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1. INTRODUCTION
The problem of drawing a graph in the plane with a mini-

mum number of edge crossings—called the crossing number
of a graph—is a well-studied problem which dates back to
the first half of the twentieth century, as mentioned in [11],
and was formulated in full generality in [3]. It was shown
that this problem is NP-Complete [4], and that it remains
so even when restricted to cubic graphs [5]. Many variants
have been studied, differing in both the methods of count-
ing edge crossings and the types of drawings admitted in the
problem domain [9, 8, 10].

Recently there has been interest in characterizing both
the minimum and maximum number of edge crossings pos-
sible in particular graph classes for various edge crossing
variants (e.g., [7, 12, 6])—in particular, the maximum recti-
linear crossing number (MRCN) of a graph G, denoted by
CR(G) (e.g., [2]). There exist multiple terminologies and
notations for this problem (as in, e.g., [12, 6]) but we adopt
the conventions of [2].

In this paper we investigate the corresponding algorithmic
problem, where, given a graph G we seek a straight-line
drawing maximizing the number of edge crossings. We prove
that the problem is NP-hard. Then we present an efficient
derandomization of a known randomized 1/3-approximation
algorithm [12], extended to a more general edge-weighted
setting.

We note the distinction between CR(G) and CR
◦
(G),

where the latter denotes the maximum crossing number taken
only over convex straight-line drawings. But since all con-
vex drawings which preserve vertex ordering also preserve
edge crossings, we will only examine the simple convex draw-
ing where the vertices of G are placed along the circumfer-
ence of a circle of arbitrary size. In fact the statement that
CR(G) = CR

◦
(G) is an open conjecture, first posed in [2].

A number of approximation results are known for MRCN
in the special cases where G is k-colorable, for k ∈ {2, 3, 4},
or where G is a triangulation [6]. In [12] a related opti-
mization problem is considered, motivated by the “Planarity
Game”, in which, given a drawing of a planar graph with
many edge crossings, the player tries to rearrange the ver-
tices in order to eliminate all edge crossings. It is shown
in that paper that the problem of finding a drawing that is
maximally difficult for the game player—in the sense of re-
quiring the largest number of single-vertex moves to remove
all edge crossings—is NP-Hard.

2. PROBLEM AND HARDNESS

We now formally define the problem and state our results.
Let G = (V,E) be an unweighted simple graph with |V | = n.
Let D(G) denote the set of all possible straight-line drawings
of G. Then D(V ) and D(E) denote the sets of vertices and
edges of G respectively, taken in their relative positions in
D. For D ∈ D(G), let cross(D) denote the number of edge-
crossings in D. The goal in the MRCN problem is to find
CR(G) := maxD∈D(G) cross(D) as well as the corresponding
D which maximizes this quantity.

We also define the weighted version of MRCN. Let w :
E → R be an assignment of weights to each edge in G.
For a drawing D ∈ D(G), denote the crossing of e, f ∈
D(E) by e � f . We define the crossing-cost function c :
D(E) × D(E) → R as c(e, f) := w(e)w(f) if e � f and
otherwise c(e, f) := 0. For D ∈ D(G), define its cost to
be cost(D) :=

∑
e,f∈D(E) c(e, f). Then we want to find

CRw(G) := maxD∈D(G) cost(D) as well as the maximizing
D. Note that this cost definition is consistent with the graph
G being complete, where “missing” edges have weight 0.

Addtionally, we will examine the relationship of CR(G) to

CR
◦
(G) := maxD∈D◦(G) cross(D) where D◦(G) denotes the

set of all possible convex straight-line drawings of G.
We now prove the hardness of this problem in the un-

weighed setting.
In the decision version of the problem, we ask if there

exists a straight-line drawing D ∈ D(G) with cross(D) ≥ k
for some nonnegative integer k.

It is clear that in the setting restricted to convex drawings,
i.e., for CR

◦
(G), the problem lies in NP. This is because

in this case we can actually limit our attention to circle
drawings, which are drawings of G in which all vertices lie
on the circumference of a unit circle. This restriction is
without loss of generality since clearly any convex drawings
which preserve relative vertex ordering also preserve edge
crossings.

In the more general setting where any drawing is permit-
ted, however, it is not clear whether the problem is even
in NP, since conceivably the coordinates of a “bad” drawing
could be arbitrarily large. This issue would be dissolved if
the conjecture CR(G) = CR

◦
(G) were proven. The cross-

ing number minimization problem is known to be in NP [4],
but unfortunately the techniques used to prove this do not
seem to work for the maximization problem. (Briefly, they
guess the k crossings, insert new vertices at the cross points,
and test this new graph G′ for planarity. Unfortunately,
examples can be constructed in which G′ is planar and yet
Cr(G) < k, where Cr(G) denotes the crossing number of G.)
Therefore we prove only that the problem is NP-hard.



Theorem 1. MRCN is NP-hard, both under the require-
ment that drawings be convex and in the general case.

Proof. (Sketch) We reduce from Max Cut.
Given the Max Cut instance G, add to it (say) n3 new dis-

joint edges M on 2n3 new vertices to obtain MRCN instance
G′. Now consider (near-)optimal solutions to this instance.
The 2n3 new vertices should be drawn in such a way that

all
(
n3

2

)
pairs cross, say, near-vertically.

Now consider the placement of the n original vertices
among the edges M . First we argue that without loss of
generality we may assume these vertices are placed above
all intersections of M and below the upper endpoints of
the edges M . Therefore the n vertices of V can be pic-
tured as placed within n3 + 1 columns, with the edges M
as column separators. We then argue that any solution in
which some vertices lie within “interior” columns (number 2
through n3 − 1) can be improved by moving each of these
vertices to one of the two “exterior” columns (number 1 or
n3 + 1). The locations of the vertices of G in the first or last
columns then corresponding to a cut of G.

Finally, note that the resulting drawing can be made con-
vex by stretching the edges as needed.

3. ALGORITHMS
In the special case of convex drawings (or under the as-

sumption that the conjecture CR(G) = CR
◦
(G) is true), an

optimal drawing can be found by brute-force enumeration,
though absent this case it is not even clear how to solve the
problem optimally by brute force; either way, the problem is
NP-hard. Therefore we turn to approximation algorithms.

Definition 1. Let [n] = {1, 2, ..., n}. Let Sn = {σ :
[n]→ [n]} be the set of all permutations of [n].

The following natural algorithm appeared in [12], where it
was shown that the algorithm provides a 1/3-approximation
guarantee:

Algorithm 1 Randomized

1: Choose a uniform-random permutation σ ∈ Sn
2: In order of σ(·), place the vertices clockwise on a circle

centered at the origin, i.e., vσ(1), vσ(2), ..., vσ(n)

We remark that the analysis is tight, as there exists an in-
finite family of instances on which the approximation factor
1/3 is achieved. Consider, for example, graphs consisting
of n vertices and only two disjoint edges, on vertices, say,
(a, b) and (b, c). Then it can easily be verified that exactly
one third of all possible permutations achieve the one possi-
ble edge crossing. We note that the guarantee also holds in
the weighted setting for MRCN. We also note that it holds
in both convex and non-convex settings since the solution
constructed is convex, and yet the comparison guarantee is
with respect to any possible drawing.

In [12] it was stated without details that the above algo-
rithm can be derandomized via the method of conditional
expectations (see, e.g., [1], Chapter 15). However, it turns
out that proving this claim is nontrivial, and we now show
how to accomplish the derandomization.

Theorem 2. There exists a deterministic 1/3-approximation
for (weighted) MRCN.

Proof. (Sketch) We derandomize the above algorithm
by the method of conditional expectations. We place each
vertex on the unit circle sequentially, in each round choos-
ing a location maximizing the conditional expectation of the
solution value. Placement of a vertex v in round i of the al-
gorithm is represented by an angle θi. Thus each placement
at stage i > 2 will satisfy θi ∈ (θh, θh+1) where θh, θh+1 rep-
resent the locations of two previously placed vertices which
are adjacent on the circle.

The main ingredient of the proof is to partition the set of
edges in G into various groups at each stage i, depending
on the vertex vi being placed currently. We then calculate
the number of crossings between each group in polynomial
time for each possible placement region (θh, θh+1). Thus
we can determine the placement maximizing the conditional
expectation and maintain the required expected value.

Finally, we note two other natural algorithms we have not
yet analyzed:

• Greedy: Construct a drawing by placing vertices iter-
atively, each time placing the new vertex in a location
maximizing the number of new edge crossings.

• k-Local search: Given an arbitrary drawing on the unit
circle, repeatedly make moves repositioning k of the
vertices in order to increase the number of edge cross-
ings.
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