and (1, 0). Then a case analysis shows that path
can be transformed by substituting the subpath from (0,−1) to (1, 0) with either
the path ((0,−1), o, (1, 0)) or ((0,−1), (1,−1), (0, 1)) (see Fig. 7(b)). The trans-
missions to o (or, in the second case, to (1,−1), are indeed two transmissions
apart.

Third, a case analysis shows that when |M(o)| = 3, with the neighbors lo-
cated at (say) (0,−1), (1, 0), (0, 1), an optimal solution must circle around o
or pass through o, in both of which cases there is exactly one transmission
separating each such transmission from the most recent. The transformation
for the case in which the original path’s three transmissions occur in order
(0,−1), (1, 0), (0, 1) is shown in Fig. 7(c). Transformations for the cases of other
orders of these three transmissions are similar.

Finally, by a much more elaborate case analysis, it can be shown that for
such o, if the two transmitters are on opposite sides of o, at say (−1, 0) and
(1, 0), then the path can be transformed into one of the cases already handled
above, in such a way that the solution only improves. The case analysis proceeds
by consider 2 possible ways for the path to pass through (−1, 0) and 3 possible
ways for it to pass through (1, 0). The transformation for one of the 12 cases is
shown in Fig. 7(d). ut

Proposition 7. (2,12)-Memory is optimal for the square grid graph.

Proof. By the lemma above, aside from handling the nodes in N [s]∪N/[s]∪N/[t],
it suffices to “remember” the last two moves in determining the cost of any given
transmission. We also must remember what subset of the 12 nodes in the set
mentioned have received the message. Thus a “memory” graph in which each
node is represented by 212 · 4 · 4 nodes will suffice. ut

Interestingly, this approach does not apply to the triangular tiling, however,
since in an optimal path P ∗ may transmit to a node (triangular face) o twice from
nodes arbitrarily far apart on P ∗ without o’s third neighbor receiving (which
could have arbitrarily high cost), and hence without the path being improvable
by shortcuts, either through o or through other nodes (see Fig. 8).

The approach does apply, though, to several of the 8 semiregular tilings or
their duals (details omitted):

Proposition 8. For appropriately chosen constants, (k1, k2)-Memory is opti-
mal for the grid graphs resulting from the following semiregular tilings: truncated

Fig. 8. Triangular grid graph example in which two node (marked with larger rings)
receives from two transmissions on the path at arbitrarily large separation. All non-
receivers, in particular the four colored faint red, could have high cost, precluding
shortcuts.

square (dual), truncated hexagon (dual), trihexagonal (primal), rhombotrihexag-
onal (primal), and truncated hexagonal (primal).

