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Abstract

We introduce a new problem inspired by energy pricing sclsamehich a client
is billed for peak usage. At each timeslot the system mee&snangy demand
through a combination of a new request, an unreliable amafuinte sourceen-
ergy (e.g. solar or wind power), and previously received@nelhe added piece
of infrastructure is théattery, which can store surplus energy for future use,
and is initially assumed to be perfectly efficientlosslessin a feasible solution,
each demand must be supplied on time, through a combindtiewdy requested
energy, energy withdrawn from the battery, and free soufbe. goal is to mini-
mize the maximum request. In the online version of this prohlthe algorithm
must determine each request without knowledge of futureasheis or free source
availability, with the goal of maximizing the amount by whithe peak is reduced.
We give efficient optimal algorithms for the offline problewith and without a
bounded battery. We also show how to find the optimal offlintésna size, given
the requirement that the final battery level equals theahitattery level. Finally,
we give efficientH,,-competitive algorithms assuming the pestectivedemand
is revealed in advance, and provide matching lower bounds.

Later, we consider the setting lmfssybatteries, which lose to conversion in-
efficiency a constant fraction of any amount charged (e.§6)33Ne efficiently
adapt our algorithms to this setting, maintaining optityafor offline and (we
conjecture) maintaining competitiveness for online. Weséactor-revealing_Ps,
which provide some quasi-empirical evidence for competitess. Finally, we
evaluate these and other, heuristic algorithms on real amtietic data.

Keywords: online algorithms, competitive analysis, energy, peakisiga
simulation
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1. Introduction

There is increasing interest in saving fuel costs by use méwable energy
sources such as wind and solar power. Although such souredsighly desir-
able, and the power they provide is in a sense free, the tygisadvantage is
unreliability: availability depends e.g. on weather cdiwdis (it is not “dispatch-
able” on demand). Many companies seek to build efficienesgstto gather such
energy when available and store it, perhaps in modified fénfuture use [3].

On the other hand, power companies charge some high-cotisungients
not just for the total amount of power consumed, but also tw kquickly they
consume it. Within the billing period (typically a monthet client is charged for
the amount of energy usedgage chargein kWh) and for the maximum amount
requested over timgpgak chargein kW).2 If demands are given as a sequence
(dy,ds, ..., d,), then the total bill is of the form; » . d; + ¢, max;{d;} (for some
constants:, ¢, > 0), i.e., a weighted sum of the total usage and the maximum
usage. (In practice, the discrete timeslots may be 30-miautrages [4].) This
means that a client who powers a 100kW piece of machineryrertmur and
then uses no more energy for the rest of the month would bgetianore than
a client who uses a total of 100kWh spread evenly over theseooirthe month.
Since the per-unit cost for peak charges may be on the ord&d®@ftimes the
per-unit cost for total usage [S]this difference can be significant. Indeed, this is
borne out in our experiments.

This suggests a potential financial incentive to stopngchasedenergy for
future use. Indeed, at least one start-up company has redrketh a battery-
based system intended to reduce peak energy charges. la system, a battery
is placed between the power company and a high-consumpigon site, (such as
a large office building or factory) in order to smooth poweguests and shave the
peak. The client site will charge to the battery when demanoWw and discharge
when demand is high. Spikes in the demand curve can thus derezhconsistent
with a relatively flat level of supplied power. The result isoaver cost for the
client and a more manageable request curve for the proidlee usage charge
in the billing formula above is not optimized for, since inranodel all demands
must be satisfied.)

It is interesting to note that a battery system may actuallse energy usage,

2|n fact, some billing models are more complex.
3The Orlando Utilities Commission website [5], for exampleptes rates of 6.388 cents per
kWh (“energy charge”) and $6.50 per kW (“demand charge”).



since there may be energy loss due to inefficiency in AC/DGrexsion. This

loss may be as much as 33% of the amount charged. Servingeupadsts during
periods of high demand is a difficult and expensive task fergbwer company,
however, and the event of a black-out inflicts high societats. While a battery
system may involve higher total energy requests, it may fiteihe system as a
whole by easing the strain of peak demands. Combined wighraltive energy
sources such as solar panels, the system could even loweethommercial

power usage. Alternative energy sources are typically dogt but unreliable,
since they depend on external events such as the weathehn. aViattery, this
energy can be stored until needed.

We may generalize this problem of minimaxing the requestprasource
which istenablein the sense that it may be obtained early and stored untilatee
For example, companies frequently face shortages of poprdducts: “Plentiful
supply [of Xboxes] would be possible only if Microsoft madélions of consoles
in advance and stored them without releasing them, or ifilt sast production
lines that only ran for a few weeks—both economically unwisategies,” a recent
news story asserted [6]. A producer could smooth the progiactuction curve
by increasing production and warehousing supply untilreitsales. But when
should the producer “charge” and “discharge”? (In some dosythere may also
be an unpredictable level of volunteer help.) A third apgtiien is the scheduling
of jobs composed of generic work-units that may be done irmade. Although
the problem is very general, we will use the language of gnargl batteries for
concreteness. Many features of this production probleahiding uncertainty in
future demand, a bounded warehouse size and a cost for stortdge warehouse
have analogs in the battery problem.

In the online version of our problem, the essential choicedieat each timeslot
is whether (and by how much) to invest in the future or to cash prior invest-
ment. The investment in our setting is a request for moreggrtbian is needed at
the time. If the algorithm only asks for the minimum requirggén it is vulnerable
to spikes in demand; if it asks for much more energy than itlegiien the greater
request could itself introduce a new, higher peak. Thetse&s of the problem
lies in the fact that the cost is not cumulative: we wameryrequest to be low.
The offline version is solvable in polynomial time, both vath and (albeit by a
more complicated solution) without battery loss. Our oalaigorithms will be
based on the optimal offline algorithms. Central to our asialfor the lossy bat-
tery settings is a mathematical function we caljemeralized averageur fastest
offline algorithms in these settings compute a series ofrgdimed averages with
the aid of balanced binary search trees. We also show howdaHm optimal
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offline battery size, given the requirement that the finatdvgtlevel equals the
initial battery level.

1.1. Contributions

We introduce a novel scheduling problem and solve seversiores optimally
with efficient combinatorial algorithms. We solve the offliproblem for two
kinds of batteries: unbounded battery(xin) time and bounded i (n?), where
n is the number of timeslots. Separately, we show how to finagienal offline
battery size, for the setting in which the final battery lewelst equal the initial
battery level. This is the smallest battery size that adsdkie optimal peak.

The online problem we study is very strict. A meta-stratagyniany online
problems is to balance expensive periods with cheap ondisasthe overall cost
stays low [7]. The difficulty in our problem lies in its noncurative nature: we
optimize for the max, not for the average. We show that séwveraions of the
online problem have no algorithm with nontrivial compettiratio (i.e., better
thann or Q(y/n)). Given advanced knowledge of the peak demandowever,
we give H,-competitive algorithms for batteries bounded and unbedndOur
fastest algorithm ha®(1) per-slot running-timeH,, is the (optimal) competitive
ratio for both battery settings.

The algorithms mentioned so far assume perfectly efficiettedes, how-
ever, and will fail if run on realistic, lossy batteries. Tefore we adapt these
algorithms to the lossy setting, testing them on both syighend actual cus-
tomer usage data. Moreover, we test more aggressive, tiewaligorithms, as
well as algorithms that accept predictions, with error,udtife demands. Finally,
we provide factor-revealing linear programs (LPs), whiobmde quasi-empirical
evidence of the competitiveness of the lossy algorithms.

Examples. Although there is no constant-ratio competitive algoritfon un-
boundedn, our intended application in fact presumes a fixed timezuwori If
the billing period is one month, and peak charges are cordpage30-minute
averages, then for this settirfg, is approximately 7.84. If we assume that the
battery can fully recharge at night, so that each day candated as a separate
time period, then for a 12-hour daytime time-horizbp is approximately 3.76.

1.2. Related Work

There is a wide literature on commodity production, storageehousing, and
supply-chain management (see e.g. [8, 9, 10, 11]). Moreifsgmly, there are a
number of inventory problems based on the Economic Lot §imiodel [12], in



which demand levels for a product vary over a discrete fimtethorizon and are
known in advance. A feasible solution in these problems robsin sufficient
supply through production (sometimes construed as orgleon through other
methods, in order to meet each of the demands on time, whdereing certain
constraints. The nature of solution quality varies by folation.

One such inventory problem is Single-ltem Lot-Sizing, iniethsufficient
supplies must be ordered to satisfy each demand, while mamgithe total cost
of ordering charges and holding charges. The ordering ehavgsists of a fixed
charge per order plus a charge linear in order size. Thetgpltharge for inven-
tory is per-unit and per-timeslot. There is a tradeoff betmi#hese incentives since
fixed ordering charges encourage large orders while holdiagges discourage
them. Wagner & Whitin [13] showed in 1958 that this problem && solved in
polynomial time. Under the assumption mdn-speculative costén which case
orders should always be placed as late as possible, theepnatain be solved in
linear time. Such “speculative” behavior, however, is tkeymotivation of our
problem. There are many lot-sizing variations, includiogstant-capacity mod-
els that limit the amount ordered per timeslot. (See [11] i@ferences therein.)
Our offline problem differs in that our objective is mininmg this constant ca-
pacity (for orders), subject to a bound iorentorysize, and we have no inventory
charge.

Another related inventory problem is Capacity and Subeating with In-
ventory (CSI) [14], which incorporates trade-offs betwg@enduction costs, sub-
contracting costs, holding costs, and the cost for maximerrupit-timeslot pro-
duction capacity. The goal in that problem is to choose ayxtidn capacity
and a feasible production/ subcontracting schedule thpgth@r minimize total
cost, whereas in our problem choosing a production capastityject to storage
constraints, is the essential task.

In the minimax work-scheduling problem [15], the goal is ticnimize the
maximum amount of work done in any timeslot over a finite tinogizon. Our
online problem is related to a previously studied speciaéda which jobs with
deadlines are assigned online. In that problem, all workttne@slone by deadline
but cannot be begun until assigned. Subject to these 1astise the goal is to
minimize the maximum work done in any timeslot. While theioyzation goal
is the same, our online problem differs in two respects.tFaach job for us is
due immediately when assigned. Second,areallowed to do work (request
and store energy) in advance. One online algorithm for ths-joy-deadlines
problem is thex-policy[15]: at each timeslot, the amount of work donevismes
the maximum per-unit-timeslot amount of work that OPT wdnalde done, when
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running on the partial input received so faDur online algorithms adopt a related
strategy.

2. Lossless Model and Preliminaries

Definition 2.1. At each timeslot for i = 1,...,n, d; is the demandy; is the
request,b; is the battery charge levelt the startof the timeslot, and; is the
amount of free source availableb,( ; is the battery level following timeslat)
Byd; we indicate theffective demand, — f;. We sometimes refer to the sequence
over time of one of these value types as a curve, e.gdehand curveD is the
maximum effective demandaxi{cii}, andR is the maximum requestax;{r;}.

The problem instance comprises the demands, the free souinee, battery
size B, initial chargeb,, and required final chargsg, . ; (in the offline case). The
problem solution consists of the request curve.

Definition 2.2. Let overflowbe the situation in which; + f; — d; > B — b;, i.e.,
there is not enough room in the battery for the amount we wawcharge. Let
underflowbe the situation in whickl; — r;, — f; > b;, i.e., there is not enough
energy in the battery for the amount we want to discharge.|l @alalgorithm
feasibleif underflow never occurs.

The goal of the problem is to minimize (for competitiveness measures this
is construed as maximizing — R) while maintaining feasibility. In the absence
of overflow/underflow, the battery level #te start oftimesloti is simply b, =
bi_1 + ri_1 + fi—1 — d;_1. Itis forbidden forb; to ever fall below 0. That is,
the request;, the free sourceg;, and the battery levél, must sum to at least the
demandi; at each timeslat Notice that effective demand can be negative, which
means that the battery may be charged (capacity allowing) & the request is
0. We assumé), however, is strictly positive. Otherwise, the problentamee is
essentially trivial. We use the following to simplify thegimem statement:

Observation 2.1. If effective demands may be negative, then free sourceyenerg
need not be explicitly considered.

As such, we set aside the notion of free source, and for thairetar of the
paper (simplifying notation) allow demanlito be negative.

In the energy application, battery capacity is measuredhin kwhile instan-
taneous request is measured in KW. By discretizing we assuatgethat battery
level, demand, and request values are expressed in comnitsn Baak charges
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are based linearly on the max request, which is what we opéifior. The battery
can have anaximum capacitys or be unbounded. The problem may be online,
offline, or in between; we consider the setting in which thakpdemandD is
revealed in advance, perhaps predicted from historicatmétion.

Threshold algorithms. For a particular snapshét;, r;, b;), demandi; must be
supplied through a combination of the requestnd a change in batteby, | — b;.
This means that there are only three possible modes for @aelslot: request
exactly the effective demand, request more than thischadgyethe difference, or
request less andischargethe difference. We refer to our algorithms thsesh-
old algorithms Let 71,75, ..., T, be a sequence of values. Then the following
algorithm uses these as request thresholds:

for each timeslot
if d; <T;
chargemin(B — b;,T; — d;)
else
dischargel; — T;

Intuitively, the algorithm amounts to this rul@t each timeslot, request an
amount as near t@; as the battery constraints will allowDur offline algorithms
are constant thresholélgorithms, with a fixedl" (though in practice an offline
algorithm could naturally lower its requests to avoid owewvil; our online algo-
rithms computd’; dynamically for each timeslat

A constant-threshold algorithm is specifiable by a singimber. In the online
setting, predicting thexactoptimal threshold from historical data suffices to solve
the online problem optimally. A small overestimate of theethold will merely
raise the peak cost correspondingly higher. Unfortungteiywever, examples can
be constructed in which even a smatiderestimateventually depletes the battery
before peak demand and thus produce no cost-savings at all.

The offline problem can be solved approximately, within &ddierror e,
through binary search for the minimum feasible constamsold valug'. Sim-
ply search the rangf®, D] for the largest valug for which the threshold algo-
rithm has no underflow, in tim@(n log %). If the optimal peak reduction B—T,
then the algorithm’s peak reduction will be at le&st T'—e. It is straightforward
to give a linear programming formulation of tiodfline problem; it can also be
solved by generalized parametric max-flow [16]. Our intehese, however, is in
efficient combinatorial optimal algorithms. Indeed, ountdmnatorial offline al-



gorithms are significantly faster than these general teglas and lead naturally
to our competitive online algorithms. Online algorithmséd on such general
techniques would be intractable for fine-grain timeslots.

3. Lossless Offline Problem

We now find optimal algorithms for both lossless batteryisgst For un-
bounded, we assume the battery starts empty; for boundeakssuene the battery
starts with amounf3. For both, the final battery level is unspecified. We show
below that these assumptions are made wlog. The two offliesltiold functions,
shown in Table 1, use the following definition.

Definition 3.1. Let p(j) = % {:1 d; be the mean demand of the prefix region
[1,7], and letp(k) = mazi<;<rp(j) be the maximum mean among the prefix
regions up tok. Letu(i,j) = %ﬁd’ be thedensityof the region[i, j] and

f(k) = maxi<;<;<kp(7, 7) be the maximum density among all subregior$ of].

Alg. battery  threshold; running time

l.a unbounded p(n) O(n)
1.b  bounded fi(n) O(n?)

Table 1: Threshold functions used for offline algorithmisgts.

Bounded capacity changes the character of the offline prable suffices,
however, to find the peak request made by the optimal algorith,,;. Clearly
R, > D — B, since the ideal case is that a width-one peak is reducedbyssi
Of course, the peak region might be wider.

Theorem 3.1. Algorithm 1.a (thresholdT; = 5(n), for unbounded battery) and
Algorithm 1.b (thresholdT; = /i(n), for bounded battery) are optimal, feasible,
and run in timeg)(n) andO(n?), respectively.

Proof. First, let the battery be unbounded. For any redion], the best we can
hope for is that requests for all demant]s..., d; can be spread evenly over the
first j timeslots. Therefore the optimal threshold cannot be Idvan the maxi-
mum p(j), which is Algorithm1.as threshold. For feasibility, it suffices to show
that after each timg, the battery level is nonnegative. But by timethe total



input to the system willbg - p(n) > 7-p(j) = {:1 d;, which is the total output
to the system up to that point. For complexity, just note thiat+ 1) = ”’(JJ)%
so the sequence pfvalues, and their max, can be computed in linear time.

Now let the battery be bounded. Over the course of any regigh the best
that can be hoped for is that the peak request will be redwBd tj — i + 1) less
than the averagé in the region, i.e.u(7, j), So no threshold lower than Algorithm
1.bs is possible.

For feasibility, it suffices to show that the battery levellwbie nonnegative
after each timegj. Supposej is the first time underflow occurs. Leét— 1 be
the last timeslot prior tgy with a full battery. Then there is no underfloov
overflow in [¢, j), and so for eaclt € [i,j] the discharge at is b, — b1 =
d; — T (possibly negative, meaning a charge) and so the total sehaige over
[4,7]is>°7_,di — (j — i+ 1)T. Total net discharge greater thahimpliesT <

%ﬁd* which contradicts the definition af. The densest region can be
found inO(n?), with n separate linear-time passes, each of which finds the densest
region beginning in some positiansincey(i, j + 1) can be computed in constant

time fromu(i, j). O

3.1. Battery Level Boundary Conditions

We assumed above that the battery starts empty for the udbdwffline algo-
rithm and starts full for the bounded offline algorithm, witte final battery level
left indeterminate for both settings. A more general offfmeblem may require
thatb, = (5, andb, ., = (s, i.€., the battery begins and ends at some charge levels
specified by parameters andj,. We argue here that these requirements are not
significant algorithmically, since by pre- and postproaagswve can reduce to the
default cases for both the unbounded and bounded versions.

First, consider the unbounded setting, in which the intbattery level is 0.
In order to enforce that, = (5, andb,,.; = (35, run the usual optimal algorithm
on the sequencgl, — (3,ds, ...,d,—1,d, + 32). (Recall that negative demands
are allowed.) Them,.; will be at leasts, larger thand,. To correct for any
surplus, manually delete a total df,; — 3, from the final requests. For the
bounded setting, the default caséis= B andb, ; indeterminate. To support
b, = /1 # B andb, 1 = (35, modify the demand sequence as above, except with
dy + (B — [3;) as the first demand and then do similar postprocessing a€in th
unbounded case to deal with any final surplus.



3.2. Optimal Battery Size

A large component of the fixed initial cost of the system wdpénd on battery
capacity. A related problem therefore is finding the optitvettery sizeB for a
given demand curvé;, given that the battery starts and ends at the same fevel
(which can be seen as an amobatrowed and repaijl The optimal peak request
possible willbel >~ | d; = p(n), and the goal is to find the smallg3tand that
achieve peak(n). (A completely flat request curve is possible given a suffittye
large battery.) This can be donedHn).

Since we will haveb; = b,.1, r; = p for all i, and> d; = > r;, there
must be no overflow. Letl, = d; — p, i.e., the amount by which; is above
average (positive means discharge, negative means chdarge) the minimum
possibles = b; is the maximum prefix sum of th¢ curve (which will be at
least 0). It could happen that the battery level will at soromprise aboveé,,
however. (Consider the exampfe= (0,0, 1,0,0,0), for whichp = 1/6, d' =
(-1/6,-1/6,5/6,—1/6,—1/6,—1/6) andg = 1/2.) The needed capacify can
be computed ag plus the maximum prefix sum a@lie negation otthe d’ curve
(which will also be at least 0). (In the example, we h#/e- 3 +2/6 = 5/6.)

Although B is computed using/, we emphasize that the computéds the
minimum possibleegardless of3, and the compute# is the minimum possible
regardless of5.

4. Lossless Online Problem

We consider two natural choices of objective function fa ¢timline problem.
One option is to compare the peak requests, so thaL{ is the peak request of
the online algorithm ALG and PT is that of the optimal offline algorithm OPT,
then ac-competitive algorithm for > 1 must satisfy22% < ¢ for every demand
sequence. Although this may be the most natural candidaegrgue that for
many settings it is uninteresting. If the peak demand is fdclarger than the
battery capacity, for example, then the trivial online aitjon thatdoes not use
the battery would bé/(k — 1)-competitive. If we drop the assumption of a small
battery, then no reasonable competitive factor is possibieneral.even ifD is
revealed in advance

Proposition 4.1. With peak demand revealed in advancand finite time hori-
zonn, no online algorithnfor the problem of minimizing peak requesdn have
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competitive ratio 1) better than if the battery begins with some strictly positive
charge, or 2) better thaf(,/n) if the battery begins empfy.

Proof. For part 1, suppose that the battery begins with initialgg&r. Consider
the demand curveD, 0, ..., 0, 7), where the last demand is eithBror 0. ALG
mustdischargeD at time 1, sinc& PT = 0 whend,, = 0. Thus ALG’s battery is
empty at time 2. If ALG requests nothing between times 2:and, andd,, = D,
then we have®) PT = D/n andALG = D; if ALG requests some > 0 during
any of those timeslots, ant}, = 0, then we havé PT = 0 andALG = «. This
yields a lower bound of.

For part 2, suppose the battery begins empty, which is aisddge for both
ALG and OPT. Consider the demand cuf@e0, ..., 0, D), in which case) PT =
D/n. If an algorithm isc-competitive for some > 1, then in each of the first
n — 1 timeslots of this demand curve ALG can charge at most amolit.
Now suppose that the only nonzero demand, of vdlarrives possibly earlier,
at some timeslot < [1,n], following £ — 1 demands of zero, during which
ALG can charge at most — 1)cD/n. In this case, we hav®@PT = D /k and
ALG > D — (k — 1)eD/n, which yields the competitive ratio:

S D—(k—1)cD/n 1—(k—1)c/n
€= D/k - 1/k

=k —k*c/n+ ke/n

Solving fore, and then choosing = /n, we have:

k Vn
> = p—
C—1+k2/n—k/n 1+1-1/y/n vn)
thus establishing the lower bound. O

Recalling the example values afgiven in the Introduction, ratios of either
n or /n would be very weak. Instead, we compare geak shaving amount
(or savings, i.e., D — R. For a given input, leOPT be the peak shaving of the
optimal algorithm, and leALG be the peak shaving of the online algorithm. Then
an online algorithm is-competitive forc > 1if ¢ > OATPg for every problem
instance. For this setting, we obtain the online algoritiise® Def. 4.1 and the

proof of Corollary 4.7) shown in Table 2.

4If the peak is not known, a lower boundwefcan be obtained also for the latter case.
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Alg. battery threshold; running time

2a  both D-22 o2
2b  both D — Doplsd) O(n)
ans,r‘ﬁl

Table 2: Threshold functions used for online algorithms.

Definition 4.1. Let 7" be the optimal threshold used by the appropriate optimal
algorithm when run on the firgttimeslots. At time during the online computa-
tion, lets; be the index of the most recent time prior with b,, = B (or 1 in the
unbounded setting).

4.1. Lower Bounds fob — R

Since the competitiveness of the online algorithms holdsafbitrary initial
battery level, in obtaining lower bounds on competitiven@ge assume particular
initial battery levels.

Proposition 4.2. With peak demané unknown and finite time horizon there is
no online algorithm 1) with any constant competitive rato inbounded battery
(even withn = 2) or 2) with competitive ratio better tham for bounded battery.

Proof. For part 1, assumg = 0, and supposé, = 0. Then if ALG requests;, =

0 and we have, = D, thenOPT = D/2 andALG = 0; if ALG requests; = a
(for somea > 0) and we havel, = a, thenOPT = a/2 and ALG = 0. For
part 2, leth; = B, and assume ALG is-competitive. Consider the demand curve
(B,0,0,...,0). Then OPT clearly dischargésat time 1 (decreasing the peak by
B). For ALG to bec-competitive, it must discharge at Ie%tn the first slot. Now
consider curvé B,2B,0,0,...,0). Attime 2, OPT dischargeB, decreasing the
peak byB, so at time 2, ALG must discharge at Ie@st(At time 1, ALG already
had to dischargeg.) Similarly, at time: for (B,2B,3B, ...,iB,...,nB), ALG
must discharge?. Total discharging by ALG is then at leasf.; | £ = 2E,

[

Since we must haveZ < B, it follows thatc > n. ]

The trivial algorithm that simply discharges amoubfn at each of the:
timeslots andchever chargess n-competitive (since&) PT < B) and so matches
the lower bound for the bounded case.

Proposition 4.3. With peak demand known in advance and finite time horizon
n, No online algorithm can have 1) competitive ratio bettartlt/,, if the battery
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begins nonempty or 2) competitive ratio better tlidn— 1/2 if the battery begins
empty, regardless of whether the battery is bounded or not.

Proof. First assume the battery has initial chabgéThe capacity is either at least
borunbounded.) Suppose ALGdsompetitive. Consider the cury®, 0,0, .. .,0),
with D > b. Then OPT clearly dischargésat time 1 (decreasing the peak by
For ALG to bec-competitive, it must discharge at Ie&‘;st Now consider curve
(D, D,0,0,...,0). Attimes 1 and 2, OPT discharg@sdecreasing the peak by

5. Attime 2, ALG will have to discharge at leaf = 2. Similarly, at time:
on(D,D,D,...,D), ALG must discharg%. Total discharging by ALG is then at
least:>""" | £ = H,2. Since we discharge at each timeslot and never charge, we
must have? H,, < b, and so it follows that > H,,.

Now let the battery start empty. Assume the battery capasiay leastD or
is unbounded. Repeat the argument as above, except nhow weéhbademand
inserted at the start of the demand curves, which gives bat® And OPT an
opportunity to charge. Then for each time [2,n], ALG must discharge at least
D since OPT may discharge (and so sa¥e)n which case it would have initially
chargedD(1—1/i)). ALG is then required to dischargéf,, —1)2 during the last
n — 1 timeslots. Obviously it could not have charged more thaguring the first
timeslot. In fact, it must charge less than this. On the secgi@, D, 0,0, ..., 0),
OPT charged/2 at time 1 and discharges it at time 2, savig2. ALG must
dischargez’% at time 2 in order to be-competitive on this sequence, and so reduce
the peakD by %. Therefore at time 1ALG cannot charge more than — %.
Therefore we must hav® — £ > (H,, — 1)D/c, which implies that > H, —
1/2. O

4.2. Bounded Battery

Our first online algorithm bases its threshold at tiln@en a computation of
the optimal offline thresholﬂ}"pt for the demandd,, ..., d;. The second bases its
threshold at timeé on x(s;, ) (see Defs. 3.1 and 4.1). Assuming the algorithms
are feasible (i.e., no battery underflow occurs), it is néitadilt to show that they
are competitive.

Theorem 4.4. Algorithms2.aand 2.b are H,,-competitive, if they are feasible,
and haveper-timeslotrunning times of)(n) andO(1), respectively.
Proof. First observe that(i) > y(s;, i) implies 2720 < l;{‘nf(i? impliesT >

T? for all i. Therefore it suffices to prove competitiveness for Aldori®.a. Since
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T/ is the lowest possible threshold up to timeé — 77" is the highest possible
peak shaving as of time Since the algorithm always saved &H,, fraction of
this, it is H,,-competitive by construction.

Sincep(1,7 + 1) can be found in constant time fropg1, ), Algorithm 2.b
runs in constant-time per-slot. Similarly, AlgorithPnais, recalling the proof of
Theorem 3.1, linear per-slot. 0J

We now show that indeed both algorithms are feasible, udiegdllowing
lemma, which allows us to limit our attention to a certain fignof demand se-
qguences.

Lemma 4.5. If there is a demand sequen¢é,, ds, ..., d,,) in which underflow
occurs for Algorithm2.aor 2.b, then there is also a (possibly shorter) demand
sequence (for the same algorithm) of length< » in which underflow continues
to the end (i.e.b,,,1 < 0) and no overflow ever occurs.

Proof. The battery is initialized to full); = B. Over the course of running one
of the algorithms on a particular problem instance, theeatevel will fall and
rise, and may return to full charge multiple times. Suppasgeuflow were to
occur at some timeg i.e. b, < 0, and lets be the most recent time befotevhen
the battery was full. We now construct a demand sequencethétbwo desired
properties, for both algorithms.

First, suppose > 1. For Algorithm2.a, consider the demand sequence (of
lengthn’ = n) obtained by copying the demands of regjer| leftward to region
[1,#] = [1,t— s+ 1]. Since the optimal solution for regids, t] can be only lower
than for regior1, ¢], this change can only lower the thresholds used, which there
fore preserves the underflow. For Algoritirb, consider the demand sequence
(of lengthn’ = n — s + 1) obtained by deleting the regidh, s — 1]. Sincepu(s, t)
is unchanged and/,,, .1 = H,_ .1 (Wwhere nows’ = 1), the thresholds do not
change and underflow again is preserved.

Second, since any underflow that occurs in redlor] can be extended to the
end of sequence by setting each demand after tireeD, we can assume wlog
thatt’ = n’ + 1. O

First, suppose > 1 and consider the demand sequefice| of lengthn’ =
n — s + 1. For Algorithm 2.a, the optimal solution for regids t| can be only
lower than for regiori1, ¢]; for Algorithm 2.b, it is unchanged, singgs,t) =
w(l,t —s+1)andH, .41 = H,_s11, Wheres’ = 1. Therefore deleting the
region|[1,s — 1] can only lower the thresholds used, which therefore preserv
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the underflow. Second, since any underflow that occurs irone@di '] can be
extended to the end of sequence by setting each demandmket to D, we can
assume wlog that = n’ + 1.

Theorem 4.6. Algorithms2.aand 2.bare feasible.

Proof. For a proof by contradiction, we can restrict ourselves bgnirea 4.5 to
regions that begin with a full battery, underflow at the end] have no overflow

in the middle. For such a region, the change in battery-leveVell behaved

(b; — biyr = d; — T;), which allows us to sum the net discharge and prove it is
bounded byB. We now show that it is impossible for the battery to fall vel@at
timen, by upperbounding theet discharg®ver this region. Lef\b; = b;—b;,1 =

d; — T; be the amount of energy the battery discharges atistép\b; will be
negative when the battery charges.) We will show that .. Ab; < B. Let Ab¢

and Ab? refer to the change in battery levels for the correspondiggrihms.
Because as we observed ab@ye> 77, we have:

Ab = d; = TP < AW = d; — T

Therefore it suffices to prove the feasibility result for Atghm 2.b, and so we
drop the superscripts. Expanding the definition of that @ilgm’s threshold, we
have:

0 = (5 0-0.0) =i (5 (- A0 )

n

(4.1)
By summing Eqg. 1 for each we obtain:
- - D~ (Xi_idi — B)/i )
> ab=3 d~ ( r—
(. (p D-(Cid)/i — BJi
— ; (dz <D 7 ) + >,
- D — (X1 di)/i )
> (o )
Therefore it suffices to show that:
- D — 22:1 dy. /i
> (di- (D~ - )) <0 (4.2)

i=1
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which is equivalent to:

g i —nD —(D— d '><
Z_Zlal n +Hnn _ k1) <0

@Zn:Hndi - (ZZ %) < nD(H, — 1) (4.3)

n ) n n n n n n n k—1
22T S LTl T2
=1 k=1 =1 k=1 =1 k=i+1 k=1 i=1 k=1 i=1
= Y Hudi—) Hidy
k=1 k=1
we can rewrite Eq. 4.3 (replacing the parenthesized expresss:
> Hi_yd; < n(H, —1)D (4.4)
=1
Sinced; < D andD > 0, it suffices to show that:
=1
In fact, this holds with equality (see [17], Eq. 2.36). 0J

4.3. Unbounded Battery and Boundary Conditions

Both online algorithms, modified to call appropriate sulbiroes, also work
for the unbounded battery setting. The algorithms are Ibé&asi this setting since
f1(7) < T still holds, wherel ™" is now the optimal threshold for the unbounded
battery setting. (Recall that offline Algorithinacan “greedily” run in linear total
time.) The algorithm ig7,,-competitive by construction, as before.

Corollary 4.7. Algorithms2.aand2.bare feasible in the unbounded battery set-
ting.
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Proof. The proof is similar to that of Theorem 4.6, except thafwhich may be
0) is plugged in for all occurrences &f (resulting in a modified:), and overflow
is no longer a concern. O

We also note that the correctness and competitivenesslobbgirithms (with
minor preprocessing) holds for the setting of arbitraryi@hbattery levels. In the
case of Algorithn®2.a, each computation &f”"* is computed for the chosén, as
described in Section 3.1, and the online algorithm againiges a fraction / H,,
of these savings. Although in the bounded setting “incregish, for the 7%
computation by modifying; may raise the peak demaimthe offline algorithm’s
input, the D value for the online algorithm is not changed. Indeed, erargithe
proof of Theorem 4.6, we note that the upperbound ortieonly used for > 1
(see Eq. 4.4).

5. Lossy Model

We now extend the battery charge problem to the more readistiing oflossy
batteries, which lose to conversion inefficiency a condtaation of any amount
charged (e.g. 33%). The loss model works as follows. For eaghof energy
charged, only: = 1 — L units will be available for discharge, due to the combined
inefficiencies of charging and discharging. This loss cdangddbroken into separate
componentd.;, L, for charge and discharge, but since the loss does not depend
on time, doing so would have essentially no effect. For sicitg] we merge these
losses into a single loss that occurs instantly at the tinehafging.

Threshold algorithms. In the lossy settinghreshold algorithmsre the same as
those given in Section 2 except that they modify the threskalue in order to
prevent underflow, if necessary:

for each timeslot
if d; <T;
chargemin(B — b;, T; — d;)
else
dischargenin(d; — T;, b;)
if d; —T; < b
T; T+ (di = T; — by)

The algorithm schema again amounts to this raleeach timeslot, request
an amount as near to; as the battery constraints will allowr'he secondf state-
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Figure 1: Generalized Average, withshaded darker antl shaded lighter

ment of the algorithm schemas is executed only if underflosuos (recall Def.
2.2). The competitiveness guarantee of AlgoritAmfor the lossless setting was
achieved in Section 4 by showing that such underflow woulceneecur. The
factor-revealing LP below provides evidence that such tffwe also never oc-
curs in the lossy setting. Our heuristic algorithms chooseel, more aggressive
thresholds, with the result that such underflow does (oeratlould) occur. Since
meeting demand is a strict requirement, in the event of dloderthe request rises
accordingly to keep the battery level nonnegative, whickhsat theif statement
does.

6. GA and Lossy Battery Algorithms

The algorithms for lossy batteries are structurally sintilethose for lossless,
except that computations aiverageare replaced with what we call tlgeneral-
ized averag€GA). In both cases, the optimal solution value for an ingaéwill be
the best possible maximum request over that interval whachbe found by com-
puting the (generalized) average of all subintervals. Téwmegalized average of
an interval corresponds to a constant request made oveotinsecof the interval
(see Fig. 1); the area below the demand curve and above thestecprresponds
to the amount charged; the area above the demand curve awl thel average
corresponds to the amount discharged. The algorithms oséue lossy bounded
battery setting are shown in Table 3. Since these algoridmmthe same as those
for the lossless setting except with average replaced weitieplized average, we
maintain the same labels.
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Alg. battery online threshold; runningtime

1.b bounded no f(1,n) O(n?logn)

2.a bounded yes D - 220D O(p2logn)

2.b bounded vyes D—g(%(s:?) O(nlogn)

Table 3: Threshold functions used for offline and onlineiisg# (see Def. 6.2).

Definition 6.1. Givenn real values(y, y», . . ., y,) and constant® < r < 1 and
B > 0, let thegeneralized average GA(y1, yo, - - -, yn) (denotedu) be the value
of a satisfyingU(a) = B + r - L(a), where: U(a) = Y1, max(y; — a,0) and
L(a) =>""  max(a—y;0). We callU(a) andL(a) u's L/U valuesor a’s upper
and lower. Treating the input valuesg, ..., y,, as a step functiony = y(z), they
correspond to the area aboveand belowy (upper) and the area below and
abovey (lower).

Definition 6.2. Let (i, j) be the GA of the demands over regjary]. Letji(h, k) =
maxy<;<j<i 1(7, j). Attimes, lets; be the most recent time when the battery was
full.

Some intuition may be provided by considering what is likéilg simplest
way, in terms of coding, of computing a GA: binary search stdinggmin;{d, } —
B, max;{d;}]. For each candidate valyeif B+r-L(u) > U(u) then shift down-
ward and otherwise shift upward, until the two values aré@ahtly close.

Note thaty need not be one of thg values. WhenB = 0 andr = 1,
the generalized average is simply the mean of the vajyeshen B = 0 andr
approaches 0, the generalized average approaches the umaxim

Computing a GA inO(nlogn) is not difficult. First sort the valueg;, and
let the values’ subscripts now reflect their new positiongxtiNsetL(y;) = 0,
sincey; is the smallesy;. For each subsequentip ton, L(y;) can be computed
in constant time (we omit details due to space constrair@&nilarly, compute
eachU (y;), starting withU (y,,). Once all theL/Us are computed,’s neighbors
(vi, yir1), i.€., the two nearest input values thaties between, can be found
by inspection, and given thegecan be computed in constant time. Unlike the
ordinary arithmetic mean, however, computing a GAifr) requires more effort.

Our recursive algorithm, whose behavior we sketch in wdrd# is inspired
by the well-known linear-time deterministic Selection Atghm [18], and calls
it as a subroutine. The bulk of the work is in findipg neighbors Given these
data points (and theit /U values), we can solve for the correct vajuig constant
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GENAVGNBRS(A[], Xu, Xp, Wy, W) :
if length(A) =2

return A

else p «— Select-Median(A) (@)
(A, Ay) < Pivot(A,p) (b)
U, < Upper(A,p);L, — Lower(A,p) (c)

U—U,+ Xy+ Wy - (max(A) — p)
L— L,+X,+Wr-(p—min(A))
fU>r-L+B

return GenAvgNbrs@, U p, L, Xy, Wr + |AL|, Wy)
elseifU<r-L+ B

return GenAvgNbrs@, Up, X, U, W, Wy + |Ayl)
else

return p

Figure 2: Algorithm for computing the generalized averafjgroarray of numbers.

time. (The casesiot shown in the pseudoccdehen the solutiom is among the
data points, and whemis less tharall the points can be checked as special cases.)
The algorithm for finding the neighboring data pointgittakes the set of points

y; asinput. Let) < r < 1 andB be the parameters to the GA. The first parameter
to the algorithm is the set of values to be averaged; all githeameters to the first
(non-recursive) call are set to 0.

Theorem 6.1. GA(y1, ..., y,) can be computed i®(n) time.

Proof. (sketch) With|A| = n, lines a,b,c each take tind&n) sinceSelect-Median
uses the Selection AlgorithnRivot is the usual Quicksort pivoting algorithm,
and Upper and Lower are computed directly. (Min and max capdssed in
separately, but we omit them for simplicity.) The functiomkes one recursive
call, whose input size is by construction half the origimglut size. Hence the
total running time isD(n). O

The bulk of the work done by our algorithms for lossy batteigeto compute
the GA for a series of rangés, j], as: stays fixed (as e.g. 1) andincreases
iteratively (e.g. from 1 tau). It is straightforward to do this i®(n?) time, by
maintaining a sorted sublist of the previous elements rimgeeach newy; and
computing the new GA in linear time. Unlike ordinary aversg@A[i, j| and
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the valuey,,; do not together determin€AJi, j + 1].> (The GA could also be
computed separately for each regidnj].) This yields offline algorithms for
the lossy unbounded and bounded settings, with runningstinie?) andO(n?).
Through careful use of data structures, we obtain fasterighgns, with running
timesO(nlogn) andO(n?logn), respectively.

Theorem 6.2. The values=A[l, j], asj ranges from 1 ta: can be computed in
O(nlogn).

Proof. (sketch) A balanced BST is used to store previous work sagthiaty from
GAli, jlto GA[i, j + 1] is done inO(log n). Each tree node storegjavalue plus
other data (its L/U, etc.) used byeE®AVGNBRS to run inO(logn). Each time

a new data poiny; is inserted into the tree, its data must be computed (and the
tree must be rebalanced). Unfortunately, each insefaotly corruptsall other
nodes’ data Using a lazy evaluation strategy, we initially update ofiflog n)
values. After the insert, BNVAVGNBRS is run on the tree’s current set of data
points, inO(logn) time, relying only on the nodes’ data that is guaranteed to
be correct. Running on the BST,EBRAVGNBRS'S subroutines (Select-Median,
Pivot, and selection of the subset to recurse on) now compied(logn), for a
total of O(nlogn). O

Theorem 6.3. For the offline/lossy setting, Algorithtnb (7; = /i(1,n)) is opti-
mal, feasible, and runs in tim@(n?logn).

Proof. Within any region[i, j], the battery may help in two ways. First, the bat-
tery may be able to lower the local peak by sometimes chamgimyjsometimes
discharging. Second, the battery in the best case woultlwgitr chargeB at
timesloti. With battery loss percentadge the total amount discharged from the
battery over this period can be at mdstplus (1 — L) times the total amount
charged. The optimal threshold over this region cannotéetiean=A(d,, ..., d,)
with (1 — L, B) chosen as its parametérs B).

The threshold used i = i(1,n). It suffices to show that the battery will be
nonnegative after each time Supposg is the first time underflow occurs. Let
1— 1 be the last timeslot prigir with a full battery (or O if this has never occurred).
Then there is no underflowr overflow in [z, j), so the total charged in region
4, ] is exactly L(T) = >7_ max(T — d;,0) and the total discharged will be

t=1

SFor example, whem3 = 10 andr = .5, GA(5,10,15) = GA(3,21,3) = 7, but
GA(5,10,15,20) = 10.83 # GA(3,21,3,20) = 11.33.
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Ur) = {:i max(d; — T, 0). The amount of energy available for discharge over
the entire period i®3 +r- L(7"). Underflow at timg meand/(7T") > B+r- L(T),
but this contradicts the definition @f.

To compute the thresholds, computel], j] iteratively (varying;j from i to

n) for each value. Eachi value take€)(n logn), for a total ofO(n?logn). O

Corollary 6.4. If the battery is effectively unbounded, then a similar iojati al-
gorithm can be obtained, which runs in tirtgn log n).

7. Evidence for Lossy Competitiveness

If no underflow occurs, then Algorithnmaa and2.b are H,,-competitive by
construction. (Recall that the objective function is thalpeeduction amount.) In
this section, we use the factor-revealing linear prograP) iechnique of Jain et
al. [19] to provide some quasi-empirical evidence that rahawnderflow can ever
occur.

A factor-revealing LP is defined based on a particular athorifor a prob-
lem. The LP variables correspond to possible instancescgeftain sizea, of the
optimization problem. (We therefore have an indexed familinear programs.)
The optimal solution value of the linear program reveals ethimg about the al-
gorithm it is based on. In the original Facility Location #ipation, the objective
function was the ratio of the cost incurred by the approxiomealgorithm in cov-
ering the facility and the optimal cost (assumed wlog to befjoing so, so the
maximum possible value of this ratio provided an upper baamthe algorithm’s
approximation guarantee.

The size index of our LPs is the number of timeslotg he objective function
is the final battery leveb,, . ;. The constraints are properties describing the be-
havior of the algorithm; some of the constraints performki@eping, including
keeping track of the battery level over time. We first prowide factor-revealing
LP for the lossless setting (Fig. 3), which is simpler thamltssy.

We now explain this program. The battery is initializedBcand can never
supersede this level. As we argue below, we can limit oueselvithout loss of
generality to demand sequences in which the algorithm neishres to charge
to a level greater tham, i.e. no overflow occurs. For such inputs, the threshold
scheme’s firsinin has no effect and we always have that, = b, + T; — d;.
ThresholdT; is constrained in the LP to equal the expression for Algarithl's
threshold, withopt; lower-bounded by the closed-form expression for the analog
of GA for lossless batteries (see Section 4). Moreover, thlge is less than
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min: b,

st b1 =0b;+T; —d;, foralli
b; < B, forall i
T,=D — (D —opt;)/Hy,, for all i
opt; > (1/i)(=B + 32,_, d;), for alli

blzB
d; < D, forall;
D>0,B=1

Figure 3: Factor-revealing linear program for losslessdiats (LP1).

or equal to the corresponding value used in AlgoritBra with the effect that
T; is less than or equal to the corresponding threshold of Algor2.a at every
timei. This in turn means that feasibility of Algorith@ibimplies feasibility of
Algorithm 2.a. D is included in the program for clarity.

We solved this LP, written in AMLP, with LP solvers on the NE&Sver [20],
for several values < 100. The solution value found was 0, consistent with the
known result (i.e., Theorem 4.6 of Section 4). Lemma 4.5 @tiSe 4 allows us
to limit our attention to a certain family of demand sequene&., those in which
once underflow occurs it continues to the end (bg.< 0) and no overflow ever
occurs.

Theorem 7.1.If the optimal solution value LP1, for parameter sizgis at least
0, then AlgorithnR.ais H,,-competitive in the lossless setting, for problem size

Proof. Suppose underflow were to occur at some timand lets be the most
recent time prior ta when the battery was full. Then by the lemma| can be
assumed wlog to bf, n]. The assumptions that the battery starts at Ié&vaind
never reaches this level again (though it may rise and faltmonotonically) are
implemented by the constraints stating that B andb; < B. Since no overflow
occurs, the firsinin in the threshold algorithm definition has no effect, and the
battery level changes based only ®nandd;, i.e., it rises by amount; — d;
(which may be negative), which is stated in constraints.c&upt; = [i(1,1)

is the max of expressions for all sequenceglof], in particular we have that
opt; > (=B + _._, d;)/i. The optimal solution value to such an LP equals the
lowest possible battery level which can occur, given angitds problem instance
of sizen, when using any algorithm consistent with these conssaiince in
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particular the behavior of Algorithnm.ais consistent with these constraints, the
result follows. O

Corollary 7.2. If the optimal solution value LP1, for all parameter sizés, is
atleast O, then Algorithra.bis H,,-competitive in the lossless setting, for problem
sizes< n.

Proof. In Algorithm 2.b, thresholdT; is defined based on the region beginning
after the last overflow at position= s;, shifting[s,¢] to [1,¢] = [1,t — s + 1]
hasno effect If 2.b insteadalways usedd,,, then the lemma above would directly
apply, since the algorithm would then perform identicalty[s, ¢] to [1,¢], and
then the underflow could again be extended to the end. Thét that LP1’s
optimal solution value i$> 0 would then imply that thisnodifiedAlgorithm 2.b

is feasible for inputs of size.

In fact, the actual Algorithn2.busesH,, .1, with s = s;, at timei. In effect,
Algorithm 2.btreats the demand suffik, 1, ..., d,, as an independent problem in-
stance of sizes — s + 1. Each time the battery overflows, the harmonic number
subscript is modified, and there is a new subregion and a nesilplity for un-
derflow. If all sizes of overflow-free subregions are underffeee, then the algo-
rithm is feasible. Therefore, if LP1’s optimal solution isrmegative, Algorithm
2.bis feasible. O

The more complicated factor-revealing program for theyiestting is shown
in Fig. 4. The additional difficulty here is that the prograashyuadratic con-
straints.

We omit a full description of this program and only remarktttee two main
difficulties are 1) that there is an essential asymmetry e lihttery behavior,
which complicates the first constraints; and 2) that sincénaxge no closed for-
mula for GA, (a lower bound on) the optimal threshold mustlbscribedrather
thancomputed

There are three sets of quadratic constraints, indicatestdrg. In fact, it
is possible to remove these and convert LP2 to a linearlgttaimed quadratic
program (QP), defined for a fixed constant efficiency rafjonlike LP2, in which
r is a variable). Unfortunately, the resulting QP is not conve

We then have the following results.

Theorem 7.3.1f the optimal solution value LP2, for parameter sizgs at least
0, then Algorithmg.ais H,,-competitive in the lossy setting, for problem size
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min: b,

st b1 =0b; +r-ch; — dis;, foralli
ch; - dis; =0 *)
b; < B, foralli
ch;, dis; > 0, for all i

=
vl

B
d;, for all
1,D >0

1

D
B

Ti =D — (D — opt;)/ Hy
opt; > ga;, for all ¢

B+r- (30 choy;) =3 diso; foralli  (*)
cho, ; - diso; ; = 0, forall (j,i) : j < *)
ga; = dj — diso; ; + cho; ;, forall (j,4) : j <1

cho; j,diso; ; > 0, forall (5,i) : j <

Figure 4: Factor-revealing mathematical program for Idssiyeries (LP2).

Corollary 7.4. If the optimal solution value LP2, for all parameter sizés, is
at least 0, then Algorithr2.bis H,,-competitive in the lossy setting, for problem
sizes< n.

We solved the second program, implemented in AMLP, usingrs¢solvers
(MINLP, MINOS, SNOPT) on the NEOS server [20], for severdlresn < 100.
(The number of variables is quadratic i and there are limits to the amount
of memory NEOS provides.) In all cases, we found the solutialne found
was (within a negligible distance of) nonnegative. Althbulgese solvers do not
guarantee a globally optimal solution (at least not for gonvex nonlinear pro-
grams), we believe this performance provides some “quagitgcal’ evidence
for the correctness of Algorithnisaand2.h.
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(a) Starbucks. (b) Resident. (c) Random.
Figure 5: Input data: demand versus time.

8. Performance Evaluation

8.1. Experiment Setup

We performed experiments on three datasets: a regulardassitay’s demand
from an actual Starbucks store, a simulated weekday denfanksidential user,
and a randomly generated demand sequence. Each dataskdrigtbf, = 200.
The demand curves are shown in Fig. 5. The parameters inroutation are: 1)
battery sizeB (typically B = 500K), 2) battery charging loss factdr (typically
L = 0.33), and 3) an aggressivenesdiscussed below (where= 0 corresponds
to Algorithm 2.bandc = 1 to Algorithm 2.b-op).

Since the objective is peak minimization, we modify the alipons so that
the requests are monotonically increasing (except wherepted by overflow).
Since the peak must be at ledst— B, we similarly force this to be the mini-
mum request (again barring overflow). Although the undagyffline algorithm
assumes that, = B, other lower initial battery levels can be simulated byfarti
cially increasing the initial demand(s). In the next sultisec we discuss a sample
of the experiments performed.

8.2. Simulation Results

We know that in the lossless setting, our algorithms Hyecompetitive in
terms ofpeak reductionsince no underflow occurs. We first wish to test the
performance of the corresponding lossy algorithms, as albther, heuristic
algorithms.

Test 1 - battery size. In this test, we measured the peaks produced by the
different algorithms running with various battery sizes,dettings including lossy
and lossless and initial battery levelstof= 0 andb; = B. We observe the same
general patterns throughout. For random input, performanaveraged over
runs. We observe (Fig. 6) that increasing the battery sidaces the peak in
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our optimal algorithm; we also see that Algorithizrb constantly outperforms
Algorithm 2.a, and that they both are withiA,, of opt, as expected. We include
the heuristic Algorithm2.b-opt for comparison, which at each point attempts
thresholpt; = /1(1,1), i.e., to have, at all times, the same peak as opt would have
had so far. This is a very bold algorithm. We see that it cafoper badly with

too large a battery since its aggressiveness can then heategeffect, increasing
the likelihood of underflow.

In our next test, we seek a middle-ground between the coatbezmess of.b
and the boldness &.b-opt

Test 2 - aggressivenessiVe vary the boldness in an algorithm based?on
by using a threshold; = D — #ﬁ?_l)c with parameter. Whenc = 1, the
algorithm is2.b (most conservative); whenh= 0, it is 2.b-opt(most aggressive).
In this test, we measure the performance waries from0 to 1 with increment of
0.1. We compare the performance of Algoritthb as a reference. We used two
battery sizes on the scale of battery size in the Starbuckaliation. We observe
(Fig. 6) that increased aggressiveness improves perfaendut only up to a
point, for reasons indicated above. We note that the beseagige factor can
depend on both battery sizeand the input data.

Although we naturally find that too muammotivatedboldness can be dam-
aging, there are potential situations in which significasitlhess can be justified.

Test 3 - predictions. Suppose we are given error-prone but reasonably accu-
rate predictions of future demands, based e.g. on hista#&ta. In this test, we
test two prediction-based algorithms. Lgtbe the predicted demand sequence.
Let errore € [—1, 1] be the prediction error level, with; uniformly distributed
in [d;, d;(1 +e)] orld;(1+e),d]if e < 0. First, theobliviousalgorithm simply
runs the optimal offline algorithm on the values. Theupdateversion runs the
offline algorithm on demand sequenced,, ..., d;, p;+1, p» >, in Which thed;
are the actual past demands andjhare the future predictions. We compare the
performances of prediction algorithms with optimal offladgorithm, Algorithms
2.band2.b-optas references. We vary the prediction values from most agtion
e = —1 to most conservative = 1.

We see (Fig. 7) that the performance of the prediction dlgarivaries in
roughly inversely proportion to the error level. If the pigthn error is less than
20%, both prediction algorithms outperform the two online aitfons. Ase ap-
proaches zero, the performance naturally converges topti@aal.

Test 4 - lost energy. As noted in the introduction, the use of lossy batteries
increases the total energy used. In this test, we compareshenergy during
charging process with the total energy demand (Fig. 8). Wiéaéat the amount
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of lost energy is negligible compared with the total energgndnd. We naturally
find, however, that largeB and larger loss factof, increase energy loss. We
believe that the facts that the fraction of lost energy islsaral that the per-unit
energy charge is significantly lower than the per-unit peadrge vindicate our
choice to focus on peak charge.

9. Conclusion

In this paper, we formulated a novel peak shaving problerd, gave effi-
cient optimal offline algorithms and optimally competitimeline algorithms. We
also presented optimal offline algorithms and both hewrastid possibly compet-
itive online algorithms for the peak reduction problem witksy batteries. The
factor-revealing mathematical program for the lossysgtiresently provide only
guasi-empirical evidence for competitiveness. The ahititsolve such programs
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optimally would provide computer-aided proof of such cotitpeness, at least
for instances of bounded size. The primary open problemesigd by this work
is to prove this competitiveness analytically. Severalittattal future extensions
suggest themselves:

¢ limited battery charging/discharging speed
e battery loss over time (“self-discharge’)

e multi-dimensional demands and resulting complex objedimctions
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