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1. INTRODUCTION
We consider the following coverage problem: given a collec-
tion of n axis-parallel rectangles lying within a unit square,
choose a minimum-cardinality subset of rectangles whose
projections in the x and y dimensions cover the correspond-
ing sides of the square. That is, projecting a rectangle
(downward) along the y dimension produces an interval on
the x axis; in a feasible solution the union of these intervals
must equal [0, 1]. Similarly, projecting the rectangles (left-
ward) along the x dimension yields intervals on the y axis,
which must jointly cover [0, 1]. Intuitively, the chosen set of
rectangles block all axis parallel lines of sight through the
unit square. We call this problem SQUARE-LOS-COVER.
This problem is known to admit a simple 2-approximation
which solves two corresponding 1-dimensional subproblems
and takes the union.1 It was previously not known, how-
ever, whether the problem was hard. In this abstract we
show that the problem is indeed NP-hard.

We also consider a natural 3D generalization of the prob-
lem where we are given a collection of cuboids lying within
the unit cube, and we seek a minimum-cardinality subset
of them whose projections in the x, y, and z dimensions
fully cover the corresponding (2D) faces of the cube (CUBE-
LOS-COVER). The 2D algorithm above suggests a natural
strategy for trying to obtain a 3-approximation for this vari-
ation: optimally solve the three 2D subproblems and take
their union. Unfortunately, however, we show that the 2D
subproblem (find a minimum collection of rectangles lying
within a unit square covering the square’s area) is also hard.

2. HARDNESS OF SQUARE-LOS-COVER
We show the problem is NP-hard by reduction from 3-Di-
mensional Matching (3DM), first performing the reduction
of [2] from 3DM to the Hypergraph Assignment problem
(HA), and then transforming the resulting HA instance into
a SQ.-LOS-COVER instance. A 3DM instance is specified
by disjoint sets X, Y , and Z, with |X| = |Y | = |Z| = n, and
a subset of legal triples T ⊆ X×Y ×Z, with |T | = m. An HA
problem instance is specified by a bipartite graph (see Fig.
2(a)) with two disjoint sets of vertices V1, V2 with |V1| = |V2|
and a set of hyperedges E ⊆ {P (V1)\∅}×{P (V2)\∅}. The
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Figure 1: An example problem instance, indicating
the x and y projections of the shaded rectangle.

decision problem asks whether there exists a perfect match-
ing, i.e., a partition of V1 ∪ V2 into a disjoint set E′ ⊆ E.

The transformation of [2] works as follows. For each triple
ti ∈ T , we introduce nodes tzai , tzbi ∈ V1 and txi , t

y
i ∈ V2, and

hyperedge ({tzai , tzbi }, {txi , tyi }). For each xj ∈ X and yj ∈
Y we introduce corresponding nodes in V1; for each node
zj ∈ Z we introduce nodes zaj , z

b
j in V2. Then |V1| = |V2| =

2(m+n). For each appearance of an xj (respectively, yj) in
some triple ti, we add an edge (xj , t

x
i ) (respectively, (yj , t

y
i ));

and for each appearance of a zj in some triple ti, we add
a hyperedge ({tzai , tzbi }, {zaj , zbj}). Note that all hyperedges
produced are of size either 1 × 1 or 2 × 2. Note also that
the 2×2 edges partition each node set into disjoint pairs. A
subset of triples T ′ then form a 3DM iff doing the following
produces a perfect matching: for each t = (x, y, z) ∈ T ′,
select hyperedges (x, tx), (y, ty), and ({tza, tzb}); and for
each t /∈ T ′, select ({tza, tzb}, {tx, ty}).

Our argument uses an optimization version of the hyper-
graph problem where we wish to cover all nodes with hyper-
edges, without requiring them to be disjoint, i.e., the SET
COVER problem instance corresponding to the hypergraph.

Lemma 2.1. Suppose an HA instance I ′ produced by the
[2] reduction admits a perfect matching. Then an optimal set
cover solution to I ′ will necessarily be a perfect matching.

Let I be an instance of 3DM, and let I ′ be the resulting hy-
pergraph instance constructed by the reduction of [2]. Since
the hyperedges of I ′ partition its nodes into disjoint pairs,
we may assume that each such pair’s nodes are drawn ad-
jacent to one another, as in Fig. 2(a). From I ′, we then
construct a SQUARE-LOS-COVER problem instance I ′′ as
follows. We superimpose an n× n mesh on the unit square,
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(a) Resulting hypergraph instance, with “top” nodes V1 and
“bottom” nodes V2, and with hyperedges corresponding to T ′

shown bold.
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(b) Resulting problem instance,
with boxes corresponding to the
bold hyperedges shown shaded.

Figure 2: Reducing from 3DM instance T = {(x1, y1, z1), (x2, y1, z2), (x1, y2, z1)} (with optimal solution T ′ =
{(x2, y1, z2), (x1, y2, z1)}) into a hypergraph (via the construction of [2]), and then to SQUARE-LOS-COVER.
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Figure 3: Gadgets used in subproblem reduction.

where the columns correspond to the nodes V1 and the rows
correspond to V2 (see Fig. 2 for an example). For each 1×1
edge between some c ∈ V1 and r ∈ V2, we add a rectangle
in cell (r, c) of the square; similarly, for hyperedges between
some {c1, c2} ⊂ V1 and {r1, r2} ⊂ V2, we add a rectangle
spanning the four cells {r1, r2} × {c1, c2}.

By construction we have a one-to-one correspondence be-
tween feasible solutions to I ′ and feasible solutions to I ′′.
Thus if we can compute an optimal box cover solution to
I ′′, then we can transform that solution to a set cover of the
same size to I ′, and by Lemma 2.1 that set cover will be a
perfect matching iff I ′ admits a perfect matching.

Theorem 2.1. SQUARE-LOS-COVER is NP-hard, even
when restricted to nonoverlapping, grid-aligned rectangles of
sizes 1× 1 and 2× 2.

3. SUBPROBLEM OF CUBE-LOS-COVER
We show that the 2D subproblem of CUBE-LOS-COVER is
hard by reduction from rectlinear PLANAR 3-SAT. Given
an instance of PLANAR 3-SAT with n variables and m
clauses we define three types of gadgets to represent vari-
ables, clauses, and connections between them. The basic
idea is to have two kinds of rectangles (solid and dashed)
whose selection corresponds to assignments of true or false
values to variables. Variable gadgets (see Fig. 3(a)) are sim-
ply two series of small rectangles covering the border of the
same larger rectangle such that only two optimal ways to
cover that area exist, selecting all rectangles of one kind and
none of the other. This selection of one kind of rectangle is
propagated by a connector gadget, one of which is inserted
into the variable gadget for each occurrence of the variable
in a clause. (Details omitted). Chains of either kind of rect-

angles lead from this larger rectangle to the clause gadget,
with the chain of the same kind as the protruding part of the
connector gadget leading slightly further. The clause gadget
(see Fig. 3(c)) simply consists of a central square area where
these slightly longer chains end and overlap.

The hardness result is obtained by considering the number of
rectangles needed to cover the area of all gadgets and paths
between them. Let ki be the number of solid rectangles in
the variable gadget for variable vi (there are also ki dashed
rectangles). Let ki,j be the number of solid rectangles (and
also the number of dashed ones) in the path from the gadget
for variable vi to the gadget for clause Cj (this is 0 if vi is
not a part of Cj). Then we can show the following:

Lemma 3.1. A satisfying assignment for the given instance
of PLANAR 3-SAT exists iff the area of all gadgets and paths

can be covered using
n∑

i=1

(
ki +

m∑
j=1

ki,j
)

rectangles.

By tiling all empty space not covered by our gadgets with
dummy forced-choice rectangles, we obtain:

Theorem 3.2. The 2D subproblem of CUBE-LOS-COVER
is NP-hard.

4. DISCUSSION
Very little is known in terms of positive results for these
problems, aside from the simple 2-approximation for SQUARE-
LOS-COVER. Since the problem subsumes edge cover on
bipartite graphs (when edges are all 1 × 1), greedy algo-
rithms are unlikely to provide a better approximation. We
conjecture that a k-local search algorithm will provide a
1+1/k-approximation. As for the CUBE-LOS-COVER sub-
problem, the PTAS of [3] can be applied in the special case
where all rectangles are squares of fixed size. For the general
problem, however, no approximability is known aside from
a O(logn)-approximation by reduction to set cover.
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