
Low Expected Latency Routing in Dynamic Networks

Prithwish Basu

Raytheon BBN Technologies

Feng Yu Matthew P. Johnson Amotz Bar-Noy

City University of New York (CUNY)

Abstract—Timely and efficient message transmission through
intermittently and sparsely connected networks is a problem
of significant interest to the mobile networking community.
Although the long-term statistics describing the time-varying
connectivity in such networks can be characterized systematically
and can be used for selecting good routes, it may be possible
to achieve better performance by intelligently using the actual
link states at the time of routing, in conjunction with these
statistical dynamics models. In this paper, we investigate a family
of minimum expected latency routing methods for such dy-
namic networks, spanning purely model-based and state-oblivious
source routing; state-based source routing; and various flavors
of dynamic (or hop-by-hop) routing, with increasing amounts of
current link state knowledge around the source.

First, we give a heuristic and an approximation scheme for
the model-assisted source routing problem, as well as heuristics
for the dynamic routing problem. Then we show using extensive
simulations on both synthetic and real time-varying connectivity
traces that although dynamically sampling link states helps to
improve expected routing latency compared to source routing, the
marginal improvements decline rapidly for knowledge of current
link states beyond 2 hops. To the best of our knowledge, this is the
first thorough characterization of the performance of the entire
spectrum of model-assisted routing algorithms ranging from little
knowledge to complete knowledge of link dynamics.

I. INTRODUCTION

Routing in dynamic wireless networks such as mobile ad

hoc networks (MANETs), mesh / sensor networks (WSNs)

and disruption tolerant networks (DTNs) has been a popular

topic of research for decades in the research community. In

MANETs and WSNs, network topology could vary over time

due to link outages caused by node mobility, jamming, or

interference, or due to node outages caused by duty cycling or,

in the extreme case, battery exhaustion. In MANETs, shortest

paths can be computed through networks after collecting topol-

ogy information periodically or in an event-triggered manner.

This can be done on demand by flooding followed by source

routing [9] or reverse path forwarding [16], or proactively by

flooding topology updates followed by each source computing

a shortest path to destinations using standard shortest path

algorithms [5]. A chosen path can then be used until a link

failure prompts its revision. Alternatively, routing can be done

dynamically, through local broadcast [4] or repetition [17].

In this paper, we focus on “single-copy” store-and-advance

Corresponding author email: pbasu@bbn.com. Research was sponsored by
the Army Research Laboratory and was accomplished under Cooperative
Agreement Number W911NF-09-2-0053 (ARL Network Science CTA). The
views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed
or implied, of the Army Research Laboratory or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation here on.

routing under the latency cost metric, which often applies to

lightly loaded DTNs and transportation networks, and study a

number of problem variants of this form.

a) Source vs. dynamic routing: Routing in dynamic net-

works is typically done hop-by-hop, the key benefit of which is

responsiveness to topology changes. In our setting, this means

either choosing a next-hop link or waiting for a better link

to become available. An alternative approach is (store-and-

advance) source routing, in which a complete, immutable path

is chosen for a packet to travel, from source to destination,

within a network. Thus, once the path is chosen, no routing

decisions need be made online. This is especially advantageous

for networks with resource-rich end-hosts but resource-poor

nodes in the intermediate core.

b) Different levels of available knowledge of link state
information: At one extreme, the current states of all links

may be known at all times. At the other extreme, only local
link state information is available at the source (in source

routing) or the current node (in dynamic routing). (All other

links are assumed to be in steady-state.) There are two sorts

of intermediate settings: a) global knowledge of all link states

but only in the first time step, and b) local knowledge, after

each hop, of the links within some k-hop neighborhood of

the current node. It may be feasible to inform the source

(and intermediate nodes) about changes in network topology

over alternate communication channels. An example of this

is a “hybrid” network where each node is equipped with two

transceivers: a high data rate / low transmission range, inter-

mittently connected transceiver to carry “data” (e.g., WiFi) and

a lower data rate / high transmission range, always connected

transceiver for “control” (e.g., cellular data).

When the future topology changes known, latency can

be minimized by running a modified Dijkstra algorithm [8].

Alternately, one can minimize estimated expected delay based

on observed contact schedules [10].

c) Link dynamics models: In addition to current or his-

torical link state information, routing decisions can be based

on a suitable model of the underlying link dynamics. This

allows probabilistically projecting the state of a link forward

in time, thus alleviating the need to flood current topology state

information every time a link’s state changes. The dynamic

Erdős-Rényi (ER) random graph model1 is a basic model for

studying dynamic graphs, but it does not capture temporal

correlation in link dynamics. A more powerful and accurate

1At any given time, a link is up independently with a certain probability p,
which is assumed to be known in advance or learnt; and the current state of
a link is observable by sampling or exchanging messages between endpoints
of the said link.

2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems

978-1-4799-6036-1/14 $31.00 © 2014 IEEE

DOI 10.1109/MASS.2014.107

267

Fig. 1. A collection of model-assisted link state routing schemes.

model, and the focus in this paper, is the (p, q) dynamic

discrete-time Markovian model. At each discrete time step in

this model, a link is either on or off; between one time step

and the next, the link may transition between these states,

with known probabilities of transitioning from off to on (p)

and from on to off (q).

In this paper, we consider the problem of model-assisted
routing through dynamic graphs so as to minimize expected
routing time (ERT) between a given source and a destination.

Related Work. Stochastic, time-dependent networks (STDNs)

have been studied in the transportation literature [7], where

edge delays are time-dependent random variables (r.v.), and

a standard routing goal is to minimize expected travel time.

Because of the dynamic nature of the network, a dynamic

routing policy has been considered instead of a fixed path.

Stochastic routing in MANETs has been studied in [12].

Though somewhat similar in spirit to our work, the models

are quite different – instead of transitions on link states, they

consider Markovian transitions on the network state specified

by which nodes have received the message so far. Additionally,

there has been significant work on DTN routing (see [1], [2]

and the references therein). The work closest to ours is by

Ogier and Rutenburg [15]. They study the scenario where each

dynamic link l is assumed to obey a two-state Markov chain

with known parameters (pl, ql), and a node can observe the

on/off state of its neighboring links; links beyond that are

assumed to be in steady-state. This problem is #P-complete,

even in the special case of pl = 1−ql with zero-latency edges.

However, for nonzero link latencies or if the graph is directed

and acyclic (DAG), then Dijkstra-style dynamic programming

yields an optimal solution. Nikolova and Karger [14] gave

similar results for the “stochastic edge-latency” version of the

Canadian Traveler Problem (CTP) [3]. The “stochastic edge-

state” version of CTP is PSPACE-hard [6]. We do not restrict

ourselves to having only the current state of neighboring links

to be available; e.g., in multi-radio hybrid networks, it is pos-

sible to acquire link states beyond the one-hop neighborhood.

Contributions. To the best of our knowledge, this sort of

systematic exploration of minimum latency link state routing

schemes (see Fig. 1) has not previously appeared in the liter-

ature. Our main contributions are as follows: For Markovian

networks with global or m-hop state info, we give an effi-

cient heuristic and a polynomial time approximation scheme

(PTAS) for source routing, and two heuristics for dynamic

routing. We also show that for a number of interesting special

cases of (p, q), the routing problems can be solved optimally.

We perform an extensive evaluation of these algorithms on

both synthetically generated time-varying networks and real

networks, investigating questions such as: How beneficial is

having link state info beyond the current/source neighborhood,

and how far? How much advantage does the flexibility of

dynamic routing offer over source routing? We find that both

provide benefits, but the state info benefits rapidly diminish

beyond 2 hops. The results of this paper are applicable

to lightly loaded (unsaturated) multi-radio and WiFi/Cellular

hybrid networks mentioned earlier. Our goal is not to provide

a complete routing protocol but to investigate the aforemen-

tioned fundamental tradeoffs, hence we do not study actual

link state dissemination issues in this work.

II. MARKOVIAN NETWORKS

We begin with basic assumptions and concepts. Time is

measured in discrete time steps. Time τ refers to the beginning

of the time step τ , for τ = 0, ..., T .
Definition 1 (Dynamic graph): G[0, T] ≡ {Gτ =

(Vτ , Eτ)}Tτ=0 is a dynamic (or time-varying) graph indexed

by discrete time step τ if each “graphlet” Gτ is a valid graph.

Vτ and Eτ denote the vertex and link sets, respectively, at

time τ . A dynamic graph may have a finite or an infinite

number of graphlets.
Definition 2 (Underlying graph): G∪ = (V∪, E∪) is the

underlying graph of a dynamic graph G[0, T] if V∪ =
⋃T

τ=0 Vτ

and E∪ =
⋃T

τ=0 Eτ .
Definition 3 (Markovian (p, q) graphs): At time 0, each

link is in some state (which we may or may not assumed to be

known). The state of a given link i in subsequent time steps is

governed by a known two-state Markov chain specified by the

probability transition matrix Pi: Pi =

(
1− pi pi
qi 1− qi

)
,

with pi (resp. qi) the probability that link i transitions from

state 0 (resp. state 1) into state 1 (resp. state 0) in one time step.

Note that the nontrivial eigenvalue of Pi is βi = 1−pi− qi ∈
[−1, 1], a quantity which will be very useful later.

Definition 4 (Steady-State probabilities): π0 = qi/(pi+ qi)
and π1 = pi/(pi+ qi) are the stationary probabilities that link

i is in states off or on, respectively.
We note a few important special cases of (p, q) and their

resulting steady state probabilities: (i) (1, 1): Link states

alternate deterministically in every time step, with π0 = .5;

(ii) (p, 1−p): The Erdös-Renyi setting, where a link’s state is

independent of its previous state, with π0 = p; (iii) (p, 0): A

“densifying network” where edges appear but never disappear;

(iv) (0, 0): Link states never change, which is consistent (in the

unknown initial state setting) with any specified steady-state

(i.e., initial) probability π0.
Definition 5 (Transient probabilities): Let P �

a,b(τ) =
Pr(X�(τ) = b |X�(0) = a) be the probability that link � is in

state b ∈ {0, 1} at time τ given that it was in state a ∈ {0, 1}
at time τ = 0 for initial state X . In cases where all links

have the same parameters p, q, we omit the superscript �.

268

For any t ≥ 0, we have [11]: P1,0(t) = π0(1−βt);P1,1(t) =
π1 + π0β

t;P0,1(t) = π1(1− βt);P0,0(t) = π0 + π1β
t.

Transmission assumptions. If the message reaches a link’s

entry node when the link is on, then it immediately starts

traversing the link; if the link is off, the message waits there

until the link appears. For each link � its delay d(�) is the

number of time steps it takes to traverse � (when on). We also

assume that transmission finishes within a single time step and

is not interrupted by a link-down event.

Notation. The global state of all links at time t is indicated

by X(t), which represents an assignment of each edge of the

underlying graph to a bit. The state (0 or 1) of a particular

link i at time t is indicated by Xi(t), sometimes written Xt
i

when notationally convenient.

III. SOURCE ROUTING IN MARKOVIAN NETWORKS

We are given an underlying graph G∪, initial link state

configuration G0, source node s, target node t, and dynamics

model parameters (p, q). Let Ps,t be the set of all simple paths

from s to t in G∪. Then the objective of source routing is:

argminPs,t∈Ps,t
ETT (Ps,t|G0), where ETT (Ps,t|G0) is the

expected traversal time in the (p, q) model of a path Ps,t with

the initial link states given by G0. This value can be computed

for an n-hop path in O(n2) time2 [13]. From G∪, we construct

a weighted graph Gw: ∀� = (u, v) ∈ G∪, d(u, v,Gw) =
d(u, v,Gu) +

q�
p�(p�+q�)

(Expected latency on � is q�
p�(p�+q�)

).

A modified-Dijkstra heuristic: We first show that the “sub-

path optimality property” does not hold in this setting, which

precludes using Dijkstra-style dynamic programming tech-

niques to optimally solve the problem. Nonetheless, we give a

Dijkstra-based heuristic and analyze its approximation factor.

Definition 6: A Markovian dynamic graph G with its un-

derlying graph G∪ satisfies the subpath property if for any

three different nodes u, v, w ∈ G, assuming there are two

distinct paths connecting u, v, namely X(u, v) and Y (u, v),
and one path connecting v, w, namely Z(v, w), if ETT (X) ≥
ETT (Y), then ETT (XZ) ≥ ETT (Y Z), or vice versa.

As illustrated in Figure 2, consider two paths in G∪ with

initial states denoted by bit strings X,Y . Let Δ = ETT (X)−
ETT (Y) = EX [T] − EY [T] and Δ1 = ETT (X1) −
ETT (Y 1) = EX1[T] − EY 1[T]. Examples can be found

(see table in Figure 2) of strings X,Y violating the subpath

property, i.e., ΔΔ1 < 0. In fact, the difference Δ1 can grow

arbitrarily large. Nonetheless, we obtain the following lemma3

and a subsequent observation.

Lemma 1: If |X| = n and Δ ≤ 0, then Δ1

EX1[T] ≤ α, where

α = min{ qp , q
np(p+q)}.

Observation 1: The ratio Δ1

ETT (X1) remains small and is

upper bounded by α as seen in Figure 2.

Using this insight, we propose Algorithm 1.

Claim 2: The approximation factor of any k-hop solution

found by Algorithm 1 is at most (1 + α)k.

2The complexity remains O(n2) when (p�, q�) vary by link �, as long as
there is only a constant number of distinct (p�, q�) pairs. Our algorithms also
generalize in this way, but we assume uniform (p, q) values for simplicity.

3Proofs of lemmas and theorems have been omitted for brevity.

p q X Y Δ1/ETT (X1) α

.00065 .00098 110111 1111000 87.61
4532

= .019 1.507

.9964 .9713 100100 1010101 0.58
9.27

= .063 .071

Fig. 2. Counterexample to the subpath optimality property

Algorithm 1 MapRTAppx(G∪, G0, s, t)

1: Run Dijkstra’s algorithm on G∪, except with the follow-
ing modification: each time a neighbor v of a current
node u is being considered, evaluate the tentative distance
to v not as ETT (G0, path(u)) + d(u, v) but instead as
ETT (G0, path(u) + v).

Algorithm 2 SourceRoutingPTAS(G∪, Gw, G0, s, t, ε)

1: choose ε′ satisfying 1+ε′
1−ε′ ≤ 1 + ε

2: D ← log|1−p−q|(
p(p+q)(1−|1−p−q|)

q
ε′)

3: Path set P ← BFS(G∪, S, d < D)
4: for each Pi ∈ P do
5: let Pi = (s � vi)
6: delay(Pi)← ETT (G0, Pi) +Dijkstra(Gw, t)[vi]

7: let path be the one with minimum delay(Pi)
8: let path′ be the path w.r.t Dijkstra(Gw, t)[v]
9: return path+ path′

Approximation Algorithms: Now we give a Polynomial-

time Approximation Scheme (PTAS) for the source routing

problem, based on some bounds on the ETT of a path. For any

ε > 0, this algorithm finds a path whose cost is within a factor

1 + ε of the optimal, and has polynomial time complexity.

First we need some bounds on the expected time to traverse

a path of known state.

Theorem 3 (General bounds for ETT): Let x be an an ini-

tial state of an n-hop path, and let Bx(k) be the indicator

function for the set of bit positions in x equaling 1. Let

SS = n + nπ0/p be the expected traversal time in steady-

state. Then ETT(x) is bound by the following:

∣∣∣SS − ETT(x)
∣∣∣ ≤ 1

p+ q

n−1∑
k=0

(q
p

)Bx(k)|1− p− q|k (1)

Lemma 2: For any b ∈ (0, 1) and e ∈ (0, b], we have that

∀x ≥ logb e, bx ≥ ex.

Armed with the above bound and lemma, we now derive the

PTAS. We assume an error parameter ε > 0 that is sufficiently

small, specifically ε ≤ |1− p− q| = |β|.
Theorem 4: Let X = (x1, x2..., xn) be the initial state of a

path and SS be the path’s steady-state ETT, and let ETT (Xd)
and SSd be the corresponding values restricted to the edges

d+1, ..., n. Finally, let ETTd(X) = ETT (x1, ..., xd)+SSd.

Then for any ε ∈ (0, |1− p− q|], there exists a constant d =

d(p, q, n,ε) such that
|ETT (X)−ETTd(X)|

ETT (X) ≤ ε.
Corollary 5: There exists a PTAS (Algorithm 2) for source-

routing in the (p, q) model, with running time O(nγ · f(n)),

269

Algorithm 3 Ogier-m(G∪, Gw, Gτ ,m, s, t)

1: for each v ∈ G∪ do
2: e(v)← Dijkstra(Gw, t)[v]

3: u← s
4: while u �= t do
5: for each v ∈ N(u) do
6: Path set Pv ← BFS(G∪, v, d < m)
7: � If m = 1, Pv = ∅. Set e(u, v)← d(u, v) + e(v)
8: for each Pi ∈ Pv do
9: let Pi ← v � w

10: delay(Pi)← ETT (Gτ , Pi) +Dijkstra(Gw, t)[w]

11: e(u, v)← d(u, v) + min(delay(Pi))

12: k ←Policy{e(u, v)|∀v ∈ N(u)}
13: if one of the k best links ∈ Gτ then
14: e(u, v)← min(e(u, vi)|(u, vi) ∈ Gτ)
15: u← v, τ ← τ + e(u, v)
16: else
17: wait for next time slot, τ ← τ + 1

where γ = logβ
p(p+q)(1−β)

q ε′, ε′ = ε/(2+ ε), and f(n) is the

running time of Dijkstra.

IV. DYNAMIC ROUTING IN MARKOVIAN NETWORKS

In dynamic routing, the decision is not made at the source

node, but instead at each intermediate node as the message

passes through it. Thus, a solution to the dynamic ERT

minimization problem takes the form of a policy instead of

a path. Because the dynamic routing problem subsumes a

PSPACE-complete problem [6], we focus on heuristics. We

assume local knowledge of the graph at the current time instant

τ – the full graph is denoted by Gτ .

Ogier’s algorithm: For Markovian networks, Ogier and

Rutenburg’s algorithm [15] (Algorithm 3 with m = 1) assumes

that the current node can observe the state of its neighboring

links. Links beyond the one-hop neighborhood are assumed to

be in steady-state. For each neighbor v of the current node u, it

first computes the expected delay if (u, v) is up and is selected;

then it finds the maximum k such that waiting at u for one

more time slot due to the k lowest expected-delay links being

currently all down is preferable to experiencing the expected

delay due to the k+1-st link. For such k, if at least one of the

best k links is up, then take the best among them; otherwise

wait a time slot and check again. This policy provides an

optimal expected routing time under certain restrictions, such

as nonzero-weight edges and a directed acyclic graph (DAG).

Multi-hop extensions to Ogier: Ogier’s algorithm could

perform poorly in sparsely connected networks where the link

states beyond one hop are far from steady-state. If current

link state information beyond the one-hop neighborhood can

be gathered (e.g., in hybrid networks), we make a natural

extension. The most important and difficult part of the multi-

hop Ogier (Algorithm 3) is calculating the expected delay

through each link with m-hop knowledge of current link states.

Here we divide the expected delay through a link (u, v) into

three parts: 1) the latency of link d(u, v), 2) the minimum ETT

of each simple path starting from v and inside the induced

m-hop subgraph, and 3) the expected delay from the end of

path to the destination. Then the sum of the three will be

Algorithm 4 DynHeuristic(G∪, Gτ , s, t, ε)
1: u← s
2: while u �= t do
3: path← SourceRoutingPTAS(G∪, Gτ , s, t, ε)
4: h← next-hop(path)
5: τ ← τ + d(u, h)
6: u← h

the expected delay through link (u, v). Note that in a DAG,

the minimum ETT of all simple paths could guarantee the

minimum expected delay through the link, which yield the

optimality of routing.

A PTAS-based Heuristic: A second algorithm we give using

multihop state info is a heuristic (Algorithm 4) that calls the

source-routing PTAS as a subroutine. At each current node u,

the algorithm runs the PTAS starting from u and then chooses

the first link of the resulting path to be its next hop.

We note that unlike Ogier’s algorithm which imposes a

DAG on the underlying graph to avoid loops, this algorithm

works on the undirected underlying graph. There is a danger,

therefore, of cycling in loops. Since the graph is dynamic,

though, the loops are likely to be transient, not persistent. In

fact, we have not encountered any persistent loops during our

performance evaluation. Enforcing loop freedom may require

maintaining some additional state during route computation,

and that is a topic of future research.

V. PERFORMANCE EVALUATION

We use numerical simulations4 to explore several tradeoffs

between the source routing and dynamic routing algorithms

proposed in Sections III and IV in representative dynamic

Markovian networks.

Random Geometric Graphs: First, we evaluate the different

routing schemes in an idealized network with uniform (p, q)
parameters for each link. We vary the structure and density

of underlying graph, G∪, which is a random geometric graph

(RGG), modeling mesh network topologies where links can

be intermittent due to outages; and the dynamics parameters

(p, q) between 0 and 1, with special emphasis on the left end

of the spectrum. From Fig. 3 (left), we observe that even

for networks with low p and q (stable but dynamic networks),

source routing performs poorly compared to dynamic routing.

Also, we can observe a decisive advantage towards using m
hop knowledge as seen by the better performance of Ogier-m
algorithms compared to Ogier. However, there is no advantage

in using m > 2 in routing decisions. The best performing

algorithm is the dynamic PTAS DynHeuristic which in this

case ends up performing a lookahead of up to 3 hops but

uses a different policy than Ogier-3. Its performance is not

much worse than (multi-copy) Epidemic Flooding. Fig. 3

(right) plots the performance of the schemes as p = q varies.

As p=q → 0, the network becomes more stable. We find that

for very low p, source routing schemes perform much worse

than dynamic. Note that the SSDijkstra curve has a shape

∝ 1/p. This is not surprising since each link is in steady-state

4Since we are only studying the flow of a single message through the dy-
namic network, we did not use a discrete event simulation for our simulations.

270

Fig. 3. Algorithm performance for low p values (left and middle) and for p = q (right) (100 nodes are dropped randomly in a square; transmission radius r)

with expected delay 1 + 1/p. MapRTAppx performs slightly

better but is outperformed by the dynamic schemes. Among

these, Ogier does the worst, probably because the underlying

graph is sparse (close to the critical radius of connectivity),

which limits the chances for course correction. The schemes

using two or more hops of link state perform better, with

DynHeuristic best among them.

MIT Reality Mining Data: The MIT Reality Mining data set

is an intermittent connectivity trace for 106 mobile nodes. Fig.

4 illustrates the routing performance between nodes belonging

to 3 different classes of node degrees in the underlying graph

(low (L), medium (M), and high (H)). We plot two different

metrics: a) delivery failure rate and b) expected latency of

delivered packets. We observe that all flows going towards

high-degree nodes get delivered while a large fraction of

flows going towards low-degree nodes do not arrive within the

simulation time. In the extreme L-L case, about 20% flows do

not make it due to the lack of a non-contemporaneous path.

However, Fig. 4(b) indicates that the latency of the delivered

messages is not too bad even in the L-L case. This means

for some cases, source routing is not a bad choice if one is

prepared to tolerate a certain fraction of lost messages. If not,

then dynamic routing is preferable.

Fig. 4. Relative performance in MIT Reality Mining Data Set. DynHeuristic
has high time complexity, hence its performance is not plotted here.

We observe asymmetries in the results. For example, a node

with low degree (in G∪) has lower failure rate as a source than

as a destination. This is because as a source, a low-degree node

can avail any of the few opportunities to push the message

out, which then gets routed easily through better connected

neighborhoods. In contrast, as a destination, a low-degree node

with the same number of contact opportunities is less likely

to receive the message before the opportunity passes. We also

observe that Ogier-2 outperforms Ogier in all situations. The

fractional gains are the highest in H-H, M-H, H-M and L-H

scenarios, where the overall latency is low to begin with.

VI. CONCLUSION AND FUTURE WORK

This paper constitutes the first step towards a theory of

routing in time-correlated Markovian networks. We found

that model-assisted dynamic routing generally outperforms

source routing significantly in highly intermittently connected

networks. We also found that lookahead beyond 1-hop is

useful, particularly in sparse networks where mistakes can be

hard to correct. Much more lookahead, however, did not buy

much further improvement. The proposed dynamic heuristic

outperformed source routing as well as Ogier’s dynamic rout-

ing algorithm. Reducing the heuristic’s time complexity and

seeking performance guarantees are topics of future research.

REFERENCES

[1] U. G. Acer, S. Kalyanaraman, and A. A. Abouzeid. DTN routing
using explicit and probabilistic routing table states. Wireless Networks,
17:1305–1321, 2011.

[2] A. Balasubramanian, B. N. Levine, and A. Venkataramani. DTN routing
as a resource allocation problem. In SIGCOMM, 2007.

[3] A. Bar-Noy and B. Schieber. The Canadian Traveller Problem. In SODA,
1991.

[4] S. Biswas and R. Morris. Exor: opportunistic multi-hop routing for
wireless networks. In SIGCOMM, 2005.

[5] T. Clausen, P. Jacquet, A. Laouiti, P. Muhlethaler, A. Qayyum, and
L. Viennot. Optimized Link State Routing Protocol. In INMIC, 2001.

[6] D. Fried, S. E. Shimony, A. Benbassat, and C. Wenner. Complexity
of Canadian traveler problem variants. Theor. Comput. Sci., 487:1–16,
2013.

[7] R. W. Hall. The fastest path through a network with random time-
dependent travel times. Transport. Science, 20(3):182–188, 1986.

[8] S. Jain, K. Fall, and R. Patra. Routing in a delay tolerant network. In
SIGCOMM, 2004.

[9] D. B. Johnson, D. A. Maltz, and J. Broch. DSR: the dynamic source
routing protocol for multihop wireless ad hoc networks. In Ad Hoc
Networking, pages 139–172. Addison-Wesley, 2001.

[10] E. P. C. Jones, L. Li, and P. A. S. Ward. Practical routing in delay-
tolerant networks. In SIGCOMM Workshop: WDTN, 2005.

[11] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov Chains and Mixing
Times. American Mathematical Society, 2008.

[12] C. Lott and D. Teneketzis. Stochastic routing in ad-hoc networks. IEEE
Trans. Automat. Contr., 51(1), 2006.

[13] P. Nain, D. Towsley, M. P. Johnson, P. Basu, A. Bar-Noy, and F. Yu.
Computing Traversal Times on Dynamic Markovian Paths. In MobiCom
Workshop: CHANTS, 2013.

[14] E. Nikolova and D. R. Karger. Route planning under uncertainty: the
canadian traveller problem. In AAAI, 2008.

[15] R. G. Ogier and V. Rutenburg. Minimum-expected-delay alternate
routing. In INFOCOM, 1992.

[16] C. E. Perkins and E. M. Royer. Ad-hoc on-demand distance vector
routing. In IEEE WMCSA, 1997.

[17] A. Vahdat, D. Becker, et al. Epidemic routing for partially connected
ad hoc networks. Technical report, CS-200006, Duke University, 2000.

271

