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Abstract We consider the broadcasting problem in multi-

radio multi-channel ad hoc networks. The objective is to

minimize the total cost of the network-wide broadcast,

where the cost can be of any form that is summable over all

the transmissions (e.g., the transmission and reception

energy, the price for accessing a specific channel). Our

technical approach is based on a simplicial complex model

that allows us to capture the broadcast nature of the wire-

less medium and the heterogeneity across radios and

channels. Specifically, we show that broadcasting in multi-

radio multi-channel ad hoc networks can be formulated as a

minimum spanning problem in simplicial complexes. We

establish the NP-completeness of the minimum spanning

problem and propose two approximation algorithms with

order-optimal performance guarantee. The first approxi-

mation algorithm converts the minimum spanning problem

in simplical complexes to a minimum connected set cover

(MCSC) problem. The second algorithm converts it to a

node-weighted Steiner tree problem under the classic graph

model. These two algorithms offer tradeoffs between per-

formance and time-complexity. In a broader context, this

work appears to be the first that studies the minimum

spanning problem in simplicial complexes and weighted

MCSC problem.

Keywords Broadcast � Multi-radio multi-channel � Ad

hoc network � Simplicial complex � Minimum spanning �
Minimum connected set cover

1 Introduction

Multi-radio multi-channel (MR-MC) wireless networking

arises in the context of wireless mesh networks, dynamic

spectrum access via cognitive radio, and next-generation

cellular networks [12]. By the use of multiple channels,

spatially adjacent transmissions can be carried over non-

overlapping channels to avoid mutual interference. Fur-

thermore, each node, equipped with multiple radios, is

capable of working in a full-duplex mode by tuning the

transmitting and receiving radios to two non-overlapping

channels.

The increasing demand for high data rate and the per-

sistent reduction in radio costs have greatly stimulated

research on MR-MC networks. Considerable work has

been done on capacity analysis, channel and radio assign-

ment [11, 17, 19, 22], and routing protocols [11, 19]. In this

paper, we consider the broadcasting problem in MR-MC ad

hoc networks.

Part of this work was presented at IEEE MASS 2011.
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1.1 Broadcasting in single-radio single-channel

networks

Broadcasting is a basic operation in wireless networks for

disseminating a message containing, for example, situation

awareness data and routing control information, to all nodes.

For a single-radio single-channel (SR-SC) network, a key

question for the network-wide broadcast is: which set of

nodes should be selected to transmit such that the total cost

(such as energy consumption or the number of transmissions)

is minimized. In contrast to the wireless broadcast problems

for minimizing the energy consumption and the number of

transmissions which are shown to be NP-complete in [2],

their counterparts in wired networks have polynomial solu-

tions. A heuristic algorithm, referred to as broadcast incre-

mental power (BIP) algorithm, is proposed in [23].

The complexity of the problem arises from the broadcast

nature of the wireless medium: a single transmission from

one node can reach all the other nodes within the trans-

mission range of this node, but it may cause interference to

other nearby transmissions. This ‘‘node-centric’’ nature of

the wireless broadcasting problem along with the mutual

interference between concurrent transmissions complicates

the design of efficient broadcasting algorithms.

1.2 Broadcasting in MR-MC networks

In an MR-MC ad hoc network, such as the DARPA

wireless network after next (WNaN) [20], each node is

equipped with multiple radios, each operating on a differ-

ent channel. The introduction of multiple channels and

multiple radios further complicates the design of an effi-

cient broadcasting scheme. Since the number of radios at a

node is usually smaller than the number of channels, the

broadcast scheme should decide not only which nodes act

as relays but also for those relay nodes, which chan-

nel(s) should be assigned to the transmitting radio(s).

Given the selection of the relay nodes, two simple broad-

cast schemes are: (1) transmitting multiple copies of the

message on all channels, (2) transmitting a single copy of

the message on a common channel dedicated to broad-

casting. Both schemes are inefficient. For the latter one, if

the broadcast load is high, the common channel will be

overwhelmed, even while plenty of other channels are free.

One subtle issue is the complication of the wireless

broadcast advantage. In an MR-MC network, if the radios

of the neighboring nodes are tuned to different channels, a

single transmission on one channel cannot reach all the

neighboring nodes simultaneously. In other words, only

the neighboring nodes on the same channel can share the

wireless broadcast advantage. More precisely, the concept

of neighborhood must be defined both by radio range and

channel. Another subtle issue is channel heterogeneity.

Channels may have different bandwidth, fading condition,

and accessing cost, leading to different implications for the

total broadcast cost.

Broadcasting in MR-MC networks is thus a multi-faceted

problem, involving channel assignment, relay node selec-

tion, and channel selection for the source and relay nodes. In

this paper, we focus on the latter two issues by assuming a

given channel-to-radio assignment. To avoid the hidden

channel problem [17], two nodes that are two-hops away

from each other are assigned two distinct sets of channels.

Our design objective is to minimize the total broadcast cost,

where the cost can be of any form that is summable over all

the transmissions, including, for example, the transmission

and reception energy,1 the price for accessing each channel.

1.3 A simplicial complex model for broadcasting

in MR-MC networks

Our technical approach is based on a simplicial complex

model of the broadcasting problem in MR-MC networks. A

simplicial complex is a collection of nonempty sets with

finite size that is closed under the subset operation. In other

words, if a set s belongs to the collection, all subsets of

s also belongs to the collection. An element of the col-

lection is called a simplex or face. This subset constraint is

often satisfied in the network context. For example, subsets

of a broadcast/multicast group are broadcast/multicast

groups, subsets of a clique are cliques. A simple example

of graph and simplicial complex is given in Fig. 1. While

the concept of simplicial complex has been around since

the 1920s, many well-solved fundamental problems in

graph remain largely open under this more general model.

We use a simplicial complex model rather than a graph

because the simplicial complex more naturally captures the

broadcast channel, and the distinction and disjointness

between broadcasting on different channels. For instance, it

(a) (b)

Fig. 1 Graph and simplicial complex: V ¼ fv0; v1; v2g; SðaÞ ¼
fðv0; v1Þ; ðv0; v2Þ; ðv1; v2Þg; SðbÞ ¼ fðv0; v1; v2Þ; ðv0; v1Þ; ðv0; v2Þ; ðv1;

v2Þ; ðv0Þ; ðv1Þ; ðv2Þg

1 The ‘reception energy’ denotes the energy consumed by the radio

in reception mode.
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is not possible to discern by only looking at the graph in

Fig. 1(a) whether v0, v1, and v2 can communicate simul-

taneously over a shared broadcast channel or if they have

dedicated channels and so each can only talk to one other

node at a time. Further, costs can be attached to faces

(simplices) in a way not easily possible with graphs. A

more detailed discussion on the motivation of adopting the

simplicial complex for the broadcast problem in multi-hop

wireless networks is provided in [18].

Consider an example MR-MC network where nodes are

all stationary. As shown in Fig. 2, after the channels are

assigned, the network is partitioned into cliques of nodes.

Such clique assignment scheme is implemented in the

DARPA WNaN system and was used in an exercise at Ft.

Devens [20]. A clique consists of the nodes which are

within each other’s transmission range and share at least

one common channel, and two cliques are spliced (i.e.,

connected) via nodes operating on multiple channels

shared in common by the two cliques. Within each clique,

depending on the cost function, the transmitter decides

which dimension simplex (i.e., a subclique or the clique

itself) in a clique complex to activate. The message for the

network-wide broadcast is thus propagated through a

sequence of cliques, possibly of different dimensions. Note

that the unicast case corresponds to a clique of dimension 1

(an edge). This example could also apply to the case where

nodes may have multiple radios, perhaps of different

modality (e.g., RF and optical); in this case, there may also

be a cost associated with switching modes.

The network-wide broadcast problem can be formulated

as the minimum spanning problem in simplicial complexes.

A clique in the MR-MC network is modeled as a simplex in

the simplicial complex (see Fig. 2), and since a subset of a

clique is still a clique, the constructed simplicial complex

meets the requirement of being closed under the subset

operation. The minimum spanning problem in a simplicial

complex is to find a connected subset of simplices that

covers all the vertices with the minimum total weight, i.e.,

the minimum connected spanning subcomplex (MCSSub).2

Then the solution to the network-wide broadcast problem

can be obtained by solving the MCSSub problem.

1.4 Minimum spanning problem in simplicial

complexes

The minimum spanning problem in a graph is to find a

connected subgraph that covers all the vertices with mini-

mum total weight. The solution must be a tree for graphs

with nonnegative weights [hence called the minimum

spanning tree (MST)]. There are several polynomial-time

algorithms for MST, e.g., Kruskal’s algorithm and Prim’s

algorithm [10]. The MST problem has many applications in

network planning, broadcasting in communication net-

works, touring problems, and VLSI design [1].

With the addition of high dimensional simplices, the

minimum spanning problem in a simplicial complex is

fundamentally different and much more difficult than its

counterpart in a graph. First, unlike the case in a graph, the

MCSSub of a simplicial complex may not be a ‘‘tree’’.3 As

illustrated in Fig. 3, the MCSSub of the simplicial complex

is the three filled triangles which form a cycle. Second,

while simple greedy-type polynomial-time algorithms exist

for finding the MST in a graph, the minimum spanning

problem in a simplicial complex is NP-complete as estab-

lished in this paper (see Sect. 3.1).

We develop polynomial-time approximation algorithms

for the minimum spanning problem in simplicial com-

plexes. We propose two algorithms: one reduces this prob-

lem to a ’’ (MCSC) problem, and the other reduces the

problem to a node-weighted Steiner tree problem in a graph

derived from the original simplicial complex. We also

establish the approximation ratios of the two algorithms.

Both are shown to be order-optimal. The time-complexity of

these two algorithms is also analyzed, illustrating the

tradeoff between performance and complexity offered by

these two algorithms. In a broader context, this work appears

to be the first that studies the minimum spanning problem in

simplicial complexes and weighted MCSC problem.

Fig. 2 An illustration of an MR-MC network and the constructed

simplicial complex. The parameters within the braces are the

channels which each node can access. In the communication graph

derived from the network, a link exists between two nodes if and only

if two nodes are within each other’s transmission range and they share

at least one common channel. Notice that a clique in the commu-

nication graph may not be a clique in the MR-MC network

(correspondingly, a simplex in the simplicial complex), e.g., the

three nodes of the right empty triangle (they do not share a common

channel)

2 Strictly speaking, a subcomplex should also be closed under the

subset operation, but without loss of generality, we do not include this

condition in the definition of minimum connected spanning subcom-

plex, which is also more relevant to the broadcasting problem at hand.
3 Although there is no unified definition of tree in simplicial

complexes, a couple of definitions can be obtained by generalizing

those equivalent definitions of tree in a graph. For example, simplicial

trees can be defined based on the universal existence of leaves in any

subgraph, or the uniqueness of simplicial facet paths.
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1.5 Related work

Broadcasting in MR-MC networks, mostly in the context of

wireless mesh networks, has been studied for different

optimization objectives (see [3, 4, 13, 17] and references

therein). Different from the previous work, the optimization

objective in our work can be any cost function which is

summable over all the transmissions, thus taking into

account channel heterogeneity (e.g., transmissions on dif-

ferent channels may consume different amounts of energy,

due to different bandwidths or different propagation char-

acteristics or some other factor). We point out that neither

minimizing the total number of transmissions nor minimiz-

ing the total number of radios used in the broadcast is, in

general, equivalent to minimizing the total energy con-

sumption. The reception energy is ignored if the total number

of transmissions is minimized, while the transmission energy

and the reception energy are equated if the total number of

radios is minimized. More importantly, channel heteroge-

neity is not addressed if these two objectives are optimized.

Furthermore, to our best knowledge, our work is the first

to adopt simplicial complexes to model and solve the

broadcast problem in wireless ad hoc networks. For a more

detailed discussion on the potential applications of sim-

plicial complexes in communication and social networks,

readers are referred to [18].

2 Basic concepts in simplicial complexes

In this section, we introduce several basic concepts in

simplicial complexes [16].

An (abstract) simplicial complex is a collection D of

nonempty sets with finite size such that if A 2 D, then

8B � A; B 2 D, i.e., D is closed under the operation of

taking subsets. The element A of D is called a simplex of D;

its dimension (denoted by dim A) is one less than the

number of its elements. Each nonempty subset of A is

called a face4 of A. The dimension of D is the maximum

dimension over all its simplices, or is infinite if the maxi-

mum does not exist. The vertex set V of D is the union of

the one-point elements of D. Figure 4 shows an example of

a 2-dimensional simplicial complex. A subcollection of D
that is itself a simplicial complex is called a subcomplex of

D. A subcomplex of D is the p-skeleton of D, denoted by

DðpÞ, if it is the collection of all simplices of D with

dimension no larger than p. Thus, the 1-skeleton is the

underlying graph of D.

A facet of a simplicial complex D is a maximal face of

D, i.e., it is not a subset of any other face. A simplicial

complex is connected if its 1-skeleton (i.e., the underlying

graph) is connected in the graph sense.

A weighted simplicial complex (WSC) D is a triple

ðV;S;wÞ5, where V is the set of vertices, S the set of faces of

D, and w : S ! fRþ [ f0gg a nonnegative weight function

defined for each face in S with w(v) = 0 for all v 2 V . We

define the facet-only weight WFðDÞ of a WSC D as

WFðDÞ ¼
X

Fi2ffacet ofDg
wðFiÞ:

3 Minimum connected spanning subcomplex

In this section, we show that the MCSSub problem is NP-

complete, and we propose two approximation algorithms

based on connected set cover and node-weighted Steiner

tree. We also establish the approximation ratios of the two

algorithms and analyze their time complexity.

Fig. 3 A simplicial complex whose MCSSub is the three filled

triangles, and is not a ‘‘tree’’ (the integers are the weights of the

simplices)

Fig. 4 A simplicial complex D with 6 vertices (0-dimensional

simplices: {v0}, {v1}, {v2}, {v3}, {v4}, {v5}), 5 edges (1-dimensional

simplices: {v1, v2}, {v2, v3}, {v3, v4}, {v3, v5}, {v4, v5}), and 1 filled

triangle (2-dimensional simplex: {v3, v4, v5})

4 Notice that since A is its own nonempty subset, the simplex A is

also a face of A.
5 ðS;wÞ suffices to denote the WSC since V � S, but we use the

redundant ðV ;S;wÞ for convenience.
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3.1 NP-completeness

The decision version (D-MCSSub) of the MCSSub prob-

lem is stated as follows: let VðDÞ denote the vertex set of a

WSC D and WFðDÞ the facet-only weight of D. Given a

WSC D ¼ ðV;S;wÞ and K [ 0, is there a connected sub-

complex Dsub of D such that VðDsubÞ ¼ V and WFðDsubÞ
�K? Then we have the following theorem.

Theorem 1 The D-MCSSub problem is NP-complete.

To prove the NP-completeness, we reduce a classic NP-

complete problem—the unweighted set cover problem to

the MCSSub problem.

Proof To check a solution to the D-MCSSub problem, we

only need to verify the following points: (1) compute the

facet-only weight of the solution and compare the weight

with K; (2) check whether the underlying graph of the

solution is connected or not; (3) check whether all the

vertices of the original simplicial complex are covered by

the solution. Since all these can be done within polynomial

time, the D-MCSSub problem is NP.

Given is an unweighted set cover instance I, i.e., a

universe of elements U and a family of subsets F of U. For

each element u 2 U, we introduce a corresponding vertex in

MCSSub instance I0. We introduce one additional vertex d.

For each set f 2 F, we introduce a corresponding face f0 = f

[ {d}, of weight 1. Being a simplcial complex, all subsets of

f0 are also introduced, all also of weight 1. In addition to

covering all vertices, a solution to I0 must be connected.

Given any solution SOL to I of cost c, we can construct a

solution to I0 also of cost c. For every set f in SOL not

including d, replace f with f [ {d}.

On the other hand, given any solution SOL0 to I0 of cost c, a

solution to I of the same cost can be constructed as follows:

for any face f 2 SOL0 such that f does not appear as a set in F,

replace f with any superset of f - {d} appearing in F. Note

that there must exist at least one such superset. h

This proof is for general D-MCSSub problems. It can be

shown that even if the weight function of the WSC is

monotone or strictly monotone,6 the D-MCSSub problem is

NP-hard. But it is still possible that the D-MCSSub prob-

lem under some special structured weight function is P.

In the following, we present two approximation algo-

rithms for the MCSSub problem both with performance

guarantee Oðln nÞ, where n is the number of vertices in the

WSC. Since the best possible approximation ratio for the set

cover problem is ln n [6], these two algorithms are order-

optimal. Note that to achieve the best possible approximation

ratio Oðln nÞ, the algorithm based on connected set cover

requires that the ratio Rw of the maximum weight to the

minimum weight be bounded. As shown in Theorem 4, if Rw

is unbounded, then the approximation ratio can be XðnÞ.

3.2 Algorithm based on connected set cover

Let A be a set with finite number of elements, and

B ¼ fBi � A : i ¼ 1; . . .; ng a collection of subsets of

A where each Bi is associated with a weight w(Bi) C 0. Let

G be a connected graph with the vertex set B. A connected

set cover (CSC) SC with respect to ðA;B;w;GÞ is a set

cover of A such that SC induces a connected subgraph of

G. The MCSC problem is to find the CSC with the mini-

mum weight, where the weight of a CSC SC is defined as

wðSCÞ ¼
X

Bi2SC

wðBiÞ:

From a WSC D ¼ ðV;S;wÞ, we derive an auxiliary

undirected graph GD in the following way: let S n V be the

vertex set of GD, and connect two vertices (non-vertex

faces in D) S1 and S2 if and only if S1\ S2 = ; (i.e., S1 and

S2 have at least one element of V in common). Then we

have the following theorem on the relation between the

MCSSub problem and the MCSC problem.

Theorem 2 Let D� be the MCSSub of a WSC D ¼ ðV;S;wÞ
and S�C the MCSC of ðV ;S n V ;w;GDÞ. Then we have

wFðD�Þ ¼ wðS�CÞ:

Proof The proof is based on the following lemma. h

Lemma 1 Let S�C be the MCSC of ðV ;S n V;w;GDÞ. For

any face S 2 S�C with w(S) [ 0, we have that there does not

exist a face S0 2 S�C such that S � S0.

Proof (Proof of Lemma 1) Suppose that for some face S 2 S�C
with wðSÞ[ 0; 9 S0 2 S�C such that S � S0. Let S0C ¼ S�C n S.

Obviously, S0C is a set cover, and wðS0CÞ ¼ wðS�CÞ � wðSÞ
\wðS�CÞ. On the other hand, since S \ S00 = ; implies S0\
S00 = ; for any face S00 2 S�C, it follows from the connection

rule of the auxiliary graph GD that any path via S has an alter-

native path via S0. Thus,S0C is a CSC, leading to a contradiction.

Given the MCSCS�C of ðV;S n V;w;GDÞ, we can obtain a

connected spanning subcomplex D�C by mapping each

element of S�C to a face in D. Since the facet-only weight

wFðD�CÞ of D�C only counts facets in D�C, it follows that

wFðD�CÞ�wðS�CÞ. Based on Lemma 1, we have that every

element of S�C with positive weight is a facet in D�C, and thus

wFðD�Þ�wFðD�CÞ ¼ wðS�CÞ;

where D� is the MCSSub of D.

On the other hand, the facets of D� leads to an CSC S�D,

and wðS�DÞ ¼ wFðD�Þ. It implies that

6 We say that the weight function satisfies the monotone property if

for any two faces S1 � S2; wðS1Þ�wðS2Þ, i.e., the weight is

monotone non-decreasing with respect to the dimension of the face.
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wðS�CÞ�wðS�DÞ ¼ wFðD�Þ:

Thus, wFðD�Þ ¼ wðS�CÞ. h

3.2.1 Algorithm

Based on Theorem 2, we can reduce the MCSSub problem

of a WSC D ¼ ðV ;S;wÞ to the MCSC problem

ðV;S n V ;w;GDÞ. We obtain the following set cover based

algorithm (SCA) for the MCSSub problem.

Zhang et al. [24] propose a greedy approximation algo-

rithm for the unweighted MCSC problem, i.e., w(Bi) = 1 for

all i. The original algorithm in [24] has a flaw and the

established approximation ratio is incorrect. In [21], the flaw

is corrected and a stronger result on the approximation ratio

is shown. By generalizing their greedy approach, we develop

a greedy algorithm for the weighted MCSC problem.

Before stating the algorithm, we introduce the following

notations and definitions. For two sets S1; S2 2 S, let distG
(S1,S2) be the length of the shortest path between S1 and S2 in

an auxiliary graph G, where the length of a path is given by

the number of edges; S1 and S2 are said to be graph-adjacent

if they are connected via an edge in G (i.e., distG

(S1, S2) = 1), and they are said to be cover-adjacent if S1 \
S2 = ;. Notice that in a general MCSC problem, there is no

connection between these two types of adjacency. The cover-

diameter DC (G) is defined as the maximum distance

between any two cover-adjacent sets, i.e.,

DCðGÞ ¼ maxfdistGðS1; S2ÞjS1; S2 2 S and

S1 \ S2 6¼ ;g:

For the MCSC problem derived from the MCSSub problem

of a WSC D, we have that DCðGDÞ ¼ 1.

At each step of the algorithm, letR denote the collection

of the subsets (faces of D) that have been selected, and U the

vertex subset of D that has been covered. Given R 6¼ ; and

a set S 2 S n R, an R ! S path is a path fS0; S1; . . .; Skg in

G such that (1) S0 2 R; (2) Sk = S; (3) S1; . . .; Sk 2 S n R.

We define the weight ratio r(PS) of PS as

rðPSÞ ¼
wðSðPSÞ n RÞ
jVNðPSÞj

¼
P

S2SðPSÞnR wðSÞ
jVNðPSÞj

; ð1Þ

where SðPSÞ n R is the subsets (faces in S) of PS that are

not in R, and |VN (PS)| is the number of vertices of D that

are covered by PS but not covered by R.
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3.2.2 Approximation ratio

The approximation ratio of SCA is determined by Step 2,

i.e., the approximation ratio of the greedy algorithm for the

MCSC problem. First, we establish the following lemma.

Lemma 2 Given a weighted MCSC problem

ðV;S n V ;w;GÞ with DC (G) = 1, let

Rw ¼
max
S2S
fwðSÞg

min
S2S
fwðSÞg : ð2Þ

Then the approximation ratio of the greedy algorithm for

MCSC is at most Rw ? H(c - 1), where c ¼ maxfjSj j S 2
S n Vg is the maximum size of the subsets in S and Hð�Þ is

the harmonic function.

Proof (Proof of Lemma 2) The proof is based on the classic

charge argument. Let S� be an optimal solution to the

weighted set cover problem ðV ;S n V;wÞ, andR the solution

returned by the greedy algorithm for the weighted MCSC

problem ðV;S n V;w;GÞ with DC (G) = 1. Let wðS�Þ and

wðRÞ denote the total weight of the subsets included in S�
andR, respectively. In the following, we will show that

wðRÞ
wðS�Þ �Rw þ Hðc� 1Þ: ð3Þ

Let S�C be an optimal solution to the weighted

MCSC problem ðV ;S n V;w;GÞ with DC (G) = 1. Since

wðS�Þ�wðS�CÞ, Lemma 2 follows immediately from (3).

To prove (3), we apply the classic charge argument.

Each time a subset S0 (at step 1) or a shortest R ! S path

PS
* (at step 2) is selected to be added to R, we charge each

of the newly covered elements
wðS0Þ
jS0j (at step 1) or r(PS

*)

defined in (1) (at step 2). Notice that when DC (G) = 1, the

shortest R ! S path PS
* is only a single edge connecting

some subset in R and S, and

rðP�SÞ ¼
wðSðP�S n RÞÞ
jVNðP�SÞj

¼ wðSÞ
jS n Uj :

During the entire procedure, each element of V is

charged exactly once. Assume that step 2 is completed in

K - 1 iterations. Let PSi
* be the shortest R ! S path

selected by the algorithm at iteration i. Let C(v) denote the

charge of an element v in V. Then we have that

X

v2V

CðvÞ ¼
XK�1

i¼0

X

v2VN ðP�Si
Þ
CðvÞ

¼
XK�1

i¼0

X

v2SinU

wðSiÞ
jSi n Uj

¼
XK�1

i¼0

wðSiÞ ¼ wðRÞ;

ð4Þ

where PS0
* = {S0}.

Suppose that S� ¼ fS�1; . . .; S�Ng is a minimum

weighted set cover for fV;S n V ;wg. Since an element

of V may be contained in more than one subset of S�, it

follows that

X

v2V

CðvÞ�
XN

i¼1

X

v2S�
i

CðvÞ: ð5Þ

Next we will show an inequality which bounds from

above the total charge of a subset in S�, i.e., for any

S� 2 S�,
X

v2S�
CðvÞ� ½Rw þ HðjS�j � 1Þ�wðS�Þ: ð6Þ

Let ni ði ¼ 0; 1; . . .;KÞ be the number of elements of S*

that have not been covered by S after iteration i - 1, where

step 1 is considered as iteration 0. Let fi1; . . .; ikg denote

the subsequence of fi ¼ 0; 1; . . .;K � 1g such that ni -

ni?1 [ 0. For each element a covered at iteration i1, if

i1 = 0, based on the greedy rule at step 1, we have that

CðvÞ ¼ rðP�S0
Þ� wðS�Þ

ni1

; ð7Þ

Otherwise,

CðvÞ ¼ rðP�Si1
Þ ¼ wðSi1Þ
jSi1 n Uj �

wðS�ÞRw

ni1 � nði1þ1Þ
: ð8Þ

The inequality in (8) is due to the fact that Si1 covers at

least ni1 - n(i1?1) elements of V, i.e., jSi1 n Uj 	
ni1 � nði1þ1Þ. Summing up (7) and (8),

CðvÞ� wðS�ÞRw

ni1 � nði1þ1Þ
: ð9Þ

Consider two cases:

1. If all the elements of S* have been covered after

iteration i1, i.e., nði1þ1Þ = 0, then

X

v2S�
CðvÞ�

X

v2S�

wðS�ÞRw

n0

¼ wðS�ÞRw: ð10Þ

2. If not all the elements of S* have been covered by R
after iteration i1, S* becomes cover-adjacent with R
and thus a candidate for being selected at the following

iterations. At each iteration, for each element v 2 S�

covered at iteration ij ðj ¼ 2; . . .; kÞ, the greedy rule at

step 2 still yields

CðvÞ ¼rðP�Sij
Þ� rðP�S� Þ

¼ wðS�Þ
jS� n Uj ¼

wðS�Þ
nij

:
ð11Þ

It follows from (9,11) that

Wireless Netw (2013) 19:1121–1133 1127

123



X

v2S�
CðvÞ�wðS�Þðni1 � nði1þ1ÞÞ

1

ni1 � nði1þ1Þ

þ wðS�Þ
Xk

j¼2

ðnij � nðijþ1ÞÞ
1

nij

¼wðS�Þ 1þ
Xk

j¼2

nij � niðjþ1Þ

nij

 !
:

ð12Þ

Here we have used the fact that nðijþ1Þ ¼ niðjþ1Þ . It is because

between iteration ij and iteration i(j?1), no elements of S*

are covered.

For the summation term in (12), we have the following

inequality:

Xk

j¼2

nij � niðjþ1Þ

nij

�
Xk

j¼2

1

nij

þ � � � þ 1

niðjþ1Þ þ 1

¼Hðni2Þ�HðjS�j � 1Þ:
ð13Þ

The last inequality is due to the fact that ni2 B ni1

- 1 = |S*| - 1.

Equationn (6) is a direct consequence of (10), (12), and

(13). Thus, using (4–6),

wðRÞ ¼
X

v2V

CðvÞ�
XN

i¼1

X

v2S�
i

CðvÞ

�
XN

i¼1

½Rw þ HðjS�i j � 1Þ�wðS�i Þ

� ½Rw þ Hðc� 1Þ�wðS�Þ:

h

Then, as a direct consequence of Lemma 2, we have the

following theorem on the approximation ratio7 of the

greedy algorithm for the MCSC problem with DC (G) = 1.

Theorem 3 Let D� be the MCSSub of a WSC

D ¼ ðV;S;wÞ and DC be the solution returned by Algo-

rithm 1. Let Rw be defined as in (2). Then we have

wFðDCÞ
wFðD�Þ

�Rw þ HðdimDÞ;

where dimD is the dimension of D and Hð�Þ is the harmonic

function.

From Theorem 3, we see that the approximation ratio

depends on the ratio Rw of the maximum weight to the

minimum weight. It is shown in the following theorem that

if Rw is unbounded, then the scaling order of the approxi-

mation ratio can be as bad as linear with respect to the

number of vertices in the simplicial complex.

Theorem 4 Let n be the number of the vertices in a WSC

D ¼ ðV;S;wÞ, and Rw defined as in (2). If Rw is

unbounded, then the approximation ratio of Algorithm 1

for the MCSSub problem of D is XðnÞ.

Proof Consider a specific example: D is a (n - 1)-

dimensional simplex with the vertex set V ¼ fv1; . . .; vng,
and all the weights of the faces are infinite except for the

following five faces:

wðS1Þ ¼w v1; . . .; vn
2

n o� �
¼ 1

2
;

wðS2Þ ¼w v1; . . .; vn
4
; v n

2
þ2ð Þ

n o� �
¼ 1

2
;

wðS3Þ ¼w v n
4
þ1ð Þ; . . .; v n

2
þ1ð Þ

n o� �
¼ 1

2
;

wðS4Þ ¼w vn
2
; . . .; vn

n o� �
¼ n

8
;

wðS5Þ ¼w v n
2
þ1ð Þ; . . .; vn

n o� �
¼ 1:

For ease of presentation, we have assumed that n is a

multiple of 4. By applying Algorithm 1, we reduce the

MCSSub problem for D to the MCSC problem

ðV;S n V ;w;GDÞ. Due to the weight assignment, it suffices

to only consider the subgraph of GD induced by the above

five faces, as shown in Fig. 5.

The optimal solution D� to the MCSSub problem is

given by

D� ¼ fS 2 S j S � S2 or S3 or S5g;

and

wFðD�Þ ¼ wðS2Þ þ wðS3Þ þ wðS5Þ ¼ 2:

On the other hand, the solution DC returned by Algorithm 1

is given by

DC ¼ fS 2 S j S � S1 or S4g;

Fig. 5 The subgraph of GD induced by the five faces S1, S2, S3,

S4, and S5 with finite weights

7 The approximation ratio of the greedy algorithm for general

weighted MCSC problem is still an open problem.
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and

wFðDCÞ ¼ wðS1Þ þ wðS4Þ ¼
1

2
þ n

8
:

Specifically, S1 is firstly selected, and then S4. Thus,

wFðDCÞ
wFðD�Þ

¼ n

16
þ 1

4
¼ HðnÞ:

It follows that the approximation ratio of Algorithm 1 is

XðnÞ. h

From Theorem 4, we see that Algorithm 1 is not suitable

for the MCSSub problem of a WSC D if its weight function

has a relatively wide range. As shown next in Sect. 3.3, the

other approximation algorithm based on the Steiner tree

does not have this issue: its approximation ratio does not

depend on the range of the weight function.

3.3 Algorithm based on Steiner tree

From a WSC D ¼ ðV;S;wÞ, we derive an undirected graph

HD with the vertex set S: for each face S 2 S n V (i.e., the

faces that are not the vertices of D), we replace it by a vertex

vS in HD and connect vS to all the vertices of S. The weight

w(vS) assigned to the vertex vS is the weight w(S) of the face

S. Notice that the weight of vertices in HD corresponding to

the vertices in D (i.e., V) is zero. Fig. 6 shows an example of

the derivation of the graph from a 2-simplex. We have the

following theorem on the relation between the MCSSub of

D, the Steiner tree of HD that spans the vertex set V of D and

the minimum connected dominating set8 of HD.

Theorem 5 Let D� denote the MCSSub of a WSC

D ¼ ðV;S;wÞ; T� the Steiner tree of HD that spans the

vertex set V of D, and DC
* the minimum CDS of HD. Then we

have that

wFðD�Þ ¼ wðT�Þ ¼ wðD�CÞ:

Proof First we show that wFðD�Þ ¼ wðT�Þ. Since every

connected spanning subcomplex D0 of D corresponds to a

connected subgraph of HD which only contains the vertices

of D and the vertices representing the facets of D0, it

follows that wðT�Þ�wFðD�Þ. On the other hand, since by

contradiction, there is a one-to-one mapping between the

vertices of the Steiner tree of HD and the vertices plus the

facets of a connected spanning subcomplex of D, it follows

that wFðD�Þ�wðT�Þ.
Next we show that w(T*) = w(DC

* ). Notice that the

vertex set V of D is a dominating set of HD. Since the

Steiner tree T* of HD spans the vertex set V, T* is a CDS

of HD. Thus, w(DC
* ) B w(T*). On the other hand, given the

minimum CDS DC
* of HD, since each vertex v in the vertex

set V is either in DC
* or a neighbor of some face in DC

* and

the weights of the vertices in V are all zero, the

combination of V and DC
* yields a connected subgraph of

HD that spans V with the same weight as DC
* . Thus,

w(T*) B w(DC
* ). h

Based on Theorem 5, we propose the following Steiner

tree based algorithm (STA) for the MCSSub problem.

Since approximation only occurs in Step 2, the

approximation ratio of STA is equal to that of the algorithm

for the node-weighted Steiner tree problem. The best

approximation ratio is known to be ð1:35þ �Þ ln n for any

constant �[ 0, where n is the number of vertices of D and

is also the number of terminals in the Steiner tree of HD [8].

Here we do not try to find the CDS DC
* of HD at step 2,

because the best known approximation ratio for the CDS

problem is ð1:35þ �Þ ln nðHDÞ where nðHDÞ is the number of

vertices of HD [7, 8]. Since nðHDÞ 
 n, the latter approxi-

mation ratio is much worse than the former one.

3.4 Time complexity analysis

Here we analyze the time complexity of SCA and STA for

the MCSSub problem. Given a WSC D ¼ ðV ;S;wÞ, let

n = |V| denote the number of vertices in D; m ¼ jS n Vj

8 A dominating set of a graph is a subset of vertices such that every

vertex of the graph is either in the subset or a neighbor of some vertex

in the subset, and a connected dominating set (CDS) is a dominating

set where the subgraph induced by the vertices in the dominating set

is connected. The CDS problem asks for a CDS with the minimum

total weight, and it is shown to be a special case of the MCSC

problem [21].
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the number of non-vertex faces in D, and d the dimension

of D. Since all the information of the auxiliary graph GD for

SCA and the derived graph HD for STA can be easily

retrieved from the WSC D, Step 1 in both algorithms can

be skipped in the implementation and the time complexity

of both algorithms is determined by their Step 2.

Step 2 of SCA is to apply the greedy algorithm to the

MCSC problem ðV ;S n V ;w;GDÞ. It takes O(m) time to

complete Step 1 of the greedy algorithm and O(n) iterations

to complete Step 2 of the greedy algorithm. At each iter-

ation of Step 2, the weight ratios of at most m faces are

computed and the weight ratio of each face is done in

constant time. Thus, the running time of SCA is

O(m ? nm) = O(nm). Since the derived graph HD has

n ? m vertices and O(dm) edges and the Steiner tree has n

terminals to cover, it follows from [14] that the running

time of Step 2 of STA is O(dnm2 ? nm2 log m). From the

above, we see that the time complexity of STA is signifi-

cantly higher than that of SCA. This is mostly because the

approximation algorithm for the Steiner tree requires the

computation of the shortest paths between all vertex pairs.

We point out that while the Steiner tree based algorithm

has a higher complexity, it can offer better performance in

a WSC with a large weight range. In a simulation example

of random simple complexes, we consider a case where

each face weight takes only two values wmin and wmax with

equal probability. With wmin = 1, wmax = 10,000, and

1,000 Monte Carlo runs for a 200-vertex random simplicial

complex,9 [15] we find that the total weight of the solution

returned by the set cover based algorithm can be 1.7 times

that of the solution returned by the Steiner tree based

algorithm. These two algorithms thus offer a tradeoff

between performance and complexity.

4 Simulation results

In this section, we present simulation results on the per-

formance of the two approximation algorithms (SCA and

STA) for the broadcast problem in an MR-MC network.

We assume that the communication rate is determined by

the channel bandwidth and its radio propagation charac-

teristics, and does not depend on the radio. We consider a

dense MR-MC network, where all the nodes are within

each others transmission range, and thus whether two

nodes can communicate with each other depends solely on

the channel assignment. As discussed in Sect. 1.2, the cost

to be minimized can be of any form that is summable over

all the transmissions, and here we aim to minimize the total

energy consumption of the broadcast.

There are C non-overlapping channels fi (1 B i B C),

possibly with different communication rates ri, available

for the MR-MC network, and each node is equipped with

R radios (R B C). We assume that the communication rate

is determined by the channel bandwidth and its radio

propagation characteristics, and does not depend on the

radio. At the beginning of the broadcast, each node ran-

domly selects R of the C channels for its R radios. As

discussed in Sect. 1.3, the nodes which share at least one

common channel form a clique, and there is a one-to-one

correspondence between the cliques and the faces of the

derived WSC. The weight of the face is defined as

the energy consumption of the broadcast within the

Fig. 6 The derived graph of a 2-simplex (squares in HD represent the

faces that are not vertices of D)
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Fig. 7 Average total energy versus number of nodes. Parameters:

C = 12, R = 4, Ptx = 1, Prx = 0.01, L = 100, ri = i for 1 B

i B 12

9 A random simplicial complex Dðn;D;pÞ with n vertices, dimension

at most D, and a D-dimensional probability vector p ¼
fp1; p2; . . .; pDg is constructed in a bottom-up manner: first n vertices

are fixed, which are the 0-simplices of D, and then higher-dimensional

simplices are generated inductively. Specifically, for each 1 B i B D,

after all the simplices with dimension lower than i have been

generated, consider every i-tuple of vertices: if they have formed all

the lower dimensional simplices, then an i-simplex consisting of them

is generated with probability pi. Notice that a random simplicial

complex Dðn; 1; pÞ is the random graph introduced by Erd}os and

Rényi [5].
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corresponding clique, i.e., the sum of the transmission

energy and the reception energy. Let S be a face con-

taining k ? 1 nodes and ffSj : j ¼ 1; 2; . . .; qg the q

(1 B q B C) common channels shared by the k ? 1

nodes. Assume that if a node in the clique is selected as

relay, it will choose the common channel with the max-

imum communication rate to transmit. Then the weight

w(S) of the face S is given by

wðSÞ ¼ Ptx þ kPrxð Þ L

max
j¼1;...;q

frSjg
;

where Ptx and Prx are the transmission power and the

reception power, respectively, and L is a constant.

The BIP algorithm for the broadcast problem in an SR-

SC network can be easily extended to solve the broadcast

problem in an MR-MC network. The major difference is

that two nodes may be connected by more than one link if

they share more than one common channel. At each iter-

ation, after the optimal link on one channel is selected, the

cost of other related links on the same channel is updated in

the same manner. In Figs. 7, 8 and 9, the average total

energy of the solutions returned by SCA and STA is

compared with that of the BIP with respect to the under-

lying graph of the WSC. The average is taken over 10

random channel assignments. We see that the performances

of SCA and STA are extremely close, and their perfor-

mances are significantly better than that of BIP.

5 Conclusion and future work

In this paper, we study the minimum cost broadcast prob-

lem in multi-radio multi-channel ad hoc networks, where

the total cost is the sum of the costs associated with the

transmissions during the broadcast. We formulate it as the

minimum spanning problem in simplicial complexes. We

show that it is NP-complete. Hence we propose two

approximation algorithms for this minimum spanning

problem: one is to transform it into the connected set cover

problem; the other is to transform it into the node-weighted

Steiner tree problem and then apply the corresponding

algorithm. Despite their distinct approaches, both approx-

imation algorithms are shown to be order-optimal and offer

a tradeoff in terms of performance versus complexity.

As a starting point, we have assumed that the channel

assignment scheme is designed independent of the broad-

cast scheme. The joint optimization of the two schemes

will further reduce the broadcast cost. Another future

direction is to develop distributed versions of the approx-

imation algorithms for the minimum cost broadcast

problem.
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