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Abstract

We introduce a new problem inspired by energy pricing schemes in which a client
is billed for peak usage. At each timeslot the system meets anenergy demand
through a combination of a new request, an unreliable amountof free sourceen-
ergy (e.g. solar or wind power), and previously received energy. The added piece
of infrastructure is thebattery, which can store surplus energy for future use,
and is initially assumed to be perfectly efficient orlossless. In a feasible solution,
each demand must be supplied on time, through a combination of newly requested
energy, energy withdrawn from the battery, and free source.The goal is to mini-
mize the maximum request. In the online version of this problem, the algorithm
must determine each request without knowledge of future demands or free source
availability, with the goal of maximizing the amount by which the peak is reduced.
We give efficient optimal algorithms for the offline problem,with and without a
bounded battery. We also show how to find the optimal offline battery size, given
the requirement that the final battery level equals the initial battery level. Finally,
we give efficientHn-competitive algorithms assuming the peakeffectivedemand
is revealed in advance, and provide matching lower bounds.

Later, we consider the setting oflossybatteries, which lose to conversion in-
efficiency a constant fraction of any amount charged (e.g. 33%). We efficiently
adapt our algorithms to this setting, maintaining optimality for offline and (we
conjecture) maintaining competitiveness for online. We givefactor-revealingLPs,
which provide some quasi-empirical evidence for competitiveness. Finally, we
evaluate these and other, heuristic algorithms on real and synthetic data.

Keywords: online algorithms, competitive analysis, energy, peak shaving,
simulation

1A preliminary version of this work was presented in [1, 2].
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1. Introduction

There is increasing interest in saving fuel costs by use of renewable energy
sources such as wind and solar power. Although such sources are highly desir-
able, and the power they provide is in a sense free, the typical disadvantage is
unreliability: availability depends e.g. on weather conditions (it is not “dispatch-
able” on demand). Many companies seek to build efficient systems to gather such
energy when available and store it, perhaps in modified form,for future use [3].

On the other hand, power companies charge some high-consumption clients
not just for the total amount of power consumed, but also for how quickly they
consume it. Within the billing period (typically a month), the client is charged for
the amount of energy used (usage charge, in kWh) and for the maximum amount
requested over time (peak charge, in kW).2 If demands are given as a sequence
(d1, d2, . . . , dn), then the total bill is of the formc1

∑

i di + c2 maxi{di} (for some
constantsc1, c2 > 0), i.e., a weighted sum of the total usage and the maximum
usage. (In practice, the discrete timeslots may be 30-minute averages [4].) This
means that a client who powers a 100kW piece of machinery for one hour and
then uses no more energy for the rest of the month would be charged more than
a client who uses a total of 100kWh spread evenly over the course of the month.
Since the per-unit cost for peak charges may be on the order of100 times the
per-unit cost for total usage [5],3 this difference can be significant. Indeed, this is
borne out in our experiments.

This suggests a potential financial incentive to storingpurchasedenergy for
future use. Indeed, at least one start-up company has marketed such a battery-
based system intended to reduce peak energy charges. In sucha system, a battery
is placed between the power company and a high-consumption client site, (such as
a large office building or factory) in order to smooth power requests and shave the
peak. The client site will charge to the battery when demand is low and discharge
when demand is high. Spikes in the demand curve can thus be rendered consistent
with a relatively flat level of supplied power. The result is alower cost for the
client and a more manageable request curve for the provider.(The usage charge
in the billing formula above is not optimized for, since in our model all demands
must be satisfied.)

It is interesting to note that a battery system may actuallyraiseenergy usage,

2In fact, some billing models are more complex.
3The Orlando Utilities Commission website [5], for example,quotes rates of 6.388 cents per

kWh (“energy charge”) and $6.50 per kW (“demand charge”).
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since there may be energy loss due to inefficiency in AC/DC conversion. This
loss may be as much as 33% of the amount charged. Serving peak requests during
periods of high demand is a difficult and expensive task for the power company,
however, and the event of a black-out inflicts high societal costs. While a battery
system may involve higher total energy requests, it may benefit the system as a
whole by easing the strain of peak demands. Combined with alternative energy
sources such as solar panels, the system could even lower thenet commercial
power usage. Alternative energy sources are typically low-cost but unreliable,
since they depend on external events such as the weather. With a battery, this
energy can be stored until needed.

We may generalize this problem of minimaxing the request to any resource
which istenablein the sense that it may be obtained early and stored until needed.
For example, companies frequently face shortages of popular products: “Plentiful
supply [of Xboxes] would be possible only if Microsoft made millions of consoles
in advance and stored them without releasing them, or if it built vast production
lines that only ran for a few weeks–both economically unwisestrategies,” a recent
news story asserted [6]. A producer could smooth the productproduction curve
by increasing production and warehousing supply until future sales. But when
should the producer “charge” and “discharge”? (In some domains, there may also
be an unpredictable level of volunteer help.) A third application is the scheduling
of jobs composed of generic work-units that may be done in advance. Although
the problem is very general, we will use the language of energy and batteries for
concreteness. Many features of this production problem, including uncertainty in
future demand, a bounded warehouse size and a cost for storage in the warehouse
have analogs in the battery problem.

In the online version of our problem, the essential choice faced at each timeslot
is whether (and by how much) to invest in the future or to cash in a prior invest-
ment. The investment in our setting is a request for more energy than is needed at
the time. If the algorithm only asks for the minimum required, then it is vulnerable
to spikes in demand; if it asks for much more energy than it needs, then the greater
request could itself introduce a new, higher peak. The strictness of the problem
lies in the fact that the cost is not cumulative: we wanteveryrequest to be low.
The offline version is solvable in polynomial time, both without and (albeit by a
more complicated solution) without battery loss. Our online algorithms will be
based on the optimal offline algorithms. Central to our analysis for the lossy bat-
tery settings is a mathematical function we call ageneralized average. Our fastest
offline algorithms in these settings compute a series of generalized averages with
the aid of balanced binary search trees. We also show how to find the optimal
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offline battery size, given the requirement that the final battery level equals the
initial battery level.

1.1. Contributions

We introduce a novel scheduling problem and solve several versions optimally
with efficient combinatorial algorithms. We solve the offline problem for two
kinds of batteries: unbounded battery inO(n) time and bounded inO(n2), where
n is the number of timeslots. Separately, we show how to find theoptimal offline
battery size, for the setting in which the final battery levelmust equal the initial
battery level. This is the smallest battery size that achieves the optimal peak.

The online problem we study is very strict. A meta-strategy in many online
problems is to balance expensive periods with cheap ones, sothat the overall cost
stays low [7]. The difficulty in our problem lies in its noncumulative nature: we
optimize for the max, not for the average. We show that several versions of the
online problem have no algorithm with nontrivial competitive ratio (i.e., better
thann or Ω(

√
n)). Given advanced knowledge of the peak demandD, however,

we giveHn-competitive algorithms for batteries bounded and unbounded. Our
fastest algorithm hasO(1) per-slot running-time.Hn is the (optimal) competitive
ratio for both battery settings.

The algorithms mentioned so far assume perfectly efficient batteries, how-
ever, and will fail if run on realistic, lossy batteries. Therefore we adapt these
algorithms to the lossy setting, testing them on both synthetic and actual cus-
tomer usage data. Moreover, we test more aggressive, heuristic algorithms, as
well as algorithms that accept predictions, with error, of future demands. Finally,
we provide factor-revealing linear programs (LPs), which provide quasi-empirical
evidence of the competitiveness of the lossy algorithms.

Examples. Although there is no constant-ratio competitive algorithmfor un-
boundedn, our intended application in fact presumes a fixed time-horizon. If
the billing period is one month, and peak charges are computed as 30-minute
averages, then for this settingHn is approximately 7.84. If we assume that the
battery can fully recharge at night, so that each day can be treated as a separate
time period, then for a 12-hour daytime time-horizonHn is approximately 3.76.

1.2. Related Work

There is a wide literature on commodity production, storage, warehousing, and
supply-chain management (see e.g. [8, 9, 10, 11]). More specifically, there are a
number of inventory problems based on the Economic Lot Sizing model [12], in
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which demand levels for a product vary over a discrete finite time-horizon and are
known in advance. A feasible solution in these problems mustobtain sufficient
supply through production (sometimes construed as ordering) or through other
methods, in order to meet each of the demands on time, while observing certain
constraints. The nature of solution quality varies by formulation.

One such inventory problem is Single-Item Lot-Sizing, in which sufficient
supplies must be ordered to satisfy each demand, while minimizing the total cost
of ordering charges and holding charges. The ordering charge consists of a fixed
charge per order plus a charge linear in order size. The holding charge for inven-
tory is per-unit and per-timeslot. There is a tradeoff between these incentives since
fixed ordering charges encourage large orders while holdingcharges discourage
them. Wagner & Whitin [13] showed in 1958 that this problem can be solved in
polynomial time. Under the assumption ofnon-speculative costs, in which case
orders should always be placed as late as possible, the problem can be solved in
linear time. Such “speculative” behavior, however, is the very motivation of our
problem. There are many lot-sizing variations, including constant-capacity mod-
els that limit the amount ordered per timeslot. (See [11] andreferences therein.)
Our offline problem differs in that our objective is minimizing this constant ca-
pacity (for orders), subject to a bound oninventorysize, and we have no inventory
charge.

Another related inventory problem is Capacity and Subcontracting with In-
ventory (CSI) [14], which incorporates trade-offs betweenproduction costs, sub-
contracting costs, holding costs, and the cost for maximum per-unit-timeslot pro-
duction capacity. The goal in that problem is to choose a production capacity
and a feasible production/ subcontracting schedule that together minimize total
cost, whereas in our problem choosing a production capacity, subject to storage
constraints, is the essential task.

In the minimax work-scheduling problem [15], the goal is to minimize the
maximum amount of work done in any timeslot over a finite time-horizon. Our
online problem is related to a previously studied special case in which jobs with
deadlines are assigned online. In that problem, all work must be done by deadline
but cannot be begun until assigned. Subject to these restrictions, the goal is to
minimize the maximum work done in any timeslot. While the optimization goal
is the same, our online problem differs in two respects. First, each job for us is
due immediately when assigned. Second, weare allowed to do work (request
and store energy) in advance. One online algorithm for the jobs-by-deadlines
problem is theα-policy [15]: at each timeslot, the amount of work done isα times
the maximum per-unit-timeslot amount of work that OPT wouldhave done, when
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running on the partial input received so far. Our online algorithms adopt a related
strategy.

2. Lossless Model and Preliminaries

Definition 2.1. At each timesloti for i = 1, ..., n, di is the demand,ri is the
request,bi is the battery charge levelat the startof the timeslot, andfi is the
amount of free source available. (bn+1 is the battery level following timeslotn.)
By d̂i we indicate theeffective demanddi−fi. We sometimes refer to the sequence
over time of one of these value types as a curve, e.g., thedemand curve. D is the
maximum effective demandmaxi{d̂i}, andR is the maximum requestmaxi{ri}.

The problem instance comprises the demands, the free sourcecurve, battery
sizeB, initial chargeb1, and required final chargebn+1 (in the offline case). The
problem solution consists of the request curve.

Definition 2.2. Let overflowbe the situation in whichri + fi − di > B − bi, i.e.,
there is not enough room in the battery for the amount we want to charge. Let
underflowbe the situation in whichdi − ri − fi > bi, i.e., there is not enough
energy in the battery for the amount we want to discharge. Call an algorithm
feasibleif underflow never occurs.

The goal of the problem is to minimizeR (for competitiveness measures this
is construed as maximizingD − R) while maintaining feasibility. In the absence
of overflow/underflow, the battery level atthe start oftimeslot i is simply bi =
bi−1 + ri−1 + fi−1 − di−1. It is forbidden forbi to ever fall below 0. That is,
the requestri, the free sourcefi, and the battery levelbi must sum to at least the
demanddi at each timesloti. Notice that effective demand can be negative, which
means that the battery may be charged (capacity allowing), even if the request is
0. We assumeD, however, is strictly positive. Otherwise, the problem instance is
essentially trivial. We use the following to simplify the problem statement:

Observation 2.1. If effective demands may be negative, then free source energy
need not be explicitly considered.

As such, we set aside the notion of free source, and for the remainder of the
paper (simplifying notation) allow demanddi to be negative.

In the energy application, battery capacity is measured in kWh, while instan-
taneous request is measured in kW. By discretizing we assumewlog that battery
level, demand, and request values are expressed in common units. Peak charges
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are based linearly on the max request, which is what we optimize for. The battery
can have amaximum capacityB or be unbounded. The problem may be online,
offline, or in between; we consider the setting in which the peak demandD is
revealed in advance, perhaps predicted from historical information.

Threshold algorithms. For a particular snapshot(di, ri, bi), demanddi must be
supplied through a combination of the requestri and a change in batterybi+1− bi.
This means that there are only three possible modes for each timeslot: request
exactly the effective demand, request more than this andchargethe difference, or
request less anddischargethe difference. We refer to our algorithms asthresh-
old algorithms. Let T1, T2, ..., Tn be a sequence of values. Then the following
algorithm uses these as request thresholds:

for each timesloti
if di < Ti

chargemin(B − bi, Ti − di)
else

dischargedi − Ti

Intuitively, the algorithm amounts to this rule:at each timesloti, request an
amount as near toTi as the battery constraints will allow. Our offline algorithms
areconstant thresholdalgorithms, with a fixedT (though in practice an offline
algorithm could naturally lower its requests to avoid overflow); our online algo-
rithms computeTi dynamically for each timesloti.

A constant-threshold algorithm is specifiable by a single number. In the online
setting, predicting theexactoptimal threshold from historical data suffices to solve
the online problem optimally. A small overestimate of the threshold will merely
raise the peak cost correspondingly higher. Unfortunately, however, examples can
be constructed in which even a smallunderestimateeventually depletes the battery
before peak demand and thus produce no cost-savings at all.

The offline problem can be solved approximately, within additive error ǫ,
through binary search for the minimum feasible constant threshold valueT . Sim-
ply search the range[0, D] for the largest valueT for which the threshold algo-
rithm has no underflow, in timeO(n log D

ǫ
). If the optimal peak reduction isR−T ,

then the algorithm’s peak reduction will be at leastR−T −ǫ. It is straightforward
to give a linear programming formulation of theoffline problem; it can also be
solved by generalized parametric max-flow [16]. Our interest here, however, is in
efficient combinatorial optimal algorithms. Indeed, our combinatorial offline al-
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gorithms are significantly faster than these general techniques and lead naturally
to our competitive online algorithms. Online algorithms based on such general
techniques would be intractable for fine-grain timeslots.

3. Lossless Offline Problem

We now find optimal algorithms for both lossless battery settings. For un-
bounded, we assume the battery starts empty; for bounded, weassume the battery
starts with amountB. For both, the final battery level is unspecified. We show
below that these assumptions are made wlog. The two offline threshold functions,
shown in Table 1, use the following definition.

Definition 3.1. Let ρ(j) = 1
j

∑j
t=1 dt be the mean demand of the prefix region

[1, j], and let ρ̂(k) = max1≤j≤kρ(j) be the maximum mean among the prefix

regions up tok. Let µ(i, j) =
−B+

Pj

t=i
dt

j−i+1
be thedensityof the region[i, j] and

µ̂(k) = max1≤i≤j≤kµ(i, j) be the maximum density among all subregions of[1, k].

Alg. battery thresholdTi running time

1.a unbounded ρ̂(n) O(n)
1.b bounded µ̂(n) O(n2)

Table 1: Threshold functions used for offline algorithm settings.

Bounded capacity changes the character of the offline problem. It suffices,
however, to find the peak request made by the optimal algorithm, Ropt. Clearly
Ropt ≥ D−B, since the ideal case is that a width-one peak is reduced by sizeB.
Of course, the peak region might be wider.

Theorem 3.1. Algorithm1.a (thresholdTi = ρ̂(n), for unbounded battery) and
Algorithm1.b (thresholdTi = µ̂(n), for bounded battery) are optimal, feasible,
and run in timesO(n) andO(n2), respectively.

Proof. First, let the battery be unbounded. For any region[1, j], the best we can
hope for is that requests for all demandsd1, ..., dj can be spread evenly over the
first j timeslots. Therefore the optimal threshold cannot be lowerthan the maxi-
mumρ(j), which is Algorithm1.a’s threshold. For feasibility, it suffices to show
that after each timej, the battery level is nonnegative. But by timej, the total
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input to the system will bej · ρ̂(n) ≥ j · ρ(j) =
∑j

t=1 dj, which is the total output
to the system up to that point. For complexity, just note thatρ(j+1) =

j·ρ(j)+dj+1

j+1
,

so the sequence ofρ values, and their max, can be computed in linear time.
Now let the battery be bounded. Over the course of any region[i, j], the best

that can be hoped for is that the peak request will be reduced to B/(j− i+1) less
than the averagedi in the region, i.e.,µ(i, j), so no threshold lower than Algorithm
1.b’s is possible.

For feasibility, it suffices to show that the battery level will be nonnegative
after each timej. Supposej is the first time underflow occurs. Leti − 1 be
the last timeslot prior toj with a full battery. Then there is no underflowor
overflow in [i, j), and so for eacht ∈ [i, j] the discharge att is bt − bt+1 =
dt − T (possibly negative, meaning a charge) and so the total net discharge over
[i, j] is

∑j
t=i dt − (j − i + 1)T . Total net discharge greater thanB impliesT <

−B+
Pj

t=i
dt

j−i+1
, which contradicts the definition ofT . The densest region can be

found inO(n2), with n separate linear-time passes, each of which finds the densest
region beginning in some positioni, sinceµ(i, j +1) can be computed in constant
time fromµ(i, j).

3.1. Battery Level Boundary Conditions

We assumed above that the battery starts empty for the unbounded offline algo-
rithm and starts full for the bounded offline algorithm, withthe final battery level
left indeterminate for both settings. A more general offlineproblem may require
thatb1 = β1 andbn+1 = β2, i.e., the battery begins and ends at some charge levels
specified by parametersβ1 andβ2. We argue here that these requirements are not
significant algorithmically, since by pre- and postprocessing, we can reduce to the
default cases for both the unbounded and bounded versions.

First, consider the unbounded setting, in which the initialbattery level is 0.
In order to enforce thatb1 = β1 andbn+1 = β2, run the usual optimal algorithm
on the sequence(d1 − β1, d2, ..., dn−1, dn + β2). (Recall that negative demands
are allowed.) Thenbn+1 will be at leastβ2 larger thandn. To correct for any
surplus, manually delete a total ofbn+1 − β2 from the final requests. For the
bounded setting, the default case isb1 = B andbn+1 indeterminate. To support
b1 = β1 6= B andbn+1 = β2, modify the demand sequence as above, except with
d1 + (B − β1) as the first demand and then do similar postprocessing as in the
unbounded case to deal with any final surplus.
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3.2. Optimal Battery Size

A large component of the fixed initial cost of the system will depend on battery
capacity. A related problem therefore is finding the optimalbattery sizeB for a
given demand curvedi, given that the battery starts and ends at the same levelβ
(which can be seen as an amountborrowed and repaid). The optimal peak request
possible will be1

n

∑n
i=1 di = ρ(n), and the goal is to find the smallestB andβ that

achieve peakρ(n). (A completely flat request curve is possible given a sufficiently
large battery.) This can be done inO(n).

Since we will haveb1 = bn+1, ri = ρ for all i, and
∑

di =
∑

ri, there
must be no overflow. Letd′

i = di − ρ, i.e., the amount by whichdi is above
average (positive means discharge, negative means charge). Then the minimum
possibleβ = b1 is the maximum prefix sum of thed′ curve (which will be at
least 0). It could happen that the battery level will at some point rise aboveb1,
however. (Consider the exampled = (0, 0, 1, 0, 0, 0), for which ρ = 1/6, d′ =
(−1/6,−1/6, 5/6,−1/6,−1/6,−1/6) andβ = 1/2.) The needed capacityB can
be computed asβ plus the maximum prefix sum ofthe negation ofthed′ curve
(which will also be at least 0). (In the example, we haveB = β + 2/6 = 5/6.)

AlthoughB is computed usingβ, we emphasize that the computedβ is the
minimum possibleregardless ofB, and the computedB is the minimum possible
regardless ofβ.

4. Lossless Online Problem

We consider two natural choices of objective function for the online problem.
One option is to compare the peak requests, so that ifALG is the peak request of
the online algorithm ALG andOPT is that of the optimal offline algorithm OPT,
then ac-competitive algorithm forc ≥ 1 must satisfyALG

OPT
≤ c for every demand

sequence. Although this may be the most natural candidate, we argue that for
many settings it is uninteresting. If the peak demand is a factor k larger than the
battery capacity, for example, then the trivial online algorithm thatdoes not use
the battery would bek/(k− 1)-competitive. If we drop the assumption of a small
battery, then no reasonable competitive factor is possiblein general,even ifD is
revealed in advance.

Proposition 4.1. With peak demandD revealed in advanceand finite time hori-
zonn, no online algorithmfor the problem of minimizing peak requestcan have
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competitive ratio 1) better thann if the battery begins with some strictly positive
charge, or 2) better thanΩ(

√
n) if the battery begins empty.4

Proof. For part 1, suppose that the battery begins with initial chargeD. Consider
the demand curve(D, 0, ..., 0, ?), where the last demand is eitherD or 0. ALG
mustdischargeD at time 1, sinceOPT = 0 whendn = 0. Thus ALG’s battery is
empty at time 2. If ALG requests nothing between times 2 andn−1, anddn = D,
then we haveOPT = D/n andALG = D; if ALG requests someα > 0 during
any of those timeslots, anddn = 0, then we haveOPT = 0 andALG = α. This
yields a lower bound ofn.

For part 2, suppose the battery begins empty, which is a disadvantage for both
ALG and OPT. Consider the demand curve(0, 0, ..., 0, D), in which caseOPT =
D/n. If an algorithm isc-competitive for somec ≥ 1, then in each of the first
n − 1 timeslots of this demand curve ALG can charge at most amountcD/n.
Now suppose that the only nonzero demand, of valueD, arrives possibly earlier,
at some timeslotk ∈ [1, n], following k − 1 demands of zero, during which
ALG can charge at most(k − 1)cD/n. In this case, we haveOPT = D/k and
ALG ≥ D − (k − 1)cD/n, which yields the competitive ratio:

c ≥ D − (k − 1)cD/n

D/k
=

1− (k − 1)c/n

1/k
= k − k2c/n + kc/n

Solving forc, and then choosingk =
√

n, we have:

c ≥ k

1 + k2/n− k/n
=

√
n

1 + 1− 1/
√

n
= Ω(

√
n)

thus establishing the lower bound.

Recalling the example values ofn given in the Introduction, ratios of either
n or

√
n would be very weak. Instead, we compare thepeak shaving amount

(or savings), i.e.,D − R. For a given input, letOPT be the peak shaving of the
optimal algorithm, and letALGbe the peak shaving of the online algorithm. Then
an online algorithm isc-competitive forc ≥ 1 if c ≥ OPT

ALG
for every problem

instance. For this setting, we obtain the online algorithms(see Def. 4.1 and the
proof of Corollary 4.7) shown in Table 2.

4If the peak is not known, a lower bound ofn can be obtained also for the latter case.
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Alg. battery thresholdTi running time

2.a both D − D−T opt

i

Hn
O(n2)

2.b both D − D−µ(si,i)
Hn−si+1

O(n)

Table 2: Threshold functions used for online algorithms.

Definition 4.1. LetT opt
i be the optimal threshold used by the appropriate optimal

algorithm when run on the firsti timeslots. At timei during the online computa-
tion, letsi be the index of the most recent time prior toi with bsi

= B (or 1 in the
unbounded setting).

4.1. Lower Bounds forD − R

Since the competitiveness of the online algorithms holds for arbitrary initial
battery level, in obtaining lower bounds on competitiveness, we assume particular
initial battery levels.

Proposition 4.2.With peak demandD unknown and finite time horizonn, there is
no online algorithm 1) with any constant competitive ratio for unbounded battery
(even withn = 2) or 2) with competitive ratio better thann for bounded battery.

Proof. For part 1, assumeb1 = 0, and supposed1 = 0. Then if ALG requestsr1 =
0 and we haved2 = D, thenOPT = D/2 andALG = 0; if ALG requestsr1 = a
(for somea > 0) and we haved2 = a, thenOPT = a/2 andALG = 0. For
part 2, letb1 = B, and assume ALG isc-competitive. Consider the demand curve
(B, 0, 0, . . . , 0). Then OPT clearly dischargesB at time 1 (decreasing the peak by
B). For ALG to bec-competitive, it must discharge at leastB

c
in the first slot. Now

consider curve(B, 2B, 0, 0, . . . , 0). At time 2, OPT dischargesB, decreasing the
peak byB, so at time 2, ALG must discharge at leastB

c
. (At time 1, ALG already

had to dischargeB
c
.) Similarly, at timei for (B, 2B, 3B, ..., iB, ..., nB), ALG

must dischargeB
c
. Total discharging by ALG is then at least:

∑n
i=1

B
c

= nB
c

.
Since we must havenB

c
≤ B, it follows thatc ≥ n.

The trivial algorithm that simply discharges amountB/n at each of then
timeslots andnever chargesis n-competitive (sinceOPT ≤ B) and so matches
the lower bound for the bounded case.

Proposition 4.3. With peak demandD known in advance and finite time horizon
n, no online algorithm can have 1) competitive ratio better thanHn if the battery
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begins nonempty or 2) competitive ratio better thanHn−1/2 if the battery begins
empty, regardless of whether the battery is bounded or not.

Proof. First assume the battery has initial chargeb. (The capacity is either at least
b or unbounded.) Suppose ALG isc-competitive. Consider the curve(D, 0, 0, . . . , 0),
with D ≥ b. Then OPT clearly dischargesb at time 1 (decreasing the peak byb).
For ALG to bec-competitive, it must discharge at leastb

c
. Now consider curve

(D, D, 0, 0, . . . , 0). At times 1 and 2, OPT dischargesb
2
, decreasing the peak by

b
2
. At time 2, ALG will have to discharge at leastb/2

c
= b

2c
. Similarly, at timei

on (D, D, D, ..., D), ALG must dischargeb
ic

. Total discharging by ALG is then at
least:

∑n
i=1

b
ic

= Hn
b
c
. Since we discharge at each timeslot and never charge, we

must haveb
c
Hn ≤ b, and so it follows thatc ≥ Hn.

Now let the battery start empty. Assume the battery capacityis at leastD or
is unbounded. Repeat the argument as above, except now with azero demand
inserted at the start of the demand curves, which gives both ALG and OPT an
opportunity to charge. Then for each timei ∈ [2, n], ALG must discharge at least
D
ic

since OPT may discharge (and so save)D
i

(in which case it would have initially
chargedD(1−1/i)). ALG is then required to discharge(Hn−1)D

c
during the last

n− 1 timeslots. Obviously it could not have charged more thanD during the first
timeslot. In fact, it must charge less than this. On the sequence(0, D, 0, 0, ..., 0),
OPT chargesD/2 at time 1 and discharges it at time 2, savingD/2. ALG must
dischargeD

2c
at time 2 in order to bec-competitive on this sequence, and so reduce

the peakD by D
2c

. Therefore at time 1,ALG cannot charge more thanD − D
2c

.
Therefore we must haveD − D

2c
≥ (Hn − 1)D/c, which implies thatc ≥ Hn −

1/2.

4.2. Bounded Battery

Our first online algorithm bases its threshold at timei on a computation of
the optimal offline thresholdT opt

i for the demandsd1, ..., di. The second bases its
threshold at timei on µ(si, i) (see Defs. 3.1 and 4.1). Assuming the algorithms
are feasible (i.e., no battery underflow occurs), it is not difficult to show that they
are competitive.

Theorem 4.4. Algorithms2.a and 2.b are Hn-competitive, if they are feasible,
and haveper-timeslotrunning times ofO(n) andO(1), respectively.

Proof. First observe that̂µ(i) ≥ µ(si, i) implies D−µ̂(i)
Hn

≤ D−µ(si,i)
Hn−si+1

impliesT a
i ≥

T b
i for all i. Therefore it suffices to prove competitiveness for Algorithm2.a. Since
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T opt
i is the lowest possible threshold up to timei, D− T opt

i is the highest possible
peak shaving as of timei. Since the algorithm always saves a1/Hn fraction of
this, it isHn-competitive by construction.

Sinceρ(1, i + 1) can be found in constant time fromρ(1, i), Algorithm 2.b
runs in constant-time per-slot. Similarly, Algorithm2.a is, recalling the proof of
Theorem 3.1, linear per-slot.

We now show that indeed both algorithms are feasible, using the following
lemma, which allows us to limit our attention to a certain family of demand se-
quences.

Lemma 4.5. If there is a demand sequence(d1, d2, ..., dn) in which underflow
occurs for Algorithm2.a or 2.b, then there is also a (possibly shorter) demand
sequence (for the same algorithm) of lengthn′ ≤ n in which underflow continues
to the end (i.e.,bn′+1 < 0) and no overflow ever occurs.

Proof. The battery is initialized to full,b1 = B. Over the course of running one
of the algorithms on a particular problem instance, the battery level will fall and
rise, and may return to full charge multiple times. Suppose underflow were to
occur at some timet, i.e. bt < 0, and lets be the most recent time beforet when
the battery was full. We now construct a demand sequence withthe two desired
properties, for both algorithms.

First, supposes > 1. For Algorithm2.a, consider the demand sequence (of
lengthn′ = n) obtained by copying the demands of region[s, t] leftward to region
[1, t′] = [1, t−s+1]. Since the optimal solution for region[s, t] can be only lower
than for region[1, t], this change can only lower the thresholds used, which there-
fore preserves the underflow. For Algorithm2.b, consider the demand sequence
(of lengthn′ = n− s + 1) obtained by deleting the region[1, s− 1]. Sinceµ(s, t)
is unchanged andHn′−s′+1 = Hn−s+1 (where nows′ = 1), the thresholds do not
change and underflow again is preserved.

Second, since any underflow that occurs in region[1, t′] can be extended to the
end of sequence by setting each demand after timet′ to D, we can assume wlog
thatt′ = n′ + 1.

First, supposes > 1 and consider the demand sequence[s, n] of lengthn′ =
n − s + 1. For Algorithm 2.a, the optimal solution for region[s, t] can be only
lower than for region[1, t]; for Algorithm 2.b, it is unchanged, sinceµ(s, t) =
µ(1, t − s + 1) andHn−s+1 = Hn′−s′+1, wheres′ = 1. Therefore deleting the
region [1, s − 1] can only lower the thresholds used, which therefore preserves
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the underflow. Second, since any underflow that occurs in region [1, t′] can be
extended to the end of sequence by setting each demand after time t′ to D, we can
assume wlog thatt′ = n′ + 1.

Theorem 4.6.Algorithms2.aand2.bare feasible.

Proof. For a proof by contradiction, we can restrict ourselves by Lemma 4.5 to
regions that begin with a full battery, underflow at the end, and have no overflow
in the middle. For such a region, the change in battery-levelis well behaved
(bi − bi+1 = di − Ti), which allows us to sum the net discharge and prove it is
bounded byB. We now show that it is impossible for the battery to fall below 0 at
timen, by upperbounding thenet dischargeover this region. Let∆bi = bi−bi+1 =
di − Ti be the amount of energy the battery discharges at stepi. (∆bi will be
negative when the battery charges.) We will show that

∑

1≤i≤n ∆bi ≤ B. Let∆ba
i

and∆bb
i refer to the change in battery levels for the corresponding algorithms.

Because as we observed aboveT a
i ≥ T b

i , we have:

∆ba
i = di − T a

i ≤ ∆bb
i = di − T b

i

Therefore it suffices to prove the feasibility result for Algorithm 2.b, and so we
drop the superscripts. Expanding the definition of that algorithm’s threshold, we
have:

∆bi = di−Ti = di−
(

D− 1

Hn

(D−µ(1, i))

)

= di−
(

D− 1

Hn

(

D − 1

i

(

i
∑

k=1

dk − B
))

)

(4.1)
By summing Eq. 1 for eachi, we obtain:

n
∑

i=1

∆bi =

n
∑

i=1

(

di −
(

D − D − (
∑i

k=1 dk − B)/i

Hn

)

)

=
n

∑

i=1

(

di −
(

D − D − (
∑i

k=1 dk)/i

Hn

)

)

+
n

∑

i=1

B/i

Hn

=

n
∑

i=1

(

di −
(

D − D − (
∑i

k=1 dk)/i

Hn

)

)

+ B

Therefore it suffices to show that:
n

∑

i=1

(

di −
(

D − D −
∑i

k=1 dk/i

Hn

)

)

≤ 0 (4.2)

15



which is equivalent to:

n
∑

i=1

di − nD +
1

Hn

(

nD −
n

∑

i=1

i
∑

k=1

dk/i
)

≤ 0

⇔
n

∑

i=1

di + nD(
1

Hn
− 1)− 1

Hn

(

n
∑

i=1

i
∑

k=1

dk/i
)

≤ 0

⇔
n

∑

i=1

Hndi −
(

n
∑

i=1

i
∑

k=1

dk

i

)

≤ nD(Hn − 1) (4.3)

With the following derivation:

n
∑

i=1

i
∑

k=1

dk

i
=

n
∑

i=1

n
∑

k=1

dk

i
−

n
∑

i=1

n
∑

k=i+1

dk

i
=

n
∑

k=1

n
∑

i=1

dk

i
−

n
∑

k=1

k−1
∑

i=1

dk

i

=

n
∑

k=1

Hndk −
n

∑

k=1

Hk−1dk

we can rewrite Eq. 4.3 (replacing the parenthesized expression) as:

n
∑

i=1

Hi−1di ≤ n(Hn − 1)D (4.4)

Sincedi ≤ D andD > 0, it suffices to show that:

n
∑

i=1

Hi−1 ≤ n(Hn − 1)

In fact, this holds with equality (see [17], Eq. 2.36).

4.3. Unbounded Battery and Boundary Conditions

Both online algorithms, modified to call appropriate subroutines, also work
for the unbounded battery setting. The algorithms are feasible in this setting since
µ̂(i) ≤ T opt

i still holds, whereT opt
i is now the optimal threshold for the unbounded

battery setting. (Recall that offline Algorithm1.acan “greedily” run in linear total
time.) The algorithm isHn-competitive by construction, as before.

Corollary 4.7. Algorithms2.aand2.bare feasible in the unbounded battery set-
ting.
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Proof. The proof is similar to that of Theorem 4.6, except thatb1 (which may be
0) is plugged in for all occurrences ofB (resulting in a modifiedµ), and overflow
is no longer a concern.

We also note that the correctness and competitiveness of both algorithms (with
minor preprocessing) holds for the setting of arbitrary initial battery levels. In the
case of Algorithm2.a, each computation ofT opt

i is computed for the chosenb1, as
described in Section 3.1, and the online algorithm again provides a fraction1/Hn

of these savings. Although in the bounded setting “increasing” b1 for the T opt
i

computation by modifyingd1 may raise the peak demandin the offline algorithm’s
input, theD value for the online algorithm is not changed. Indeed, examining the
proof of Theorem 4.6, we note that the upperbound on thedi is only used fori > 1
(see Eq. 4.4).

5. Lossy Model

We now extend the battery charge problem to the more realistic setting oflossy
batteries, which lose to conversion inefficiency a constantfraction of any amount
charged (e.g. 33%). The loss model works as follows. For eachunit of energy
charged, onlyr = 1−L units will be available for discharge, due to the combined
inefficiencies of charging and discharging. This loss couldbe broken into separate
componentsL1, L2 for charge and discharge, but since the loss does not depend
on time, doing so would have essentially no effect. For simplicity, we merge these
losses into a single loss that occurs instantly at the time ofcharging.

Threshold algorithms. In the lossy setting,threshold algorithmsare the same as
those given in Section 2 except that they modify the threshold value in order to
prevent underflow, if necessary:

for each timesloti
if di < Ti

chargemin(B − bi, Ti − di)
else

dischargemin(di − Ti, bi)
if di − Ti < bi

Ti ← Ti + (di − Ti − bi)

The algorithm schema again amounts to this rule:at each timesloti, request
an amount as near toTi as the battery constraints will allow. The secondif state-
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Figure 1: Generalized Average, withU shaded darker andL shaded lighter

ment of the algorithm schemas is executed only if underflow occurs (recall Def.
2.2). The competitiveness guarantee of Algorithm2.b for the lossless setting was
achieved in Section 4 by showing that such underflow would never occur. The
factor-revealing LP below provides evidence that such underflow also never oc-
curs in the lossy setting. Our heuristic algorithms choose lower, more aggressive
thresholds, with the result that such underflow does (or rather would) occur. Since
meeting demand is a strict requirement, in the event of underflow, the request rises
accordingly to keep the battery level nonnegative, which iswhat theif statement
does.

6. GA and Lossy Battery Algorithms

The algorithms for lossy batteries are structurally similar to those for lossless,
except that computations ofaverageare replaced with what we call thegeneral-
ized average(GA). In both cases, the optimal solution value for an interval will be
the best possible maximum request over that interval which can be found by com-
puting the (generalized) average of all subintervals. The generalized average of
an interval corresponds to a constant request made over the course of the interval
(see Fig. 1); the area below the demand curve and above the request corresponds
to the amount charged; the area above the demand curve and below the average
corresponds to the amount discharged. The algorithms used for the lossy bounded
battery setting are shown in Table 3. Since these algorithmsare the same as those
for the lossless setting except with average replaced with generalized average, we
maintain the same labels.
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Alg. battery online thresholdTi running time

1.b bounded no µ̂(1, n) O(n2 log n)

2.a bounded yes D − D−µ̂(1,i)
Hn

O(n2 log n)

2.b bounded yes D − D−µ(si,i)
H(n−si+1)

O(n log n)

Table 3: Threshold functions used for offline and online settings (see Def. 6.2).

Definition 6.1. Givenn real values(y1, y2, . . . , yn) and constants0 < r ≤ 1 and
B ≥ 0, let thegeneralized average GA(y1, y2, . . . , yn) (denotedµ) be the value
of a satisfyingU(a) = B + r · L(a), where: U(a) =

∑n
i=1 max(yi − a, 0) and

L(a) =
∑n

i=1 max(a−yi, 0). We callU(a) andL(a) µ’s L/U valuesor a’s upper
and lower. Treating the input valuesy1, ..., yn as a step functiony = y(x), they
correspond to the area abovea and belowy (upper) and the area belowa and
abovey (lower).

Definition 6.2. Letµ(i, j) be the GA of the demands over region[i, j]. Letµ̂(h, k) =
maxh≤i≤j≤k µ(i, j). At timei, let si be the most recent time when the battery was
full.

Some intuition may be provided by considering what is likelythe simplest
way, in terms of coding, of computing a GA: binary search in the range[mini{di}−
B, maxi{di}]. For each candidate valueµ, if B+r ·L(µ) > U(µ) then shift down-
ward and otherwise shift upward, until the two values are sufficiently close.

Note thatµ need not be one of theyi values. WhenB = 0 and r = 1,
the generalized average is simply the mean of the valuesyi; whenB = 0 andr
approaches 0, the generalized average approaches the maximum.

Computing a GA inO(n logn) is not difficult. First sort the valuesyi, and
let the values’ subscripts now reflect their new positions. Next, setL(y1) = 0,
sincey1 is the smallestyi. For each subsequenti up ton, L(yi) can be computed
in constant time (we omit details due to space constraints).Similarly, compute
eachU(yi), starting withU(yn). Once all theL/Us are computed,µ’s neighbors
(yi, yi+1), i.e., the two nearest input values thatµ lies between, can be found
by inspection, and given theseµ can be computed in constant time. Unlike the
ordinary arithmetic mean, however, computing a GA inO(n) requires more effort.

Our recursive algorithm, whose behavior we sketch in words,both is inspired
by the well-known linear-time deterministic Selection Algorithm [18], and calls
it as a subroutine. The bulk of the work is in findingµ’s neighbors. Given these
data points (and theirL/U values), we can solve for the correct valueµ in constant
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GENAVGNBRS(A[], XU , XL, WU , WL) :
if length(A) = 2

return A
else p← Select-Median(A) (a)

(AL, AU)← Pivot(A,p) (b)
Up ← Upper(A,p);Lp ← Lower(A,p) (c)
U ← Up + XU + WU · (max(A)− p)
L← Lp + XL + WL · (p−min(A))
if U > r · L + B

return GenAvgNbrs(AU ∪ p, L, XU , WL + |AL|, WU )
else ifU < r · L + B

return GenAvgNbrs(AL ∪ p, XL, U, WL, WU + |AU |)
else

return p

Figure 2: Algorithm for computing the generalized average of an array of numbers.

time. (The cases–not shown in the pseudocode–when the solutionµ is among the
data points, and whenµ is less thanall the points can be checked as special cases.)
The algorithm for finding the neighboring data points toµ takes the set of points
yi as input. Let0 ≤ r < 1 andB be the parameters to the GA. The first parameter
to the algorithm is the set of values to be averaged; all otherparameters to the first
(non-recursive) call are set to 0.

Theorem 6.1.GA(y1, ..., yn) can be computed inO(n) time.

Proof. (sketch) With|A| = n, lines a,b,c each take timeO(n) sinceSelect-Median
uses the Selection Algorithm,Pivot is the usual Quicksort pivoting algorithm,
and Upper and Lower are computed directly. (Min and max can bepassed in
separately, but we omit them for simplicity.) The function makes one recursive
call, whose input size is by construction half the original input size. Hence the
total running time isO(n).

The bulk of the work done by our algorithms for lossy batteries is to compute
the GA for a series of ranges[i, j], as i stays fixed (as e.g. 1) andj increases
iteratively (e.g. from 1 ton). It is straightforward to do this inO(n2) time, by
maintaining a sorted sublist of the previous elements, inserting each newyj and
computing the new GA in linear time. Unlike ordinary averages, GA[i, j] and
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the valueyj+1 do not together determineGA[i, j + 1].5 (The GA could also be
computed separately for each region[1, j].) This yields offline algorithms for
the lossy unbounded and bounded settings, with running timesO(n2) andO(n3).
Through careful use of data structures, we obtain faster algorithms, with running
timesO(n logn) andO(n2 log n), respectively.

Theorem 6.2. The valuesGA[1, j], asj ranges from 1 ton can be computed in
O(n logn).

Proof. (sketch) A balanced BST is used to store previous work so thatgoing from
GA[i, j] to GA[i, j + 1] is done inO(log n). Each tree node stores ayi value plus
other data (its L/U, etc.) used by GENAVGNBRS to run inO(logn). Each time
a new data pointyi is inserted into the tree, its data must be computed (and the
tree must be rebalanced). Unfortunately, each insertionpartly corruptsall other
nodes’ data. Using a lazy evaluation strategy, we initially update onlyO(logn)
values. After the insert, GENAVGNBRS is run on the tree’s current set of data
points, inO(log n) time, relying only on the nodes’ data that is guaranteed to
be correct. Running on the BST, GENAVGNBRS’s subroutines (Select-Median,
Pivot, and selection of the subset to recurse on) now complete in O(logn), for a
total ofO(n logn).

Theorem 6.3. For the offline/lossy setting, Algorithm1.b (Ti = µ̂(1, n)) is opti-
mal, feasible, and runs in timeO(n2 log n).

Proof. Within any region[i, j], the battery may help in two ways. First, the bat-
tery may be able to lower the local peak by sometimes chargingand sometimes
discharging. Second, the battery in the best case would start with chargeB at
timesloti. With battery loss percentageL, the total amount discharged from the
battery over this period can be at mostB plus (1 − L) times the total amount
charged. The optimal threshold over this region cannot be less thanGA(di, ..., dj)
with (1− L, B) chosen as its parameters(r, B).

The threshold used isT = µ̂(1, n). It suffices to show that the battery will be
nonnegative after each timej. Supposej is the first time underflow occurs. Let
i−1 be the last timeslot priorj with a full battery (or 0 if this has never occurred).
Then there is no underflowor overflow in [i, j), so the total charged in region
[i, j] is exactlyL(T ) =

∑j
t=i max(T − dt, 0) and the total discharged will be

5For example, whenB = 10 and r = .5, GA(5, 10, 15) = GA(3, 21, 3) = 7, but
GA(5, 10, 15, 20) = 10.83 6= GA(3, 21, 3, 20) = 11.33.
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U(T ) =
∑j

t=i max(dt−T, 0). The amount of energy available for discharge over
the entire period isB+r ·L(T ). Underflow at timej meansU(T ) > B+r ·L(T ),
but this contradicts the definition ofT .

To compute the thresholds, computeGA[i, j] iteratively (varyingj from i to
n) for each valuei. Eachi value takesO(n log n), for a total ofO(n2 log n).

Corollary 6.4. If the battery is effectively unbounded, then a similar optimal al-
gorithm can be obtained, which runs in timeO(n logn).

7. Evidence for Lossy Competitiveness

If no underflow occurs, then Algorithms2.a and2.b areHn-competitive by
construction. (Recall that the objective function is the peak reduction amount.) In
this section, we use the factor-revealing linear program (LP) technique of Jain et
al. [19] to provide some quasi-empirical evidence that no such underflow can ever
occur.

A factor-revealing LP is defined based on a particular algorithm for a prob-
lem. The LP variables correspond to possible instances, of acertain sizen, of the
optimization problem. (We therefore have an indexed familyof linear programs.)
The optimal solution value of the linear program reveals something about the al-
gorithm it is based on. In the original Facility Location application, the objective
function was the ratio of the cost incurred by the approximation algorithm in cov-
ering the facility and the optimal cost (assumed wlog to be 1)of doing so, so the
maximum possible value of this ratio provided an upper boundon the algorithm’s
approximation guarantee.

The size index of our LPs is the number of timeslotsn. The objective function
is the final battery levelbn+1. The constraints are properties describing the be-
havior of the algorithm; some of the constraints perform bookkeeping, including
keeping track of the battery level over time. We first providethe factor-revealing
LP for the lossless setting (Fig. 3), which is simpler than the lossy.

We now explain this program. The battery is initialized toB and can never
supersede this level. As we argue below, we can limit ourselves without loss of
generality to demand sequences in which the algorithm neverwishes to charge
to a level greater thanB, i.e. no overflow occurs. For such inputs, the threshold
scheme’s firstmin has no effect and we always have thatbi+1 = bi + Ti − di.
ThresholdTi is constrained in the LP to equal the expression for Algorithm 2.b’s
threshold, withopti lower-bounded by the closed-form expression for the analog
of GA for lossless batteries (see Section 4). Moreover, thisvalue is less than
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min: bn+1

s.t.: bi+1 = bi + Ti − di, for all i
bi ≤ B, for all i
Ti = D − (D − opti)/Hn, for all i
opti ≥ (1/i)(−B +

∑i
j=1 dj), for all i

b1 = B
di ≤ D, for all i
D ≥ 0, B = 1

Figure 3: Factor-revealing linear program for lossless batteries (LP1).

or equal to the corresponding value used in Algorithm2.a, with the effect that
Ti is less than or equal to the corresponding threshold of Algorithm 2.a at every
time i. This in turn means that feasibility of Algorithm2.b implies feasibility of
Algorithm 2.a. D is included in the program for clarity.

We solved this LP, written in AMLP, with LP solvers on the NEOSserver [20],
for several valuesn ≤ 100. The solution value found was 0, consistent with the
known result (i.e., Theorem 4.6 of Section 4). Lemma 4.5 of Section 4 allows us
to limit our attention to a certain family of demand sequences, viz., those in which
once underflow occurs it continues to the end (i.e.,bn < 0) and no overflow ever
occurs.

Theorem 7.1. If the optimal solution value LP1, for parameter sizen, is at least
0, then Algorithm2.ais Hn-competitive in the lossless setting, for problem sizen.

Proof. Suppose underflow were to occur at some timet, and lets be the most
recent time prior tot when the battery was full. Then by the lemma,[s, t] can be
assumed wlog to be[1, n]. The assumptions that the battery starts at levelB and
never reaches this level again (though it may rise and fall non-monotonically) are
implemented by the constraints stating thatb1 = B andbi ≤ B. Since no overflow
occurs, the firstmin in the threshold algorithm definition has no effect, and the
battery level changes based only onTi anddi, i.e., it rises by amountTi − di

(which may be negative), which is stated in constraints. Since opti = µ̂(1, i)
is the max of expressions for all sequences of[1, i], in particular we have that
opti ≥ (−B +

∑i
j=1 di)/i. The optimal solution value to such an LP equals the

lowest possible battery level which can occur, given any possible problem instance
of sizen, when using any algorithm consistent with these constraints. Since in
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particular the behavior of Algorithms2.a is consistent with these constraints, the
result follows.

Corollary 7.2. If the optimal solution value LP1, for all parameter sizes≤ n, is
at least 0, then Algorithm2.b isHn-competitive in the lossless setting, for problem
sizes≤ n.

Proof. In Algorithm 2.b, thresholdTi is defined based on the region beginning
after the last overflow at positions = si, shifting [s, t] to [1, t′] = [1, t − s + 1]
hasno effect. If 2.b insteadalways usedHn, then the lemma above would directly
apply, since the algorithm would then perform identically on [s, t] to [1, t′], and
then the underflow could again be extended to the end. The result that LP1’s
optimal solution value is≥ 0 would then imply that thismodifiedAlgorithm 2.b
is feasible for inputs of sizen.

In fact, the actual Algorithm2.busesHn−s+1, with s = si, at timei. In effect,
Algorithm 2.b treats the demand suffixds+1, ..., dn as an independent problem in-
stance of sizen − s + 1. Each time the battery overflows, the harmonic number
subscript is modified, and there is a new subregion and a new possibility for un-
derflow. If all sizes of overflow-free subregions are underflow-free, then the algo-
rithm is feasible. Therefore, if LP1’s optimal solution is nonnegative, Algorithm
2.b is feasible.

The more complicated factor-revealing program for the lossy setting is shown
in Fig. 4. The additional difficulty here is that the program has quadratic con-
straints.

We omit a full description of this program and only remark that the two main
difficulties are 1) that there is an essential asymmetry in the battery behavior,
which complicates the first constraints; and 2) that since wehave no closed for-
mula for GA, (a lower bound on) the optimal threshold must bedescribedrather
thancomputed.

There are three sets of quadratic constraints, indicated bystars. In fact, it
is possible to remove these and convert LP2 to a linearly-constrained quadratic
program (QP), defined for a fixed constant efficiency ratior (unlike LP2, in which
r is a variable). Unfortunately, the resulting QP is not convex.

We then have the following results.

Theorem 7.3. If the optimal solution value LP2, for parameter sizen, is at least
0, then Algorithms2.ais Hn-competitive in the lossy setting, for problem sizen.
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min: bn+1

s.t.: bi+1 = bi + r · chi − disi, for all i
chi · disi = 0 (*)
bi ≤ B, for all i
chi, disi ≥ 0, for all i

b1 = B
D ≥ di, for all i
B = 1, D ≥ 0

Ti = D − (D − opti)/Hn

Ti = di − disi + chi

opti ≥ gai, for all i

B + r · (∑i
j=1 choi,j) =

∑i
j=1 disoi,j, for all i (*)

choi,j · disoi,j = 0, for all (j, i) : j ≤ i (*)
gai = dj − disoi,j + choi,j, for all (j, i) : j ≤ i
choi,j, disoi,j ≥ 0, for all (j, i) : j ≤ i

Figure 4: Factor-revealing mathematical program for lossybatteries (LP2).

Corollary 7.4. If the optimal solution value LP2, for all parameter sizes≤ n, is
at least 0, then Algorithm2.b is Hn-competitive in the lossy setting, for problem
sizes≤ n.

We solved the second program, implemented in AMLP, using several solvers
(MINLP, MINOS, SNOPT) on the NEOS server [20], for several valuesn ≤ 100.
(The number of variables is quadratic inn, and there are limits to the amount
of memory NEOS provides.) In all cases, we found the solutionvalue found
was (within a negligible distance of) nonnegative. Although these solvers do not
guarantee a globally optimal solution (at least not for non-convex nonlinear pro-
grams), we believe this performance provides some “quasi-empirical” evidence
for the correctness of Algorithms2.aand2.b.
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Figure 5: Input data: demand versus time.

8. Performance Evaluation

8.1. Experiment Setup

We performed experiments on three datasets: a regular business day’s demand
from an actual Starbucks store, a simulated weekday demand of a residential user,
and a randomly generated demand sequence. Each dataset is oflengthn = 200.
The demand curves are shown in Fig. 5. The parameters in our simulation are: 1)
battery sizeB (typically B = 500K), 2) battery charging loss factorL (typically
L = 0.33), and 3) an aggressivenessc discussed below (wherec = 0 corresponds
to Algorithm2.bandc = 1 to Algorithm2.b-opt).

Since the objective is peak minimization, we modify the algorithms so that
the requests are monotonically increasing (except when prevented by overflow).
Since the peak must be at leastD − B, we similarly force this to be the mini-
mum request (again barring overflow). Although the underlying offline algorithm
assumes thatb1 = B, other lower initial battery levels can be simulated by artifi-
cially increasing the initial demand(s). In the next subsection, we discuss a sample
of the experiments performed.

8.2. Simulation Results

We know that in the lossless setting, our algorithms areHn-competitive in
terms ofpeak reduction, since no underflow occurs. We first wish to test the
performance of the corresponding lossy algorithms, as wellas other, heuristic
algorithms.

Test 1 - battery size. In this test, we measured the peaks produced by the
different algorithms running with various battery sizes, for settings including lossy
and lossless and initial battery levels ofb1 = 0 andb1 = B. We observe the same
general patterns throughout. For random input, performance is averaged over50
runs. We observe (Fig. 6) that increasing the battery size reduces the peak in
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our optimal algorithm; we also see that Algorithm2.b constantly outperforms
Algorithm 2.a, and that they both are withinHn of opt, as expected. We include
the heuristic Algorithm2.b-opt, for comparison, which at each point attempts
thresholdopti = µ̂(1, i), i.e., to have, at all times, the same peak as opt would have
had so far. This is a very bold algorithm. We see that it can perform badly with
too large a battery since its aggressiveness can then have greater effect, increasing
the likelihood of underflow.

In our next test, we seek a middle-ground between the conservativeness of2.b
and the boldness of2.b-opt.

Test 2 - aggressiveness.We vary the boldness in an algorithm based on2.b
by using a thresholdTi = D − D−µ̂(1,i)

1+(Hn−s+1−1)c
, with parameterc. Whenc = 1, the

algorithm is2.b (most conservative); whenc = 0, it is 2.b-opt(most aggressive).
In this test, we measure the performance asc varies from0 to 1 with increment of
0.1. We compare the performance of Algorithm2.b as a reference. We used two
battery sizes on the scale of battery size in the Starbucks installation. We observe
(Fig. 6) that increased aggressiveness improves performance, but only up to a
point, for reasons indicated above. We note that the best aggressive factorc can
depend on both battery sizeB and the input data.

Although we naturally find that too muchunmotivatedboldness can be dam-
aging, there are potential situations in which significant boldness can be justified.

Test 3 - predictions. Suppose we are given error-prone but reasonably accu-
rate predictions of future demands, based e.g. on historical data. In this test, we
test two prediction-based algorithms. Letpi be the predicted demand sequence.
Let errore ∈ [−1, 1] be the prediction error level, withpi uniformly distributed
in [di, di(1 + e)] or [di(1 + e), di] if e < 0. First, theobliviousalgorithm simply
runs the optimal offline algorithm on thepi values. Theupdateversion runs the
offline algorithm on demand sequence< d1, . . . , di, pi+1, pn >, in which thedi

are the actual past demands and thepi are the future predictions. We compare the
performances of prediction algorithms with optimal offlinealgorithm, Algorithms
2.band2.b-optas references. We vary the prediction values from most optimistic
e = −1 to most conservativee = 1.

We see (Fig. 7) that the performance of the prediction algorithm varies in
roughly inversely proportion to the error level. If the prediction error is less than
20%, both prediction algorithms outperform the two online algorithms. Ase ap-
proaches zero, the performance naturally converges to the optimal.

Test 4 - lost energy.As noted in the introduction, the use of lossy batteries
increases the total energy used. In this test, we compare thelost energy during
charging process with the total energy demand (Fig. 8). We verify that the amount
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Figure 6: Test 1: peak versusB, b1 = 0, L = 0.33 (a) (b) (c); Test 2: peak versus aggressiveness
c, b1 = 0, L = 0.33 (d) (e) (f).
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Figure 7: Test 3: peak versus prediction errore, b1 = B = 500k, L = 0.33.
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Figure 8: Test 4: ratio of energy loss and energy demand,b1 = 0, Starbucks.

of lost energy is negligible compared with the total energy demand. We naturally
find, however, that largerB and larger loss factorL increase energy loss. We
believe that the facts that the fraction of lost energy is small and that the per-unit
energy charge is significantly lower than the per-unit peak charge vindicate our
choice to focus on peak charge.

9. Conclusion

In this paper, we formulated a novel peak shaving problem, and gave effi-
cient optimal offline algorithms and optimally competitiveonline algorithms. We
also presented optimal offline algorithms and both heuristic and possibly compet-
itive online algorithms for the peak reduction problem withlossy batteries. The
factor-revealing mathematical program for the lossy setting presently provide only
quasi-empirical evidence for competitiveness. The ability to solve such programs
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optimally would provide computer-aided proof of such competitiveness, at least
for instances of bounded size. The primary open problem suggested by this work
is to prove this competitiveness analytically. Several additional future extensions
suggest themselves:

• limited battery charging/discharging speed

• battery loss over time (“self-discharge’)

• multi-dimensional demands and resulting complex objective functions
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