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ABSTRACT
We consider the problem of estimating the end-to-end latency of intermit-
tently connected paths in disruption/delay tolerant networks. This is useful
when performing source routing, in which a complete path is chosen for
a packet to travel from source to destination (when intermediate nodes are
really low complexity devices that can only forward packets but cannot per-
form route computations), or in linear network topologies. While comput-
ing the time to traverse such a path may be straightforward in fixed, static
networks, doing so becomes much more challenging in dynamic networks,
in which the state of an edge in one timeslot (i.e., its presence or absence)
is random, and may depend on its state in the previous timeslot. The traver-
sal time is due to both time spent waiting for edges to appear and time
spent crossing them once they become available. We compute the expected
traversal time (ETT) for a dynamic path in a number of special cases of
stochastic edge dynamics models, and for three different edge failure mod-
els, culminating in a surprisingly nontrivial yet realistic “hybrid network"
setting in which the initial configuration of edge states for the entire path is
known. We show that the ETT for this “initial configuration" setting can be
computed in quadratic time (as a function of path length), by an algorithm
based on probability generating functions. We also give several linear-time
upper and lower bounds on the ETT, which we evaluate, along with our
ETT algorithm, using numerical simulations.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complexity]: Gen-
eral; G.3 [Probability and Statistic]: Stochastic processes
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1. INTRODUCTION
In a disruption/delay tolerant network (DTN), edges are typically

intermittently unavailable. Specifically, the state of an edge in one
timeslot (i.e., present or absent) may be random, as well as pos-
sibly dependent on its state in the previous timeslot. If a packet is
committed towards traversing such a route (as in source routing1), it
will simply wait in a node’s buffer until the next edge in the path be-
comes usable. Apart from source routing in DTNs (which could be
applicable in general topologies), dynamic paths may be observed
in naturally occurring linear network topologies such as military
convoys, underwater networks, and linear sensor networks, e.g., for
monitoring bridges. Edges in these networks exhibit varying levels
of intermittence due to a plethora of factors such as relative mo-
bility of vehicles, significant signal propagation loss due to rugged
terrain, or multi-path fading and shadowing.

The time spent traversing a path with such intermittent connec-
tivity includes both the time spent crossing the edges along the path
and the time spent waiting (in node buffers) for the edges to appear.
Unlike in the case of a static path where each edge is always avail-
able for use (and thus the path’s traversal time is simply the sum of
the delays to cross the constituent edges), computing the expected
value of this end-to-end traversal time along a dynamic path is not
trivial. This is the problem we study in this paper.

We assume a discrete (slotted) model of time, over which edges
appear and disappear; the state of an edge (ON (1) or OFF (0)) in
one timeslot depends on its state in the previous timeslot. The sim-
plest model of edge dynamics is the one in which each edge is ON
independently with a certain probability p (also referred to as the
dynamic Erdős-Rényi (ER) random graph model) in each times-
lot. p is assumed to be known in advance or learnt, and the current
state of a link is observable by sampling or exchanging messages
between endpoints of the said edge.

While the random ER dynamics is a basic model for studying
dynamic graphs, it does not capture temporal correlation of edge
states. A more useful (and powerful) model is the (q, p) dynamic
discrete-time Markovian model [11], in which at each discrete time
instant, an edge is either ON or OFF; and may transition between
these states, with known probabilities of transitioning from OFF to
ON (p) and from ON to OFF (q), respectively.

The expected traversal time (ETT) for a path with n edges de-
pends on n, q, p, the initial edge states, and the transmission delays
on the edges. While the ETT can be straightforwardly estimated

1In source routing, a complete path is chosen for a packet to travel,
from source to destination, within a network [8]. An advantage of
source routing over dynamic routing is that once a path is chosen at
source, no routing decisions need be made along the way – this is
advantageous in networks with low complexity devices which can
only forward packets but not execute complex routing algorithms.



by simulation, that method suffers from high variance especially at
low values of q, p; hence an exact characterization (algorithmic if
not analytic) of the ETT is desirable. Our main result is an O(n2

)-
time algorithm for this problem. This can serve as a valuable tool
for exactly computing or at least bounding the expected end-to-end
latency in various DTN scenarios as mentioned earlier.

In this paper, we focus on DTNs, e.g., convoys, where nodes
can inform the source(s) periodically about changes in the status
of its adjacent edges over alternate communication channels – an
example of this is a “hybrid" network where each node is equipped
with two transceivers: a high data rate / low transmission range, in-
termittently connected transceiver to carry “data" (e.g., WiFi) and a
low data rate / high transmission range, better connected transceiver
for “control" (e.g., cellular network). In such a scenario, the source
would be interested in estimating the end-to-end latency of an in-
termittent WiFi path, given the initial WiFi edge states.

The problem of computing the ETT of a specified dynamic Marko-
vian path is surprisingly nontrivial. In fact, a highly restricted spe-
cial case of the problem q = 0, p > 0 reduces to proving that the
highest order statistics of an i.i.d. sequence of n̂ geometric random
variables is given by:

E[max{G1, . . . , Gn̂

}] =

n̂X

i=1

 
n̂
i

!
(�1)

i+1

1� (1� p)

i

= ⇥(log n̂)

(1)
An analytic solution to the above statistics problem was non-

trivial to prove (originally by [15], later simplified by [4]). In the
stated special case of the dynamic path, the traversal time is simply
the time taken until all n̂ OFF edges appear because the n� n̂ ON
edges never disappear (q = 0). Each OFF edge’s appearance time
is an independent geometric rv, hence the ETT is given by Eq. 1.
Computing ETT for general q, p is expectedly nontrivial.

Contributions Our main result is an exact O(n2
)-time algorithm

for computing the ETT of a length-n path in the general (q, p)

model, with edges starting in a specified initial configuration (see
Corollary 6 of Sec. 4); the algorithm applies to three edge cost
models and to three edge failure models (which vary effects of
an edge failure occurring while the packet is crossing the failing
edge—whether such a packet is delayed and if so, whether its trans-
mission can restart from where it left off; see Sec. 2).

We also compute the ETT for the stationary setting (Sec. 3) and
provide a number of easy-to-compute O(n)-time upper and lower
bounds on the ETT, which we evaluate, along with our ETT algo-
rithm, in numerical simulations. We also show that ETT computed
with available link states can be significantly different from that
computed with the usual steady state assumption.
Challenges and techniques Designing a polynomial-time algo-
rithm for the ETT in the general (q, p) setting with a given initial
state requires overcoming several challenges. First of all, the ETT
of a dynamic path is not simply the sum of n i.i.d. geometrically
distributed rv’s (corresponding to waiting times at each edge), as
is the case when all edges are in steady state. A dynamic pro-
gramming (DP) algorithm can be given to compute the ETT for a
given initial state s in terms of all possible next-timeslot states (in-
cluding s itself), but there are exponentially many such states and
hence subproblems to solve. Another natural strategy is to com-
pute the expected time ETT [i] to reach each node i on the path:
ETT [i+1] depends not just on ETT [i], but also on the probability
that edge (i, i+1) is present at the moment when node i is reached
(that moment cannot be assumed to equal ETT [i]). The state of
(i, i+1) at that point depends on its state at the previous point and
on the earlier state of (i � 1, i). Since these random states are not
independent—there is eventually a large but polynomial number of

subproblems—this leads to a complicated DP with an impractical
running time O(n11

), which we do not present.
The ETT can be numerically approximated, assuming an algo-

rithm to compute Pr(T = t), by
P

⌧

t=0 t Pr(T = t) for a large
enough constant ⌧ . Pr(T = ⌧) is nonzero for any arbitrarily large
⌧ , however, and we seek an exact solution. We apply probability
and moment generating functions (see e.g. [6]) in order to obtain a
much faster, quadratic-time algorithm for the exact computation of
ETT.
Related work Time-varying graphs [5] are useful in the study of
communication networks with intermittent connectivity such as delay-
tolerant networks [7]. In Erdős-Rényi random graphs, each of the`

n

2

´
edges exists independently with probability p. There is a dy-

namic, time-slotted extension, and a Markovian generalization [3].
Clementi et al. have also studied asymptotic scaling laws for flood-
ing times in dynamic Markovian random graphs [2], however they
have not studied the exact computation of end-to-end ETT between
an S-D pair. Jones et al. propose the metric of Minimum Estimated
Expected Delay (MEED) [9] for use in heuristic DTN routing based
on observed contact histories. However, our ETT metric measures
the delay along a path whose edges follow a more expressive and
analytically tractable (q, p) Markovian model [11]. There are a few
works on optimizing routing latency in (q, p) Markov networks
when only local knowledge of edge states is assumed [12, 13].
However, the model-assisted estimation of end-to-end latency un-
der the availability of actual knowledge of initial edge states has
not been considered before in the literature.

2. PRELIMINARIES
We begin with basic assumptions and concepts. Time is discrete,

measured in time slots. Time t refers to the beginning of the timeslot
t (numbered from 0).

We consider a path on n + 1 nodes (numbered from 0 to n) and
n edges (numbered from 1 to n) obeying Markovian dynamics. In
this paper, unless otherwise specified, each edge is assumed to obey
i.i.d. dynamics.

DEFINITION 1 (MARKOVIAN (q, p) PATH GRAPHS). At time
0, each edge in the path is in some known state. The state of a given
edge in subsequent time slots is governed by a two-state Markov
chain whose transition probabilities are given by the probability
transition matrix P for each link i 2 E:

P =

„
1� p p

q 1� q

«

with p (resp. q) the transition probability that link i jumps from
state 0 (resp. state 1) into state 1 (resp. state 0) in one timeslot.

In the (1,1) setting, edge states alternate deterministically. In the
(1 � p, p) setting, an edge’s state is independent of its previous
state (also known as the Erdös-Renyi setting).

DEFINITION 2 (STEADY STATE PROBABILITIES). The station-
ary probabilities that each link i is in states OFF (0) and ON (1)

are ⇡0 = ⇡
off

=

q

p+q

and ⇡1 = ⇡
on

=

p

p+q

, respectively.

DEFINITION 3 (TRANSIENT PROBABILITIES). Let P
a,b

(i, t) =

Pr(X
i

(t) = b |X
i

(0) = a) be the probability that link i is in state
b 2 {0, 1} at time t given that it was in state a 2 {0, 1} at time
t = 0 for initial state X . Note that P

a,b

(t) does not depend on the
link’s identity since all links are assumed to have the same param-
eters p and q. Let � = 1 � p � q 2 [�1, 1]. It is known [10] that
for any t � 0:

p10 = P1,0(t) = ⇡0(1� �t

); p11 = P1,1(t) = ⇡1 + ⇡0�
t (2)

p01 = P0,1(t) = ⇡1(1� �t

); p00 = P0,0(t) = ⇡0 + ⇡1�
t (3)



DEFINITION 4 (EDGE TRANSMISSION DELAY). Edge i has trans-
mission delay d

i

, which may be a random variable (rv). Transmis-
sion delays are all 0 in the Cut-Through (CuT) model, all 1 in the
Store or Advance (SoA) model), and nonnegative integers in the
Distance (Dist) model. D =

P
n

i=1 d
i

.

Transmission assumptions Edge state indicates whether a packet
can begin crossing the edge and, depending on the failure model,
whether and when it will succeed. If the packet reaches an edge’s
entry node when the edge is ON, then it immediately starts travers-
ing the edge; if the edge is OFF, the packet waits there until the
edge appears. Edge transmission takes zero or more slots, depend-
ing on edge transmission delay. With zero-delay edges (CuT), an
unlimited number of contiguous ON edges can be crossed instantly
(modeling situations in which transmission times are negligible rel-
ative to time scales of disruption and repair [14]).

We consider three edge failure models. In all cases, the packet
requires a nonnegative number of time slots to cross a given edge,
if it is ON. The models differ as to what occurs when the edge fails
prior to the transmission’s completion:

1. Unaffected: Transmission continues while the edge is OFF;
it simply cannot start unless the edge is ON.

2. Resume: The packet resumes its progress across the edge
once the latter turns ON again.

3. Retransmit: The packet must be retransmitted on the edge
in its entirety from scratch.

Note that the three models are equivalent in both CuT and SoA,
but yield different behavior in Dist. Under resume, a transmission
successfully completes once a total of d

i

ON timeslots for edge
i occur; under retransmit, a transmission completes once d

i

ON
timeslots for edge i occur in a row.
Notation The state or configuration of all edges at time t is indi-
cated by X(t), which represents a bitstring (or path) of length n.
The state (0 or 1) of a particular edge i at time t is indicated by
X

i

(t), sometimes written Xt

i

when notationally convenient. We
use lower-case variables (e.g., x or y) to indicate particular, fixed
bitstrings. T is a random variable indicating time of arrival at node
n (e.g. t), with E[T ] = ETT . We sometimes write ETT (P |X) or
ETT (X) to indicate ETT for path P embedded in a graph with ini-
tial configuration X , and ETT [i] for the expected time of arrival at
node i in the context of a path. We abbreviate Markov chain (MC),
upper bound (UB), and lower bound (LB).

3. ETT IN THREE SIMPLE SETTINGS
In this section, we will examine three special case settings, where

computing ETT (or even the distribution of traversal time) is rela-
tively simple.

3.1 The deterministic setting
Let the (q, p) = (1, 1), and assume each d

i

is a constant. Then
the exact traversal time can easily be computed. First, consider the
unaffected model. Let b

i

indicate the initial state of edge (i�1, i).

PROPOSITION 1. Let b0 = 1 and d0 = 0. Let �

i

= |b
i+1�b

i

|
indicate whether b

i+1 6= b
i

, and let k =

P
n�1
i=0 �

i

. Then the
traversal time under unaffected is D+

P
n�1
i=0 ((d

i

+ �

i

) mod 2)

in Dist, 2n� k + 1 in SoA, and k in CuT.

PROOF. The traversal time is the sum of the total time spent
crossing edges D and the total time spent waiting. At each edge i,
we wait one timeslot in two cases: b

i

differs from b
i�1 and d

i�1

was even, or b
i

= b
i�1 and d

i�1 was odd. In SoA, this is D = n
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Figure 1: Analyzing the latency in Markov path graphs.

plus
P

n�1
i=0 ((d

i

+ �

i

) mod 2), which is ¯b0 plus the number of
positions i > 0 where b

i+1 = b
i

, or n + n � k + 1. In CuT, we
have D = 0, and

P
n�1
i=0 ((d

i

+ �

i

) mod 2) is simply k.

By reducing Dist to SoA, we obtain:
COROLLARY 2. The traversal time for Dist under resume is

2D � k + 1.
PROOF. The resume model can be reduced to unaffected by

modeling each edge of size d
i

as a sequence of d
i

unit-size edges,
all with the same initial state as d

i

, for a total of D such edges.
Because of the chosen initial states, k in the resulting instance will
be the same as k in the original.

With d
i

> 1 for some i, the retransmit model does not apply to
the deterministic setting because the packet will never succeed in
crossing d

i

.

3.2 The (1� p, p) stochastic model
Computing the ETT here is straightforward.
PROPOSITION 3. If the transmission latency for edge (i� 1, i)

is given by a rv d
i

, the ETT under unaffected is
P

i

E[d
i

] + n(1�
p)/p in Dist, or n

p

and n(1�p)
p

in SoA and CuT, respectively.

PROOF. The total expected transmission time is
P

i

E[d
i

]. The
expected wait for each edge to appear is 1/p if the edge is OFF
(with probability 1� p) and 0 otherwise.
We note that when each d

i

is constant, the full distribution of end-
to-end latency can be computed: Pr(T = t) for t � D is the
probability that t�D timeslots are spent waiting at nodes 0 through
n� 1, analogous to throwing identical balls into bins:

Pr(T = t) =

 
t�D + n� 1

t�D

!
pn

(1� p)

t�D (4)

3.3 The (q, p) Markov model in steady state
If each Markov chain has converged (or mixed) before transmis-

sion begins, we have the steady state probabilities given by Defini-
tion 2. As a corollary of Proposition 3 above, we then have:

COROLLARY 4. If d
i

is again an rv, the expected routing time
under unaffected is

P
i

E[d
i

]+n(1�⇡1)/p in Dist, or n(1+

1�⇡1
p

)

and n(1�⇡1)
p

in SoA and CuT.
Now we show how to compute the full probability distribution

of end-to-end latency for this case. Fig. 1 illustrates paths through
space-time corresponding to the progress of the packet traveling
from node 0 to n, in CuT and SoA. Each such path is composed of
segments of moving and waiting. Let m be the number of waiting
segments, each preceded by a moving segment (possibly empty in
the first case). Let the path be specified by a sequence (see Fig. 1)
{0, 0, k1, t1, k2, t2, . . . , km

, t
m

, n, t}, and assume each d
i

is con-
stant. Clearly 0  m  min(n, t �D). Since edge transmission
takes time d

i

, the total latency t obeys t � D =

P
e

d
e

. Notice



that if t = D, then there will be no waiting segment, which is
m = 0. Then the probability of unique path P = {(0, 0), (n, t)}
is ⇡n

1 = (

p

p+q

)

n.
Now we consider the situation of t > D and m > 0. Since

the state of an edge i over time is governed by a Markov chain, the
probability of a waiting segment of length ` is ⇡0 (1 � p)

`�1 p.
The probability of some path P = {(0, 0), (k1, t1), (k2, t2), . . . ,
(k

m

, t
m

), (n, t)} conditioned on k1 = 0 is given by the following:

(⇡0(1� p)

t1�1p)⇡k1�1
1 · (⇡0(1� p)

t2�t1�1p)⇡k2�k1�1
1 · · ·

(⇡0(1� p)

t�t

m

�1p)⇡n�k

m

�1
1

= ⇡n�m

1 ⇡m

0 (1� p)

t�D�m pm

=

“ p
p + q

”
n�m

“ q
p + q

”
m

(1� p)

t�D�mpm

=

pnqm

(1� p)

t�D�m

(p + q)n

The probability of path P conditioned on k1 > 0 is the same.
We now count the total number of possible paths with exactly

m waiting segments, conditioning on two cases of the value of k1.
In the k1 = 0 case, m waiting segments implies m moving seg-
ments. Such a path is generated by placing m � 1 breakpoints on
the space axis and m � 1 breakpoints on the time axis, for a to-
tal of

`
n�1
m�1

´`
t�D�1

m�1

´
possible such paths. In the k1 > 0 case, m

waiting segments implies m + 1 moving segments, for a total of`
n�1
m

´`
t�D�1

m�1

´
possible such paths. Together, this yields a total`

n�1
m�1

´`
t�D�1

m�1

´
+

`
n�1
m

´`
t�D�1

m�1

´
=

`
n

m

´`
t�D�1

m�1

´
possible paths.

The full end-to-end latency probability distribution Pr(T = t) for
p > 0, q > 0 is then given by:

Pr(T = t) =

min{n,t�D}X

m=1

 
n
m

! 
t�D � 1

m� 1

!
pnqm

(1� p)

t�D�m

(p + q)n

(5)

REMARK 1. In settings 3.2 and 3.3, Proposition 3 and Corol-
lary 4 could be simply extended to the non-uniform (q

i

, p
i

) case for
each edge i, by replacing n by

P
n

i=1 d
i

.

4. ETT UNDER MARKOV MODEL WITH
INITIAL CONFIGURATION

In this section, we give the main result of this paper – an efficient
algorithm to compute the ETT of a dynamic Markovian path graph
with a given initial configuration of edge states. We use the basic
definitions from Section 2. Detailed proofs of the results in this
section have been omitted for paucity of space, and can be found in
a longer technical report [1].

Let T
i

be the time at which the packet reaches link i, i.e. the
time at which it finishes crossing link i � 1. Let D

i

= T
i+1 � T

i

be the time spent waiting for link i to appear plus the time taken to
cross it. To compute ETT, i.e., E[T

n

], the main strategy to reduce
computational complexity is to maintain two probability generating
functions (PGF), one for arrival time T

i

, which is general for all
failure models:

G
i,x

(z) = E[zT

i |X(0) = x]

for initial edge state x = (x1, ..., xn

) and i = n; and another PGF
for the total delay in traversing edge i, i.e., D

i

(which includes
time to wait for edge i to come up and the transmission delay d

i

)
conditioned upon the state which the packet found the edge i in
when it arrived:

F
i,1(z) = E

h
zD

i |X
i

(T
i�1) = 1

i

F
i,0(z) = E

h
zD

i |X
i

(T
i�1) = 0

i

Also, define for all links i 2 {1, 2, ..., n},

�
i,1 = E[D

i

|X
i

(T
i�1) = 1], �

i,0 = E[D
i

|X
i

(T
i�1) = 0]

Note that �
i,1 = d

i

, also �
i,1 = dF

i,1(z)/dz|
z=1 and �

i,0 =

dF
i,0(z)/dz|

z=1. The edge failure models of Sec. 2 only affect
the computation of expressions for F

i,0(z) and F
i,1(z), which we

give below. For any number a 2 [0, 1] let ā = 1 � a. Note that
expressions of the form a↵+ā� are equivalent to↵ if a = 1 else �.

4.1 Computing the PGFs and the ETT
Our computation of the PGFs G

i,x

(z) of T
i

invokes the PGFs
F

i,b

(�j

) of D
i

, for b 2 {0, 1}, and i 2 {1, . . . , n}, j 2 {0, . . . , n�
1}. Since F

i,b

(�j

) are computed differently under different failure
models, whereas G

i,x

(z) are not, in this subsection we give a re-
cursive procedure for computing G

i,x

(z), assuming that F
i,b

(�j

)

have been pre-computed. Later, we show how to compute each
F

i,b

(�j

) in constant time, for the three failure models.

THEOREM 5 (COMPUTING G
i,x

(z)). For initial state X(0) =

x = (x1, ..., xn

), we can (given F
i,0(�

j

), F
i,1(�

j

) for i = 1, ..n
and j = 0, ..n� 1), compute the following in O(n2

) time:

G1,x

(z) = x1F1,1(z) + x̄1F1,0(z)

G
i,x

(z) = �
i

(z) · G
i�1,x

(z) + �(i) ·  
i

(z) · G
i�1,x

(�z),

i = 2, ..., n, where:
�

i

(z) = ⇡0Fi,0(z) + ⇡1Fi,1(z),

 
i

(z) = F
i,0(z)� F

i,1(z),

�(i) = x̄
i

⇡1 � x
i

⇡0

COROLLARY 6 (COMPUTING ETT). For initial state
x = (x1, ..., xn

), we can (given the values F
i,0(�

j

), F
i,1(�

j

) for
i = 1, ..., n and j = 0, ..., n� 1) compute ETT in O(n2

) time:

E[T
n

] =

nX

i=1

⇡0�i,0+⇡1�i,1+(�
i,0��i,1)·�(i)·G

i�1,x

(�) (6)

4.2 Computing F
i,1(z) and F

i,0(z)

Let S be the random variable (rv) denoting the time needed to
traverse a link and Y the rv denoting the amount of time spent
waiting, upon arrival there, for the link to turn on. First observe
that for all links i 2 {1, ..., n}:

F
i,0(z) = G

Y

(z)F
i,1(z) (7)

since D
i

|
X

i

(T
i

)=0 =

d

Y + D
i

|
X

i

(T
i

)=1, (=
d

indicates equality in
distribution) where Y is a geometrically distributed rv with param-
eter p, independent of D

i

|
X

i

(T
i

)=1. (Recall that a sum of rvs yields
a product of PGFs.) In our model, since Y corresponds to the dura-
tion of an off period of a link, we have Pr(Y = k) = (1�p)

k�1p,
which yields the following PGF:

G
Y

(z) =

pz
1� (1� p)z

, 0  |z|  1 (8)

The PGFs of D
i

, i.e. F
i,1(z) and F

i,0(z) are given in Table 1
for each of the three failure models.

Note that higher order moments of T
n

can be computed from
PGF G

n,x

(z) but the computational complexity will be much higher.



Failure Model F1(z) CuT SoA
Unaffected G

S

(z) 1 z

Resume G

S

(1�q(1�G

Y

(z)))�Pr(S=0)q(1�G

Y

(z))
1�q(1�G

Y

(z)) 1 z
Retransmit G

S

((1�q)z)�q Pr(S=0)
Pr(S=0)+Pr(S=1)(1�q)z�G

S

((1�q)z) not valid not valid

Table 1: Computing PGF for edge traversal rv’s, D
i

(Recall that G
S

(z) = 1 for CuT, z for SoA)

5. STOCHASTIC ANALYSIS AND BOUNDS
In Sec. 4, we showed that the ETT can be computed in quadratic

time. In this section (proofs in [1] due to space constraints) we
give bounds for ETT in a number of settings, either analytically
or by linear-time algorithms. Some of these bounds apply to all
three edge cost models (SoA, CuT, Dist) and all three edge failure
models, while others apply only to unaffected failure model (recall
from Sec. 2 that all three edge failure models are equivalent under
CuT and SoA), while others are tailored specifically to SoA, as
indicated below.

THEOREM 7. (BOUNDS FOR GENERAL (q, p > 0), VIA HOLDER
INEQ) Let x be an an initial state, and let B

x

(k) be the indicator
function for the set of bit positions equalling 1 in x. Let SS =

S
n

+ n⇡0/p be the expected cost in steady state. Then for all cost
models and failure models, UBs and LBs for ETT(x) are given by:

˛̨
˛SS � ETT(x)

˛̨
˛ 

1

p + q

n�1X

k=0

“ q
p

”
B

x

(k)
|1� p� q|Sk (9)

where S
k

=

P
k

i=1 �i,1 =

P
k

i=1 d
i

.
REMARK 2. p01(t) increases and p11(t) decreases monotoni-

cally in t when p + q < 1, indicating stable networks. In contrast,
p + q > 1 indicates less stable networks.

PROPOSITION 8. For fast dynamics (p+ q � 1), for any initial
state x in the CuT model, ETT (x) � n(1�p)

p

.
Stable dynamics (p + q < 1): We now develop a stochastic order-
ing relation on initial states to give some tighter bounds for a com-
monly occurring case in DTNs, where the network evolves slowly.

Consider initial states x, y 2 {0, 1}n. Then y stochastically
dominates x (denoted by x � y) if 8

k

:

P
k

i=1 x
i

�
P

k

i=1 y
i

.
Let U, V be positive random variables with CDFs P

U

(u) =

Pr(U  u) and P
V

(v) = Pr(V  v). We say that V is larger
than U in distribution (written U 

d

V ) if E[f(U)]  E[f(V )]

for all increasing functions f . It is also the case that U 
d

V iff
8

u

: P
U

(u) � P
V

(u).
Let T

i

(x) be the random variable denoting the time taken to tra-
verse the first i edges in the given initial configuration x 2 {0, 1}n,
and T (x) = T

n

(x). Then we have the following Lemma, Corol-
lary, and Theorem.

LEMMA 1. Let x, y 2 {0, 1}n be two edge state vectors that
are identical in all but the first two positions where x1 = y2 = 1

and x2 = y1 = 0. Then T (x) 
d

T (y) under the unaffected

failure model with all three edge cost models.

COROLLARY 9. T
i

(x) 
d

T
i

(y) if x � y, for i = 1, . . . , n.

THEOREM 10. If x, y 2 {0, 1}n are two state vectors such that
x � y, and p + q < 1, then T (x) 

d

T (y) under the unaffected

failure model with all three cost models.
It is easy to see that for all edge cost models, all 2

n possible
initial configurations form a partial order with respect to expected
traversal time, with 0

n and 1

n denoting the greatest and least ele-
ments of the poset respectively. In particular, we have:

COROLLARY 11. For a given initial state x with k 0s and n�
k 1s, for p + q < 1, ETT(1

n

)  ETT(1

n�k

0

k

)  ETT(x) 
ETT(0

k

1

n�k

)  ETT(0

n

).

The next two corollaries state tighter bounds for the SoA model
for some specific initial configurations.

COROLLARY 12. For p + q < 1 and SoA model, it follows
from Theorem 7 that:
˛̨
˛̨n
„

1 +

q
p(p + q)

«
� ETT (0

n

)

˛̨
˛̨  1� (1� p� q)n

(p + q)2
(10)

The LB on ETT(0

n

) and the UB on ETT(1

n

) can be tightened for
p + q < 1 by Remark 2 with respect to steady state:

COROLLARY 13. For the SoA model, ETT (1

n

)  n
`
1 +

q

p(p+q)

´
 ETT (0

n

).

Following is another configurable bound based on the fact that
Markov chains eventually reach steady state.

THEOREM 14 (MC STEADY STATE). For p + q < 1 in the
CuT and SoA models, initial configuration x, and an appropriate
MC convergence threshold ✏:

ETT (x)  t⇤0 + (n� k⇤)
“
1 +

q
p(p + q)

”

where t⇤0 >
log ✏+ log(p + q)� log p

log(1� p� q)
(11)

and k⇤ 2 [1, n] is the smallest integer that satisfies:

k⇤(1 +

q
p(p + q)

) +

1� (1� p� q)k

⇤

(p + q)2
� t⇤0

Tighter bounds So far we have shown relatively simple bounds.
We now demonstrate a bounding technique which leverages the fact
that p + q < 1 (and thus the monotonicity of p10(t), p00(t)), and
is later combined with the techniques presented earlier to get much
tighter bounds.

THEOREM 15 (VIA JENSEN’S INEQ). If T u

k

is an upper bound
for ETT(1

k

) and T l

k

is a lower bound for ETT(0

k

), then the follow-
ing2 hold when p + q < 1 (for all three edge cost models and all
three transmission failure models):

ETT(1

n

)  T u

n�1 + �
n,1 + p10(T

u

n�1)/p

ETT(0

n

) � T l

n�1 + �
n,1 + p00(T

l

n�1)/p (12)

COROLLARY 16. Let T u

x

and T l

x

be upper and lower bounds,
respectively, for the configuration x traversed so far. Then (for all
edge cost and failure models) we can compute the following bounds
iteratively:

E[T
i

(x1)]  T u

s

+ �
n,1 + p10(T

u

x

)/p (13)

E[T
i

(x0)] � T l

s

+ �
n,0 + p00(T

l

x

)/p (14)

Iterative combining of bounds For arbitrary initial states x, the
above Jensen’s bounds and (9) can be combined iteratively to bound
ETT (x). To compute the UB in Corollary 11, one can use the UBs
for ETT(0

k

) and then numerically compute ETT(0

k

1), ETT(0

k

11),
2Recall from Sec. 4 that �

n,1 = E[D
n

|X
n

(T
n�1) = 1].



(a) All edges down. (b) Random 25% edges up. (c) Random 75% edges up.

Figure 2: Comparison of various bounds for low p and q (p = 0.1, q = 0.01) compared against the actual ETT (for the SoA

model), computed as follows: Upper bound (0

n

) via (10). Steady state via Corollary 13. Lower bound (1

n

) via (9). Upper bound

(Holder/Jensen) via iterative application of the upper bound of (9) upon encountering a 0 and Jensen’s ineq. upon encountering a
1. Similarly, Lower bound (Jensen/Holder) via iterative application of Jensen’s ineq. upon encountering a 0 and the lower bound of
(9) upon encountering a 1. Upper bound (Stochastic Dom) via the strategy outlined in Corollary 11. MC Converge + SS via Theorem
14. For (a), Lower bound (0

n

Jensen) via Theorem 15.

. . ., ETT(0

k

1

n�k

) by iterative application of (13). Similarly, for
computing the LB, one can use the LBs for ETT(1

n�k

) (i.e., the LB
of (9)) and then numerically compute ETT(1

n�k

0), ETT(1

n�k

00),
. . ., ETT(1

n�k

0

k

) by iterative application of (14).

Validation We implemented the ETT algorithm and computed the
bounds on randomly generated paths, for various values of p, q and
initial configurations (see Fig. 2). We also note that for moderate
and high values of p and q, the bounds are accurate and often over-
lap with the ETT curve; hence we are only highlighting a specific
low duty cycle scenario (p = 0.1, q = 0.01) where the differences
between them and the ETT curve become apparent. In general, it
can be observed from all four illustrated scenarios that while the it-
eratively computed lower bound performs quite well, there is room
for improvement in the upper bounds. We also observe that the
steady state bounds that tend to ignore the actual edge states do
not perform well, thus vindicating our decision to take the initial
configuration into account for computing ETT.

6. DISCUSSION AND FUTURE WORK
In this paper we (efficiently) computed exactly and bounded the

expected time to traverse a dynamic path with known edge states
whose future evolution is governed by Markov chains. This is use-
ful in source routing in networks with many computationally chal-
lenged devices and in several DTNs with linear topologies.

Natural interesting generalizations include edge dynamics that
are not independent. For example, adjacent pairs of edge failures
could correspond to a node failure, and probabilities q

i

, p
i

that vary
by edge. Our algorithms maintain the same complexity as long as
the sum p

i

+q
i

is held constant for all i, but in the full generalization
become exponential-time.
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