Motivation	Static problem	Dynamic problem	Conclusion

Frugal Sensor Assignment

M.P. Johnson¹ H. Rowaihy² D. Pizzocaro³ A. Bar-Noy¹ S. Chalmers⁴ T. La Porta² A. Preece³

¹The City University of New York ²Pennsylvania State University ³Cardiff University ⁴University of Aberdeen

Supported by the International Technology Alliance (ITA), US ARL, UK MoD.

September 15, 2008

Motivation	Static problem	Dynamic problem	Conclusion

Mission-oriented sensor networks

- Typically, many sensor networks are application-specific
- New model: shared sensor networks
 - To each application, sensor network is mission-specific

- With sharing, comes arbitration
 - New algorithms and policies are required for sharing
 - Decisions based on resources, priorities, cost, ownership...

Motivation	Static problem	Dynamic problem	Conclusion

Outline

2 Static problem

- Problem and algorithms
- Performance evaluation

Oynamic problem

- Problem and algorithms
- Performance evaluation

4 Conclusion

Motivation	Static problem	Dynamic problem	Conclusion

Outline

2 Static problem

- Problem and algorithms
- Performance evaluation

Dynamic problem Problem and algorithms Performance evaluation

4 Conclusion

Motivation	Static problem	Dynamic problem	Conclusion
0000	00000000		000
The problem			

- A sensor network may be tasked with multiple simultaneous missions, e.g.
 - detect events in *this area*
 - perform localization (or stereo vision, or...) in an area
 - forward this packet to next hop
- $\rightarrow\,$ Such missions must compete for available sensors
 - Possible settings: disaster area, military, surveillance
 - Some assignments might be better than others, due to
 - distance & geography
 - information modalities
 - remaining battery life
 - Which sensors should go to which missions?

Conclusion

The problem: matching sensors to missions

- Context: sensor network w/ multiple sensors and missions
 - → assignment problem: which sensors should watch which targets?
 - Sensor-mission edges have utilities
- Not just weighted bipartite matching:
 - A mission might require multiple sensors
- Missions have utility demands:
 - to be met with sensor utility
 - If demand is met, receive missions profit
- Or semi-matching with demands (SMD)
 - \bullet Assignment problem: each sensor goes to ≤ 1 mission

Motivation ○○●○	Static problem	Dynamic problem	Conclusion

Related work

Large literature on sensor coverage Our focus: assignment

- Generalized Assignment Problem (GAP)
 - Generalization of Multiple Knapsack
 - No demand lower bounds, but we use as subroutine...
- Combinatorial Auctions: "Winner Determination Problem"
 - Generalization of our (static) problem
 - Very general, very hard
- Our (ITA project's) previous work
 - SMD: Max-profit assignments, no costs
 - SUM: GAP-like assignment problem (see poster tonight)
 - NUM: maximizing network utility, for predefined sensor-mission assignments

Motivation ○○●○	Static problem	Dynamic problem	Conclusion
Related work			

- Large literature on sensor coverage
 - Our focus: assignment
- Generalized Assignment Problem (GAP)
 - Generalization of Multiple Knapsack
 - No demand lower bounds, but we use as subroutine...
- Combinatorial Auctions: "Winner Determination Problem"
 - Generalization of our (static) problem
 - Very general, very hard
- Our (ITA project's) previous work
 - SMD: Max-profit assignments, no costs
 - SUM: GAP-like assignment problem (see poster tonight)
 - NUM: maximizing network utility, for predefined sensor-mission assignments

Motivation ○○●○	Static problem	Dynamic problem	Conclusion
Related work			

- Large literature on sensor coverage
 - Our focus: assignment
- Generalized Assignment Problem (GAP)
 - Generalization of Multiple Knapsack
 - No demand lower bounds, but we use as subroutine...
- Combinatorial Auctions: "Winner Determination Problem"
 - Generalization of our (static) problem
 - Very general, very hard
- Our (ITA project's) previous work
 - SMD: Max-profit assignments, no costs
 - SUM: GAP-like assignment problem (see poster tonight)
 - NUM: maximizing network utility, for predefined sensor-mission assignments

Motivation ○○●○	Static problem	Dynamic problem	Conclusion
Related work			

- Large literature on sensor coverage
 - Our focus: assignment
- Generalized Assignment Problem (GAP)
 - Generalization of Multiple Knapsack
 - No demand lower bounds, but we use as subroutine...
- Combinatorial Auctions: "Winner Determination Problem"
 - Generalization of our (static) problem
 - Very general, very hard
- Our (ITA project's) previous work
 - SMD: Max-profit assignments, no costs
 - SUM: GAP-like assignment problem (see poster tonight)
 - NUM: maximizing network utility, for predefined sensor-mission assignments

Motivation	Static problem	Dynamic problem	Conclusion
0000			

Motivation beyond SMD: frugality

- Static setting: network may be shared between multiple users. Each user can control the network for some time.
 - Single mission may not overtax the system
 - \rightarrow missions are given explicit *budgets*
- Dynamic setting: one user controls the network for its entire duration
 - Assume sensors have finite batteries, missions use energy
 - Now no budgets necessary, just be rational
 - Maximize total profits, over entire lifetime
 - Two subcases: operational lifetime known / not

A (10) > (10)

Motivation	Static problem	Dynamic problem	Conclusion
0000			

Motivation beyond SMD: frugality

- Static setting: network may be shared between multiple users. Each user can control the network for some time.
 - Single mission may not overtax the system
 - \rightarrow missions are given explicit *budgets*
- Dynamic setting: one user controls the network for its entire duration
 - Assume sensors have finite batteries, missions use energy
 - Now no budgets necessary, just be rational
 - Maximize total profits, over entire lifetime
 - Two subcases: operational lifetime known / not

Motivation	Static problem	Dynamic problem	Conclusion

Outline

2 Static problem

- Problem and algorithms
- Performance evaluation

Dynamic problem
Problem and algorithms
Performance evaluation

4 Conclusion

Motivation	Static problem	Dynamic problem	Conclusion
	00000000		
Problem and algorithms			

- Similar to previous problem (SMD) but with 2 added factors:
 - Each mission has demand, profit and budget (b_j)
 - Sensors have associated costs (c_{ij})

• The problem is modeled with the following program:

Figure: MP P for static setting

- Goal: maximize profit without exceeding budget
- Problem is NP-complete, hard to approximate in general

Johnson, Rowaihy, Pizzocaro et al. Frugal Sensor Assignment

Motivation	Static problem	Dynamic problem	Conclusion
	•••••		
Problem and algorithms			

- Similar to previous problem (SMD) but with 2 added factors:
 - Each mission has demand, profit and budget (b_j)
 - Sensors have associated costs (*c_{ij}*)
- The problem is modeled with the following program:

$$\begin{array}{ll} \textit{max:} & \sum_{j=1}^{m} p_j(y_j) \\ \textit{s.t.:} & \sum_{i=1}^{n} x_{ij} e_{ij} \geq d_j y_j, \text{ for each } M_j, \\ & \sum_{i=1}^{n} x_{ij} c_{ij} \leq b_j, \text{ for each } M_j, \\ & \sum_{j=1}^{m} x_{ij} \leq 1, \text{ for each } S_i, \\ & x_{ij} \in \{0,1\} \ \forall x_{ij} \text{ and} \\ & y_j \in [0,1] \ \forall y_j \end{array}$$

- Goal: maximize profit without exceeding budget
- Problem is NP-complete, hard to approximate in genera

Motivation	Static problem	Dynamic problem	Conclusion
	•••••		
Problem and algorithms			

- Similar to previous problem (SMD) but with 2 added factors:
 - Each mission has demand, profit and budget (b_j)
 - Sensors have associated costs (c_{ij})
- The problem is modeled with the following program:

$$\begin{array}{ll} \textit{max:} & \sum_{j=1}^{m} p_j(y_j) \\ \textit{s.t.:} & \sum_{i=1}^{n} x_{ij} e_{ij} \geq d_j y_j, \text{ for each } M_j, \\ & \sum_{i=1}^{n} x_{ij} c_{ij} \leq b_j, \text{ for each } M_j, \\ & \sum_{j=1}^{m} x_{ij} \leq 1, \text{ for each } S_i, \\ & x_{ij} \in \{0,1\} \ \forall x_{ij} \text{ and} \\ & y_j \in [0,1] \ \forall y_j \end{array}$$

- Goal: maximize profit without exceeding budget
- Problem is NP-complete, hard to approximate in general

Motivation	Static problem	Dynamic problem	Conclusion
	00000000		
Problem and algorithms			

- Similar to previous problem (SMD) but with 2 added factors:
 - Each mission has demand, profit and budget (b_j)
 - Sensors have associated costs (c_{ij})
- The problem is modeled with the following program:

$$\begin{array}{ll} \max: & \sum_{j=1}^{m} p_j(y_j) \\ \text{s.t.:} & \sum_{i=1}^{n} x_{ij} e_{ij} \geq d_j y_j, \text{ for each } M_j, \\ & \sum_{i=1}^{n} x_{ij} c_{ij} \leq b_j, \text{ for each } M_j, \\ & \sum_{j=1}^{m} x_{ij} \leq 1, \text{ for each } S_i, \\ & x_{ij} \in \{0, 1\} \ \forall x_{ij} \text{ and} \\ & y_j \in [0, 1] \ \forall y_j \end{array}$$

- Goal: maximize profit without exceeding budget
- Problem is NP-complete, hard to approximate in general

Motivation	Static problem	Dynamic problem	Conclusion
	00000000		
Problem and algorithms			

- Similar to previous problem (SMD) but with 2 added factors:
 - Each mission has demand, profit and budget (b_j)
 - Sensors have associated costs (c_{ij})
- The problem is modeled with the following program:

$$\begin{array}{ll} \begin{array}{ll} \max: & \sum_{j=1}^{m} p_j(y_j) \\ \text{s.t.:} & \sum_{i=1}^{n} x_{ij} e_{ij} \geq d_j y_j, \text{ for each } M_j, \\ & \sum_{i=1}^{n} x_{ij} c_{ij} \leq b_j, \text{ for each } M_j, \\ & \sum_{j=1}^{n} x_{ij} \leq 1, \text{ for each } S_i, \\ & x_{ij} \in \{0,1\} \ \forall x_{ij} \text{ and} \\ & y_j \in [0,1] \ \forall y_j \end{array}$$

- Goal: maximize profit without exceeding budget
- Problem is NP-complete, hard to approximate in general

Motivation	Static problem	Dynamic problem	Conclusion
	00000000		
Problem and algorithms			

- Similar to previous problem (SMD) but with 2 added factors:
 - Each mission has demand, profit and budget (b_j)
 - Sensors have associated costs (c_{ij})
- The problem is modeled with the following program:

$$\begin{array}{ll} \max: & \sum_{j=1}^{m} p_j(y_j) \\ \text{s.t.:} & \sum_{i=1}^{n} x_{ij} e_{ij} \geq d_j y_j, \text{ for each } M_j, \\ & \sum_{i=1}^{n} x_{ij} c_{ij} \leq b_j, \text{ for each } M_j, \\ & \sum_{j=1}^{m} x_{ij} \leq 1, \text{ for each } S_i, \\ & x_{ij} \in \{0,1\} \ \forall x_{ij} \text{ and} \\ & y_j \in [0,1] \ \forall y_j \end{array}$$

- Goal: maximize profit without exceeding budget
- Problem is NP-complete, hard to approximate in general

Motivation	Static problem	Dynamic problem	Conclusion
	00000000		
Problem and algorithms			

- Similar to previous problem (SMD) but with 2 added factors:
 - Each mission has demand, profit and budget (b_j)
 - Sensors have associated costs (*c_{ij}*)
- The problem is modeled with the following program:

$$\begin{array}{ll} \begin{array}{ll} \textit{max:} & \sum_{j=1}^{m} p_j(y_j) \\ \textit{s.t.:} & \sum_{i=1}^{n} x_{ij} e_{ij} \geq d_j y_j, \text{ for each } M_j, \\ & \sum_{i=1}^{n} x_{ij} c_{ij} \leq b_j, \text{ for each } M_j, \\ & \sum_{j=1}^{m} x_{ij} \leq 1, \text{ for each } S_i, \\ & x_{ij} \in \{0,1\} \ \forall x_{ij} \text{ and} \\ & y_j \in [0,1] \ \forall y_j \end{array}$$

- Goal: maximize profit without exceeding budget
- Problem is NP-complete, hard to approximate in general

Motivation	Static problem	Dynamic problem	Conclusion
	00000000		
Problem and algorithms			
Profit function			

- A mission's profit is based on amount of utility received
- Simple version: all-or-nothing profit, based on demand (SMD)
- Generalization: no profit until reach threshold, then fractional profit

Motivation	Static problem	Dynamic problem	Conclusion
	00000000		
Problem and algorithms			
Profit function			

- A mission's profit is based on amount of utility received
- Simple version: all-or-nothing profit, based on demand (SMD)
- Generalization: no profit until reach threshold, then fractional profit

Profit function

<ロ> (四) (四) (三) (三)

Motivation	Static problem	Dynamic problem	Conclusion
	00000000		
Problem and algorithms			
Special cases			

- Fully-fractional relaxation
 - Fractional profits and fractional profits
 - Solvable by LP (also provides upperbound on OPT)
- 1-d special case
 - Sensors & missions lie on a 1-d line
 - E.g., national border, coastline
 - Other simplifying assumptions:
 - Fractional profits, profit = demand
 - Contributions are 0/1 based on distance
 - Budgets are supported
 - In this case, can solve optimally by DP
 - Extension of knapsack DP, but (non-pseudo) poly-time

イロト イヨト イヨト イヨト

Motivation	Static problem	Dynamic problem	Conclusion
	00000000		
Problem and algorithms			
Special cases			

- Fully-fractional relaxation
 - Fractional profits and fractional profits
 - Solvable by LP (also provides upperbound on OPT)
- 1-d special case
 - Sensors & missions lie on a 1-d line
 - E.g., national border, coastline
 - Other simplifying assumptions:
 - Fractional profits, profit = demand
 - Contributions are 0/1 based on distance
 - Budgets are supported
 - In this case, can solve optimally by DP
 - Extension of knapsack DP, but (non-pseudo) poly-time

イロト イヨト イヨト イヨト

Motivation	Static problem	Dynamic problem	Conclusion
	00000000		
Problem and algorithms			
Special cases			

- Fully-fractional relaxation
 - Fractional profits and fractional profits
 - Solvable by LP (also provides upperbound on OPT)
- 1-d special case
 - Sensors & missions lie on a 1-d line
 - E.g., national border, coastline
 - Other simplifying assumptions:
 - Fractional profits, profit = demand
 - Contributions are 0/1 based on distance
 - Budgets are supported
 - In this case, can solve optimally by DP
 - Extension of knapsack DP, but (non-pseudo) poly-time

<ロ> (四) (四) (三) (三)

Motivation	Static problem	Dynamic problem	Conclusion
	00000000		
Problem and algorithms			
Special cases			

- Fully-fractional relaxation
 - Fractional profits and fractional profits
 - Solvable by LP (also provides upperbound on OPT)
- 1-d special case
 - Sensors & missions lie on a 1-d line
 - E.g., national border, coastline
 - Other simplifying assumptions:
 - Fractional profits, profit = demand
 - Contributions are 0/1 based on distance
 - Budgets are supported
 - In this case, can solve optimally by DP
 - Extension of knapsack DP, but (non-pseudo) poly-time

<ロ> (四) (四) (三) (三)

Motivation	Static problem	Dynamic problem	Conclusion
	00000000		
Problem and algorithms			
Special cases			

- Fully-fractional relaxation
 - Fractional profits and fractional profits
 - Solvable by LP (also provides upperbound on OPT)
- 1-d special case
 - Sensors & missions lie on a 1-d line
 - E.g., national border, coastline
 - Other simplifying assumptions:
 - Fractional profits, profit = demand
 - Contributions are 0/1 based on distance
 - Budgets are supported
 - In this case, can solve optimally by DP
 - Extension of knapsack DP, but (non-pseudo) poly-time

Motivation	Static problem	Dynamic problem	Conclusion
Problem and algorithms			
General setting:	greedy algorithm		

- Take missions in order of profit/demand
 - Assign sensors ordered by utility/cost
 - Stop if mission is satisfied or budget is spent
 - If mission does not reach threshold release all sensors
- each mission \approx knapsack
 - Alg is doubly-greedy...

Motivation	Static problem	Dynamic problem	Conclusion
	000000000		
Problem and algorithms			
Multi Round	CAP (MRCAP)		

- Missions as knapsacks, sensors with costs/contributions varying by mission → Generalized Assignment Problem (GAP)
- GAP has approx algs, but trouble:
 - we require minimum threshold for profit
- \rightarrow Iterative alg, with GAP alg as subroutine [Cohen et al. 2006]
 - Raise threshold from 0 to real threshold
 - Each round, eliminate missions that fail (current) threshold
 - This scheme can be implemented in a (semi-)distributed fashion

Motivation	Static problem	Dynamic problem	Conclusion
Problem and algorithms			
Multi-Round	GAP (MRGAP)		

- Missions as knapsacks, sensors with costs/contributions varying by mission → Generalized Assignment Problem (GAP)
- GAP has approx algs, but trouble:
 - we require minimum threshold for profit
- \rightarrow Iterative alg, with GAP alg as subroutine [Cohen et al. 2006]
 - Raise threshold from 0 to real threshold
 - Each round, eliminate missions that fail (current) threshold
 - This scheme can be implemented in a (semi-)distributed fashion

Motivation	Static problem	Dynamic problem	Conclusion
Problem and algorithms			
Multi-Round	GAP (MRGAP)		

- Missions as knapsacks, sensors with costs/contributions varying by mission → Generalized Assignment Problem (GAP)
- GAP has approx algs, but trouble:
 - we require minimum threshold for profit
- \rightarrow Iterative alg, with GAP alg as subroutine [Cohen et al. 2006]
 - Raise threshold from 0 to real threshold
 - Each round, eliminate missions that fail (current) threshold
 - This scheme can be implemented in a (semi-)distributed fashion

Motivation	Static problem	Dynamic problem	Conclusion
Performance evaluation			
Experimental se	etup		

- Implemented a simulator in Java for testing
- $\bullet\,$ Success threshold is set to $50\%\,$
- Field size = $400m \times 400m$

Utility of sensor to mission based on separating distance

$$e_{ij} = egin{cases} rac{1}{1+D_{ij}^2/c,} & ext{if } D_{ij} \leq r \ 0, & ext{otherwise} \end{cases}$$

Motivation	Static problem	Dynamic problem	Conclusion
	000000000		
Performance evaluation			
Experimenta	lsetun		

- Sensing Range (SR) = 30m, c = 60m
- Mission demands exply distributed, avg = 2, min = 0.5
 - drop unsatisfiable missions
- Mission profits exply distributed, avg = 10, max = 100
- Sensor costs uniformly distributed in the range [0,1]
- Mission budget uniform distributed in the range [0,6]

Motivation	Static problem	Dynamic problem	Conclusion
	000000000		
Performance evaluation			

Static results: achieved profits

- Optimal Fractional: solve the LP that allows fractional sensor assignments and ignores threshold
- MRGAP achieves higher profits than Greedy
- Difference grows as #missions increases

・ロト ・回ト ・ヨト

Motivation	Static problem ○○○○○○○●	Dynamic problem	Conclusion
Performance evaluation			
Static results:	budgets		

- MRGAP: higher profits than Greedy, only slightly higher cost
- Fraction of spent budget *decreases* as #missions grows
 - $\bullet\,$ Many missions $\to\,$ not enough sensors to exhaust budget

< Ξ

< 🗗

Motivation	Static problem	Dynamic problem	Conclusion

Outline

2 Static problem

Problem and algorithms

• Performance evaluation

Oynamic problem

- Problem and algorithms
- Performance evaluation

4 Conclusion

< ≣⇒

Motivation	Static problem	Dynamic problem ●00000000	Conclusion
Problem and algorithms			
Dynamic/online	e setting		

• Sensors have limited lifetime (battery)

• The dynamic problem can be modeled as follows:

$$\begin{array}{ll} \max: & \sum_{t} \sum_{j=1}^{m} p_j(y_{jt}) \\ \text{s.t.:} & \sum_{i=1}^{n} x_{ijt} e_{ij} \geq d_j y_{jt}, \text{ for each } M_j \text{ and } t, \\ & \sum_{j=1}^{m} x_{ijt} \leq 1, \text{ for each } S_i \text{ and time } t, \\ & \sum_{t} \sum_{j=1}^{m} x_{ijt} \leq B, \text{ for each } S_i, \\ & x_{ijt} \in \{0, 1\} \ \forall x_{ijt} \text{ and} \\ & y_{jt} \in [0, 1] \ \forall y_{jt} \end{array}$$

- Goal: Maximize total lifetime profits
- Without knowing the future
- Also NP-complete, no competitive alg...

Motivation	Static problem	Dynamic problem	Conclusion
Problem and algorithms			
Dynamic/on	line setting		

- Sensors have limited lifetime (battery)
- The dynamic problem can be modeled as follows:

$$\begin{array}{ll} \begin{array}{ll} \textit{max:} & \sum_t \sum_{j=1}^m p_j(y_{jt}) \\ \textit{s.t.:} & \sum_{i=1}^n x_{ijt} e_{ij} \geq d_j y_{jt}, \text{ for each } M_j \text{ and } t, \\ & \sum_{j=1}^m x_{ijt} \leq 1, \text{ for each } S_i \text{ and time } t, \\ & \sum_t \sum_{j=1}^m x_{ijt} \leq B, \text{ for each } S_i, \\ & x_{ijt} \in \{0,1\} \ \forall x_{ijt} \text{ and} \\ & y_{jt} \in [0,1] \ \forall y_{jt} \end{array}$$

- Goal: Maximize total lifetime profits
- Without knowing the future
- Also NP-complete, no competitive alg...

Motivation	Static problem	Dynamic problem	Conclusion
Problem and algorithms			
Dynamic/on	line setting		

- Sensors have limited lifetime (battery)
- The dynamic problem can be modeled as follows:

$$\begin{array}{ll} \begin{array}{ll} \textit{max:} & \sum_t \sum_{j=1}^m p_j(y_{jt}) \\ \textit{s.t.:} & \sum_{i=1}^n x_{ijt} e_{ij} \geq d_j y_{jt}, \text{ for each } M_j \text{ and } t, \\ & \sum_{j=1}^m x_{ijt} \leq 1, \text{ for each } S_i \text{ and time } t, \\ & \sum_t \sum_{j=1}^m x_{ijt} \leq B, \text{ for each } S_i, \\ & x_{ijt} \in \{0,1\} \ \forall x_{ijt} \text{ and} \\ & y_{jt} \in [0,1] \ \forall y_{jt} \end{array}$$

- Goal: Maximize total lifetime profits
- Without knowing the future
- Also NP-complete, no competitive alg...

Motivation	Static problem	Dynamic problem	Conclusion
Problem and algorithms			
Dynamic/on	line setting		

- Sensors have limited lifetime (battery)
- The dynamic problem can be modeled as follows:

$$\begin{array}{ll} \begin{array}{ll} \textit{max:} & \sum_t \sum_{j=1}^m p_j(y_{jt}) \\ \textit{s.t.:} & \sum_{i=1}^n x_{ijt} e_{ij} \geq d_j y_{jt}, \text{ for each } M_j \text{ and } t, \\ & \sum_{j=1}^m x_{ijt} \leq 1, \text{ for each } S_i \text{ and time } t, \\ & \sum_t \sum_{j=1}^m x_{ijt} \leq B, \text{ for each } S_i, \\ & x_{ijt} \in \{0, 1\} \ \forall x_{ijt} \text{ and} \\ & y_{jt} \in [0, 1] \ \forall y_{jt} \end{array}$$

- Goal: Maximize total lifetime profits
- Without knowing the future
- Also NP-complete, no competitive alg...

Motivation	Static problem	Dynamic problem	Conclusion
Problem and algorithms			
Dynamic/on	line setting		

- Sensors have limited lifetime (battery)
- The dynamic problem can be modeled as follows:

$$\begin{array}{ll} \textit{max:} & \sum_{t} \sum_{j=1}^{m} p_j(y_{jt}) \\ \textit{s.t.:} & \sum_{i=1}^{n} x_{ijt} e_{ij} \geq d_j y_{jt}, \text{ for each } M_j \text{ and } t, \\ & \sum_{j=1}^{m} x_{ijt} \leq 1, \text{ for each } S_i \text{ and time } t, \\ & \sum_{t} \sum_{j=1}^{m} x_{ijt} \leq B, \text{ for each } S_i, \\ & x_{ijt} \in \{0, 1\} \ \forall x_{ijt} \text{ and} \\ & y_{jt} \in [0, 1] \ \forall y_{jt} \end{array}$$

- Goal: Maximize total lifetime profits
- Without knowing the future
- Also NP-complete, no competitive alg...

Motivation	Static problem	Dynamic problem	Conclusion
Problem and algorithms			
Dynamic /onl	ine setting		

- Sensors have limited lifetime (battery)
- The dynamic problem can be modeled as follows:

$$\begin{array}{ll} \textit{max:} & \sum_t \sum_{j=1}^m p_j(y_{jt}) \\ \textit{s.t.:} & \sum_{i=1}^n x_{ijt} e_{ij} \geq d_j y_{jt}, \text{ for each } M_j \text{ and } t, \\ & \sum_{j=1}^m x_{ijt} \leq 1, \text{ for each } S_i \text{ and time } t, \\ & \sum_t \sum_{j=1}^m x_{ijt} \leq B, \text{ for each } S_i, \\ & x_{ijt} \in \{0, 1\} \ \forall x_{ijt} \text{ and} \\ & y_{jt} \in [0, 1] \ \forall y_{jt} \end{array}$$

- Goal: Maximize total lifetime profits
- Without knowing the future
- Also NP-complete, no competitive alg...

Motivation	Static problem	Dynamic problem	Conclusion
Problem and algorithms			
Dynamic/on	line setting		

- Sensors have limited lifetime (battery)
- The dynamic problem can be modeled as follows:

$$\begin{array}{ll} \text{max:} & \sum_{t} \sum_{j=1}^{m} p_j(y_{jt}) \\ \text{s.t.:} & \sum_{i=1}^{n} x_{ijt} e_{ij} \geq d_j y_{jt}, \text{ for each } M_j \text{ and } t, \\ & \sum_{j=1}^{m} x_{ijt} \leq 1, \text{ for each } S_i \text{ and time } t, \\ & \sum_{t} \sum_{j=1}^{m} x_{ijt} \leq B, \text{ for each } S_i, \\ & x_{ijt} \in \{0, 1\} \ \forall x_{ijt} \text{ and} \\ & y_{jt} \in [0, 1] \ \forall y_{jt} \end{array}$$

- Goal: Maximize total lifetime profits
- Without knowing the future
- Also NP-complete, no competitive alg...

Motivation	Static problem	Dynamic problem	Conclusion
0000	00000000	00000000	000
Problem and algorithms			
0/1 special case	е		

- Again assume restrictions:
 - Fractional profits
 - 0/1 contributions
 - Free preemption
- Then can get a .63-approximation (competitive)
- Reduction to recent multi-slot Adwords alg (Buchbinder et al.)
 - $\bullet \ {\rm sensor} \approx {\rm advertiser}$
 - ${\, \bullet \,}$ battery life \approx advertiser budget
 - $\bullet \ \, {\rm timestep} \approx {\rm adword}$

Motivation	Static problem	Dynamic problem	Conclusion
		00000000	
Problem and algorithms			

- Maximize profit taking sensor energy into account
- Two cases:
 - Network lifetime is unknown (maximize profit and lifetime)
 - Energy-aware scheme
 - Network operational lifetime is known (e.g. 1 week)
 - Energy and lifetime-aware scheme
- If distributions of mission properties are known
 - Estimate expected effective profit a sensor can provide a *typical* mission:

$$\hat{P} = E\left[\frac{u}{d}\right] \times \frac{E[p]}{P}$$

Motivation	Static problem	Dynamic problem	Conclusion
		00000000	
Problem and algorithms			

- Maximize profit taking sensor energy into account
- Two cases:
 - Network lifetime is unknown (maximize profit and lifetime)
 - Energy-aware scheme
 - Network operational lifetime is known (e.g. 1 week)
 - Energy and lifetime-aware scheme
- If distributions of mission properties are known
 - Estimate expected effective profit a sensor can provide a *typical* mission:

$$\hat{P} = E\left[\frac{u}{d}\right] \times \frac{E[p]}{P}$$

Motivation	Static problem	Dynamic problem	Conclusion
		00000000	
Problem and algorithms			

- Maximize profit taking sensor energy into account
- Two cases:
 - Network lifetime is unknown (maximize profit and lifetime)
 - Energy-aware scheme
 - Network operational lifetime is known (e.g. 1 week)
 - Energy and lifetime-aware scheme
- If distributions of mission properties are known
 - Estimate expected effective profit a sensor can provide a *typical* mission:

$$\hat{P} = E\left[\frac{u}{d}\right] \times \frac{E[p]}{P}$$

Motivation	Static problem	Dynamic problem	Conclusion
		00000000	
Problem and algorithms			

- Maximize profit taking sensor energy into account
- Two cases:
 - Network lifetime is unknown (maximize profit and lifetime)
 - Energy-aware scheme
 - Network operational lifetime is known (e.g. 1 week)
 - Energy and lifetime-aware scheme
- If distributions of mission properties are known
 - Estimate expected effective profit a sensor can provide a *typical* mission:

$$\hat{P} = E\left[\frac{u}{d}\right] \times \frac{E[p]}{P}$$

Motivation	Static problem	Dynamic problem	Conclusion
		00000000	
Problem and algorithms			

- Maximize profit taking sensor energy into account
- Two cases:
 - Network lifetime is unknown (maximize profit and lifetime)
 - Energy-aware scheme
 - Network operational lifetime is known (e.g. 1 week)
 - Energy and lifetime-aware scheme
- If distributions of mission properties are known
 - Estimate expected effective profit a sensor can provide a *typical* mission:

$$\hat{P} = E\left[\frac{u}{d}\right] \times \frac{E[p]}{P}$$

Motivation	Static problem	Dynamic problem	Conclusion
		00000000	
Problem and algorithms			
Energy-awar	re scheme		

- Initially, sensors accept any mission with pretty good profit
- $\bullet~$ Energy falls $\rightarrow~$ grow more conservative
- A sensor computes "eagerness" to serve a *particular* mission:

$$P^* = \frac{u}{d} \times \frac{p}{P} \times f \tag{2}$$

where f is the fraction of remaining energy

- Propose if high enough $(P^* \geq \hat{P})$
- ightarrow Mission leaders selects sensors based on the offered utility

Motivation	Static problem	Dynamic problem	Conclusion
		00000000	
Problem and algorithms			
Energy-awa	re scheme		

- Initially, sensors accept any mission with pretty good profit
- $\bullet~$ Energy falls $\rightarrow~$ grow more conservative
- A sensor computes "eagerness" to serve a *particular* mission:

$$P^* = \frac{u}{d} \times \frac{p}{P} \times f \tag{2}$$

where f is the fraction of remaining energy

- Propose if high enough $(P^* \geq \hat{P})$
- ightarrow Mission leaders selects sensors based on the offered utility

Motivation	Static problem	Dynamic problem	Conclusion
		00000000	
Problem and algorithms			
Energy-awa	re scheme		

- Initially, sensors accept any mission with pretty good profit
- $\bullet~$ Energy falls $\rightarrow~$ grow more conservative
- A sensor computes "eagerness" to serve a *particular* mission:

$$P^* = \frac{u}{d} \times \frac{p}{P} \times f \tag{2}$$

where f is the fraction of remaining energy

- Propose if high enough $(P^* \geq \hat{P})$
- $\rightarrow\,$ Mission leaders selects sensors based on the offered utility

Motivation	Static problem	Dynamic problem	Conclusion
Problem and algorithms			
Energy/lifetime	-aware scheme		

More complicated incentives now...

ъл,

- Initially eager to accept missions
- Energy falls \rightarrow more conservative
- \bullet Approach end of network lifetime \rightarrow more eager again
- Sensors determine which missions to propose to based on:
 - Expected sensor occupancy time
 - Remaining sensor operational time (based on residual energy)
 - Actual and expected mission profit contributions

Motivation	Static problem	Dynamic problem	Conclusion
		00000000	
Problem and algorithms			
Energy /lifetime	-aware scheme		

More complicated incentives now...

67,

- Initially eager to accept missions
- Energy falls \rightarrow more conservative
- \bullet Approach end of network lifetime \rightarrow more eager again
- Sensors determine which missions to propose to based on:
 - Expected sensor occupancy time
 - Remaining sensor operational time (based on residual energy)
 - Actual and expected mission profit contributions

Motivation 0000	Static problem	Dynamic problem	Conclusion
Problem and algorithms			
Energy/lifetime-	-aware scheme		

• Sensors determine their expected occupancy time (α)

• Sensors calculate the following $(t_b = \text{sensor's remaining lifetime})$:

$$P^* = \frac{u}{d} \times \frac{p}{P} \times \frac{t_b}{\alpha}$$

(3)

- Propose if high enough $(P^* \geq \hat{P})$
- Mission leader selects sensors greedily based on utility

Motivation	Static problem	Dynamic problem	Conclusion
		000000000	
Performance evaluation			
Experiment	al setup		

- Network size = 500 nodes
- Sensors start with energy that can last for 2 hours of continuous sensing
 - Energy is only used for sensing
- Missions arrival times are Poisson distribution, with avg. = 4 or 8 missions/hour
- Mission lifetimes are exply distributed, with avg. = 1 hour, min = 5 minutes and max = 4 hours
- Network operational lifetime is 3 days

Motivation Static problem Dynamic problem 0000000000 Performance evaluation

Conclusion

Dynamic results: $\lambda = 8$ missions/hr

Johnson, Rowaihy, Pizzocaro et al.

Frugal Sensor Assignment

Motivation	Static problem	Dynamic problem	Conclusion
		00000000	
Performance evaluation			
Dynamic results	: effects of batter	ry sizes	

- Profit is fraction of total in first 3 days
- Increasing battery lifetime has high effect in the beginning
- E/L-aware scheme uses energy more effectively because it takes both energy and lifetime into account

э

Motivation	Static problem	Dynamic problem	Conclusion

Outline

Motivation

2 Static problem

- Problem and algorithms
- Performance evaluation

Dynamic problem Problem and algorithms Performance evaluation

4 Conclusion

< 注→

Motivation	Static problem	Dynamic problem	Conclusion
			•00

Conclusion

- We gave approximation (heuristic) algorithms for the static and dynamic problems.
- And stronger guarantees for some special cases.
- In our experiments, our algorithms appear to perform well.
- But the problem is still quite abstract...

Motivation	Static problem	Dynamic problem	Conclusion
0000	00000000	00000000	000

Open problems and future work

• "Bundles": nonadditive utility models

- More realistic special cases / problems
- Algorithms based on geometric utilities?

Motivation 0000	Static problem	Dynamic problem	Conclusion ○●○

Open problems and future work

- "Bundles": nonadditive utility models
- More realistic special cases / problems
- Algorithms based on geometric utilities?

Motivation 0000	Static problem	Dynamic problem	Conclusion ○●○

Open problems and future work

- "Bundles": nonadditive utility models
- More realistic special cases / problems
- Algorithms based on geometric utilities?

Motivation	Static problem	Dynamic problem	Conclusion
			000

Thanks!

mpjohnson@gmail.com

<ロ> (日) (日) (日) (日) (日)