
Secluded Connectivity Problems

Shiri Chechik1, Matthew P. Johnson2 ?, Merav Parter3 ??, and David Peleg3

1 Microsoft Research Silicon Valley Center, USA. schechik@microsoft.com
2 Department of Electrical Engineering, UCLA, Los Angeles, USA.

mpjohnson@gmail.com
3 The Weizmann Institute of Science, Rehovot, Israel.
{merav.parter,david.peleg}@weizmann.ac.il ? ? ?

Abstract. Consider a setting where possibly sensitive information sent
over a path in a network is visible to every neighbor of (some node on)
the path, thus including the nodes on the path itself. The exposure of
a path P can be measured as the number of nodes adjacent to it, de-
noted by N [P ]. A path is said to be secluded if its exposure is small. A
similar measure can be applied to other connected subgraphs, such as
Steiner trees connecting a given set of terminals. Such subgraphs may
be relevant due to considerations of privacy, security or revenue maxi-
mization. This paper considers problems related to minimum exposure
connectivity structures such as paths and Steiner trees. It is shown that
on unweighted undirected n-node graphs, the problem of finding the
minimum exposure path connecting a given pair of vertices is strongly

inapproximable, i.e., hard to approximate within a factor of O(2log1−ε n)
for any ε > 0 (under an appropriate complexity assumption), but is
approximable with ratio

√
∆ + 3, where ∆ is the maximum degree in

the graph. One of our main results concerns the class of bounded-degree
graphs, which is shown to exhibit the following interesting dichotomy.
On the one hand, the minimum exposure path problem is NP-hard on
node-weighted or directed bounded-degree graphs (even when the max-
imum degree is 4). On the other hand, we present a polynomial time
algorithm (based on a nontrivial dynamic program) for the problem on
unweighted undirected bounded-degree graphs. Likewise, the problem is
shown to be polynomial also for the class of (weighted or unweighted)
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bounded-treewidth graphs. Turning to the more general problem of find-
ing a minimum exposure Steiner tree connecting a given set of k ter-
minals, the picture becomes more involved. In undirected unweighted
graphs with unbounded degree, we present an approximation algorithm
with ratio min{∆,n/k,

√
2n,O(log k · (k +

√
∆))}. On unweighted undi-

rected bounded-degree graphs, the problem is still polynomial when the
number of terminals is fixed, but if the number of terminals is arbitrary,
then the problem becomes NP-hard again.

1 Introduction

The problem. Consider a setting where possibly sensitive information sent over
a path in a network is visible to every neighbor of (some node on) the path, thus
including the nodes on the path itself. The exposure of a path P can be measured
as the size (possibly node-weighted) of its neighborhood in this sense, denoted
by N [P ]. A path is said to be secluded if its exposure is small. A similar measure
can be applied to other connected subgraphs, such as Steiner trees connecting
a given set of terminals. Our interest is in finding connectivity structures with
exposure as low as possible. This may be motivated by the fact that in real-life
applications, a connectivity structure operates normally as part of the entire
network G (and is not “extracted” from it), and so controlling the effect of its
operation on the other nodes in the network may be of interest, in situations in
which any “activation” of a node (by taking it as part of the structure) leads to
an activation of its neighbors as well. In such settings, to minimize the set of total
active nodes, we aim toward finding secluded or sufficiently private connectivity
structures. Such subgraphs may be important in contexts where privacy is an
important concern, or in settings where security measures must be installed on
any node from which the information is visible, making it desirable to minimize
their number. Another context where minimizing exposure may be desirable is
when the information transferred among the participants has commercial value
and overexposure to “free viewers” implies revenue loss.

This paper considers the problem of minimizing the exposure of subgraphs
that satisfy some desired connectivity requirements. Two fundamental connectiv-
ity problems are considered, namely, single-path connectivity and Steiner trees,
formulated as the Secluded Path and Secluded Steiner Tree problems, re-
spectively, as follows. Given a graph G = (V,E) and an s, t pair (respectively, a
terminal set S), it is required to find an s− t path (respectively, a Steiner tree)
of minimum exposure.

Related Work. The problems considered in this paper are variations of the
classical shortest path and Steiner tree problems. In the standard versions of
these problems, a cost measure is associated with edges or vertices, e.g., repre-
senting length or weight and the task is to identify a minimum cost subgraph
satisfying the relevant connectivity requirement. Essentially, the cost of the so-
lution subgraph is a linear sum of the solution’s constituent parts, i.e., the sum
of the weights of the edges or vertices chosen.
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In contrast, in the setting of labeled connectivity problems, edges (and occa-
sionally vertices) are associated with labels (or colors) and the objective is to
identify a subgraph G′ ⊆ G that satisfies the connectivity requirements while
minimizing the number of used labels. In other words, costs are now assigned to
labels rather than to single edges. Such labeling schemes incorporate grouping
constraints, based on partitioning the set of available edges into classes, each
of which can be purchased in its entirety or not at all. These grouping con-
straints are motivated by applications from telecommunication networks, elec-
trical networks, and multi-modal transportation networks. Labeled connectiv-
ity problems have been studies extensively from complexity-theoretic and al-
gorithmic points of view [8,25,13,10]. The optimization problems in this cate-
gory include, among others, the Minimum Labeled Path problem [13,25], the
Minimum Labeled Spanning Tree problem [17,13], the Minimum Labeled Cut

problem [26], and the Labelled Prefect Matching problem [22].

In both the traditional setting and the labeled connectivity setting, only
edges or nodes that are explicitly part of the selected output structure are “paid
for” in solution cost. That is, the cost of a candidate structure is a pure function
of its components, ignoring the possible effects of “passive” participants, such as
nodes that are “very close” to the structure in the input graph G. In contrast,
in the setting considered in this paper, the cost of a connectivity structure G′ is
a function not only of its components but also of their immediate surroundings,
namely, the manner in which G′ is embedded in G plays a role as well. (Alter-
natively, we can say that the cost is a not necessarily a linear function of its
components.)

A variant of the Secluded Path problem was recently introduced as the
Thinnest Path Problem [11], where the focus was on directed hypergraph in-
stances modeling transmission in wireless networks. In that application setting,
each possible transmission power of a node yields a particular transmission range
and hence a hyperedge directed from that node to the neighbors reached. The
special case of that problem in which each node has a single possible transmission
range is equivalent to our Secluded Path problem. They give a

√
n
2 approxi-

mation result for the DegCost algorithm (see Section 2) applied to this (more
general) hypergraph setting.

The Secluded Path and Secluded Steiner Tree problems are related to sev-
eral existing combinatorial optimization problems. These include the Red-Blue

Set Cover problem [4,23], the Minimum Labeled Path problem [13,25] and the
Steiner Tree [15] and Node Weighted Steiner Tree problems [16]. A proto-
typical example is the Red-Blue Set Cover problem, in which we are given a
set R of red elements, a set B of blue elements and a family S ⊆ 2|R|∪|B| of
subsets of blue and red elements, and the objective is to find a subfamily C ⊆ S
covering all blue elements that minimizes the number of red elements covered.
This problem is known to be strongly inapproximable.

Finally, turning to geometric settings, similarly motivated problems have
been studied in the networking and sensor networks communities, where sen-
sors are often modeled as unit disks. For example, the Maximal Breach Path
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problem [21] is defined in the context of traversing a region of the plane that
contains sensor nodes at predetermined points, and its objective is to maximize
the minimum distance between the points on the path and the sensor nodes.
A dual problem studied extensively is barrier coverage, i.e., the (deterministic
or stochastic) placement of sensors (see [18], [6]). Similarly motivated problems
have been studied in the context of path planning in AI [14,19,20]. Although
the motivation is similar, such problems are technically quite different from the
graph-based problems studied here; those problems are typically posed in the
geometric plane, amid obstacles that cause occlusion, and visibility is defined in
terms of line-of-sight.

Contributions. In this paper, we introduce the concept of secluded connectivity
and study some of its complexity and algorithmic aspects. We first state that the
Secluded Path (and hence also Secluded Steiner Tree) problem is strongly
inapproximable on unweighted undirected graphs with unbounded degree (more

specifically, is hard to approximate with ratio O(2log
1−ε n), where n is the number

of nodes in the graph G, assuming NP 6⊆ DT IME
(
npoly logn

)
). Conversely, we

devise a
√
∆+ 3 approximation algorithm for the Secluded Path problem and a

min{∆,n/k,
√

2n,O(log k·(k+
√
∆))} approximation algorithm for the Secluded

Steiner Tree problem, where ∆ is the maximum degree in the graph and k is
the number of terminals.

One of our key results concerns bounded-degree graphs and reveals an inter-
esting dichotomy. On the one hand, we show that Secluded Path is NP-hard
on the class of node-weighted or directed bounded-degree graphs, even if the
maximum degree is 4. In contrast, we show that on the class of unweighted
undirected bounded-degree graphs, the Secluded Path problem admits an exact
polynomial-time algorithm, which is based on a complex dynamic programming
and requires some nontrivial analysis. Likewise, the Secluded Steiner Tree

problem with fixed size terminal set is in P as well.
Finally, we consider some specific graph classes. We show that the Secluded

Path and Secluded Steiner Tree problems are time polynomial for bounded-
treewidth graphs. We also show that the Secluded Path (resp., Secluded Steiner
Tree) problem can be approximated with ratio O(1) (resp., Θ(log k)) in poly-
nomial time for hereditary graph classes of bounded density. As an example,
the Secluded Path problem has a 6 approximation on planar graphs. (A more
careful direct analysis of the planar case yields ratio 3.)

2 Preliminaries and Notation

Consider a node-weighted graph G(V,E,W ), for some weight function W : V →
R≥0, with n nodes and maximum degree ∆. For a node u ∈ V , let N(u) = {v ∈
V | (u, v) ∈ E} be the set of u’s neighbors and let N [u] = N(u) ∪ {u} be u’s
closed neighborhood, i.e., including u itself. A path is a sequence P = [u1, . . . , u`],
oriented from left to right, also termed a u1 − u` path. Let P [i] = ui for i ∈
{1, . . . , `}. Let First(P ) = u1 and Last(P ) = u`. For a path P and nodes x, y
on it, let P [x, y] be the subpath of P from x to y. For a connected subgraph
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G′ ⊆ G and for ui, uj ∈ V (G′), let distG′(ui, uj) be the distance between ui and
uj in G′. Let N(G′) =

⋃
u∈G′ N(u) \G′ be the nodes that are strictly neighbors

of G′ nodes and N [G′] =
⋃
u∈G′ N [u] be the set of nodes in the 1-neighborhood

of G′. Define the cost of G′ as

Cost(G′) =
∑

u∈N [G′]

W (u) . (1)

Note that if G is unweighted, then the cost of a subgraph G′ is simply the
cardinality of the set of G′ nodes and their neighbors, Cost(G′) = |N [G′]|.

We sometimes consider the neighbors of node u ∈ V (G) in different sub-
graphs. To avoid confusion, we denote NG′(u) the neighbors of u restricted to
graph G′.

For a subgraph G′ ⊆ G, let DegCost(G′) denote the sum of the degrees of
the nodes of G′. If G′ is a path, then this key parameter is closely related to our
problem. It is not hard to see that for any given path P , Cost(P ) ≤ DegCost(P ).
The problem of finding an s−t path P with minimum DegCost(P ) is polynomial,
making it a convenient starting-point for various heuristics for the problem.

In this paper we consider two main connectivity problems. In the Secluded

Path problem we are given an unweighted graph G(V,E), a source node s and
target node t, and the objective is to find an s− t path P with minimum neigh-
borhood size. A generalization of this problem is the Secluded Steiner Tree

problem, in which instead of two terminals s and t we are given a set of k ter-
minal nodes S and it is required to find a tree T in G covering S, of minimum
neighborhood size. If the given graph G is node-weighted, then the weighted
Secluded Path and Secluded Steiner Tree problems require minimizing the
neighborhood cost as given in Eq. (1). We now define these tasks formally. For
an s − t pair, let Ps,t = {P | P is a s-t path} be the set of all s − t paths and
let q∗s,t = min{Cost(P ) | P ∈ Ps,t} be the minimum cost among these paths.
Then the objective of the Secluded Path problem is to find a path P ∗ ∈ Ps,t
that attains this minimum, i.e., such that Cost(P ∗) = q∗s,t. For the Secluded

Steiner Tree problem, let T (S) = {T ⊆ G | S ⊆ V (T ), T is a tree} be the set
of all trees in G covering S, and let q∗(S) be the minimum cost among these
trees, i.e.,

q∗(S) = min{Cost(T ) | T ∈ T (S)} . (2)

Then the solution for the problem is a tree T ∗ ∈ T (S) such that Cost(T ∗) =
q∗(S). For paths P1 and P2, P1 ◦ P2 denote the path obtained by concatenating
P2 to P1.

3 Unweighted Undirected Graphs with Unbounded
Degree

Hardness of approximation.

Theorem 1. On unweighted undirected graphs with unbounded degree, the
Secluded Path problem (and hence also the Secluded Steiner Tree problem)
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is strongly inapproximable. Specifically, unless NP ⊆ DT IME(npoly log(n)), the

Secluded Path problem cannot be approximated to within a factor O(2log
1−ε n)

for any ε > 0.

Due to space limitation, missing proofs are provided in the full version of this
paper [5].

Corollary 1. The Secluded Path problem (and hence also the Secluded Steiner
Tree problem) is strongly inapproximable in directed acyclic graphs.

Approximation for the Secluded Path Problem

Theorem 2. The Secluded Path problem in unweighted undirected graphs can
be approximated within a ratio of

√
∆+ 3.

Proof: Given an instance of the Secluded Path problem, let P ∗ be an s−t path
that minimizes Cost(P ∗). Note that we may assume without loss of generality
that for every node u in P ∗, the only neighbors of u in G from among the nodes
of V (P ∗) are the nodes adjacent to u in P ∗. To see this, note that otherwise,
if u had an edge to some neighbor u′ ∈ V (P ∗) such that e is not on P ∗, we
could have shortened the path P ∗ (by replacing the subpath from u to u′ with
the edge e) and obtained a shorter path with at most the same cost as P ∗.
Recall that DegCost(P ) denotes the sum of the node degrees of the path P ,
and that Cost(P ) ≤ DegCost(P ) for any P . Recall also that the problem of
finding an s − t path P with minimum DegCost(P ) is polynomial. We claim
that the algorithm that returns the path Q∗ minimizing DegCost(Q∗) yields a
(
√
∆+3) approximation ratio for the Secluded Path problem. In order to prove

this, we show that there exists a path Q such that DegCost(Q) ≤ (
√
∆ + 3) ·

Cost(P ∗). This implies that DegCost(Q∗) ≤ DegCost(Q) ≤ (
√
∆+3) ·Cost(P ∗),

as required. The pathQ is constructed by the following iterative process. Initially,
all nodes are unmarked and we set Q = P ∗. While there exists a node with more
than

√
∆+ 3 unmarked neighbors on the path Q, pick such a node x. Let y be

the first (closest to s) neighbor of x in Q and let z be the last (closest to t)
neighbor of x in Q. Replace the subpath Q[y, z] in Q with the path [y, x, z] and
mark the node x. We now show that DegCost(Q) ≤ (

√
∆ + 3) · Cost(P ∗). Let

X = {x1, . . . x`} be the set of marked nodes in Q, where xi is the node marked
in iteration i. Note that ` = |X| is the number of iterations in the entire process.
For the sake of analysis, partition N [P ∗] into two sets: S1, those that have no
unmarked neighbor in Q, and S2, those that do. We claim that |S1| ≥ ` ·

√
∆.

For each xi ∈ X, let P (xi) be the path that was replaced by the process of
constructing Q in iteration i, and let Q(xi) be the path Q in the beginning of
that iteration. Since xi has more than

√
∆+ 3 unmarked neighbors in Q(xi), we

get that |P (xi)∩P ∗| ≥
√
∆+4. Let P−(xi) be the path obtained by removing the

first two nodes and last two nodes from P (xi). Note that |P−(xi) ∩ P ∗| ≥
√
∆.

In addition, the sets P−(xi) ∩ P ∗ for i = {1, . . . , `} are pairwise disjoint, and
moreover, none of the nodes in Q has a neighbor in P−(xi)∩P ∗. We thus get that
(P−(xi) ∩ P ∗) ⊆ S1. Note that Cost(P ∗) = |S1| + |S2| and that ` ≤ |S1|/

√
∆.
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We get that DegCost(Q) ≤ |S2| · (
√
∆+ 3) + ` ·∆ ≤ |S2| · (

√
∆+ 3) + |S1| ·

√
∆ ≤

(|S2|+ |S1|) · (
√
∆+ 3) = Cost(P ∗) · (

√
∆+ 3).

In addition, for the Secluded Steiner Tree problem with k terminals, in
the full version [5], we establish the following.

Theorem 3. The Secluded Steiner Tree problem in unweighted undirected
graphs can be approximated within a ratio of min{∆,n/k,

√
2n,O(log k · (k +√

∆))}.

4 Bounded-Degree Graphs

Weighted/Directed graphs. We first show that the Secluded Path problem
(and thus also the Secluded Steiner Tree problem) is NP -hard on both di-
rected graphs and weighted graphs, even if the maximum node degree is 4. We
have the following.

Theorem 4. The Secluded Path problem is NP-complete even for graphs of
maximum degree 4 if they are either (a) node-weighted, or (b) directed.

The unweighted undirected case. In contrast, for unweighted undirected
case of bounded-degree graphs, we show that the Secluded Path problem is
solvable in polynomial time.

Theorem 5. The Secluded Path problem is solvable in O(n2 · ∆∆+1) time
on unweighted undirected graphs, hence in polynomial time for degree-bounded
graphs.

Note that in the previous section we showed that if the graph is either weighted
or directed then the Secluded Path problem (i.e., the special case of Secluded
Steiner Tree with two terminals) is NP-hard. In addition, it is noteworthy that
the related problem of Minimum Labeled Path problem [25,13] is NP-hard even
for unweighted planar graph with max degree 4 (this follows from a straightfor-
ward reduction from Vertex Cover).

We begin with notation and couple of key observations in this context. For
two subpaths P1, P2, define their asymmetric difference as

Diff(P1, P2) = |N [P1] \N [P2]| .

Observation 6 (a) Diff(P1, P2) ≤ Diff(P1, P
′) for every P ′ ⊆ P2.

(b) Cost(P1 ◦ P2) = Cost(P1) + Diff(P2, P1).

For a given path P , let distP (s, u) be the distance in edges between s and u in
the path P . Recall, that ∆ is the maximum degree in graph G.

Observation 7 Let u, v be two nodes in some optimal s− t path P ∗ that share
a common neighbor, i.e., N(u) ∩N(v) 6= ∅. Then distP∗(u, v) ≤ ∆+ 1.
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Proof: Assume for contradiction that there exists an optimal s − t path P ∗

such that N(u) ∩ N(v) 6= ∅ where u = P ∗[i] and v = P ∗[j], 1 < i < j for
(i − j) ≥ ∆ + 2. Recall that due to the optimality of P ∗, for every node u in
P ∗, the only neighbors of u in G from among the nodes of V (P ∗) are the nodes
adjacent to u in P ∗ (otherwise the path can be shortcut). Let w ∈ N(u)∩N(v)

be the mutual neighbor of u and v and consider the alternative s − t path P̂
obtained from P ∗ by replacing the subpath Q = P [i, . . . , j] by the subpath
P ′ = [u,w, v]. Let Q− = P [i + 2, . . . , j − 2] be an length-`′ internal subpath of
Q where `′ ≥ ∆− 1. Then since the degree of w is at most ∆, it follows that

Cost(P̂ ) ≤ N [V (P ) \ V (Q−)] +∆− 2 , (3)

where ∆− 2 is an upper bound on the number w′s neighbors other than u and
v. In addition, note that by the optimality of P ∗ it contains no shortcut and
hence V (Q−) ∩ (N [V (P ) \ V (Q−)]) = ∅ (i.e., for node P [i] the only neighbors
on the path P are P [i− 1] and P [i+ 1]). Thus,

Cost(P ∗) ≥ N [V (P ) \ V (Q−)] + |V (Q−)|
≥ N [V (P ) \ V (Q−)] +∆− 1 > Cost(P̂ ) ,

where the last inequality follows from Eq. (3), contradicting the optimality of
P ∗. The observation follows.

In other words, the observation says that two vertices on the optimal path
at distance ∆ + 2 (which is constant for bounded-degree graphs) or more have
no common neighbors. This key observation is at the heart of our dynamic
program, as it enables the necessary subproblem independence property. The
difficulty is that this observation applies only to optimal paths, and so a delicate
analysis is needed to justify why the dynamic program works. Note that the main
difficulty of computing the optimal secluded path P ∗ is that the cost function
Cost(P ∗) is not a linear function of path’s components as in the related DegCost

measure. Instead, the residual cost of the ith vertex in the path depends on the
neighborhood of the length-(i − 1) prefix of P ∗. This dependency implies that
the secluded path computation cannot be simply decomposed into independent
subtasks. However, in contrast to suboptimal s−t paths, the dependency (due to
mutual neighbors) between the components of an optimal path is limited by the
maximum degree ∆ of the graph. The limited dependency exhibited by any s− t′
optimal path facilitates the correctness of the dynamic programming approach.
Essentially, in the dynamic program, entries that correspond to subsolution σ
of any optimal s − t′ path enjoy the limited dependency, and hence the values
computed for these entries correspond to the exact cost of an optimal path that
starts with s and ends with σ. In contrast, entries of subpaths σ that do not
participate in any optimal s− t′ path, correspond to an upper bound on the cost
of some path P that starts with s and ends with σ. This is due to the fact that the
value of the entry is computed under the limited dependency assumption, and
thus does not take into account the possible double counting of mutual neighbors
between distant vertices in the path. Therefore, the possibly “falsified” entries
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cannot compete with the exact values, which are guaranteed to be computed for
the entries that hold the subpaths of the optimal path. This informal intuition
is formalized below.

For a path P of length ` ≥ ∆ + 1, let Suff(P ) = 〈v`−∆, . . . , v`〉 be the
(∆+ 1)-suffix of P .

Lemma 1. Let P ∗ be an optimal s − t′ path of length ≥ ∆ + 1. Let P ∗ =
P1 ◦ P2 be some partition of P ∗ into two subpaths such that |P1| ≥ ∆+ 1. Then
Diff(P2, P1) = Diff(P2,Suff(P1)).

Proof: For ease of notation, let ` = |P1|, P ′ = P1[1, . . . , ` − (∆ + 1)], and
σ = Suff(P1). By definition, ∆(P2, P1) = | (N [P2] \N [σ]) \N [P ′]|. In the same
manner, ∆(P2, σ) = | (N [P2] \N [σ]) |. Assume for contradiction that the lemma
does not hold, namely, ∆(P2, σ) 6= ∆(P2, P

′ ◦ σ). Then by Obs. 6(a) we have
that ∆(P2, σ) > ∆(P2, P

′ ◦ σ). This implies that N [P2] ∩ N [P ′] 6= ∅. Let u ∈
N [P2] ∩ N [P ′]. There are two cases to consider: (a) u ∈ P ′, and (b) u has a
neighbor v1 in P ′. We handle case (a) by further dividing it into two subcases:
(a1) u ∈ P2, i.e., u occurs at least twice in P ∗, once in P ′ and once in P2,
and (a2) u has a neighbor v2 in P2. Note that in both subcases, there exists a
shortcut of P ∗, obtained in subcase (a1) by cutting the subpath between the two
duplicates of u and in subcase (a2) by shortcutting from u to v2. This shortcut
results in a strictly lower cost path, in contradiction to the optimality of P ∗. We
proceed with case (b). Let v2 ∈ P2 be such that u ∈ N [v2]. If v2 = u, then clearly
the path can be shortcut by going from v1 ∈ P ′ directly to u ∈ P2, resulting
in a lower cost path, in contradiction to the optimality of P ∗. If v2 6= u, then
distP∗(v1, v2) ≥ ∆ + 2 (since |σ| ≥ ∆ + 1) and N [v1] ∩ N(v2) 6= ∅, which in
contradiction to Obs. 7. The Lemma follows.

Corollary 2. Let P ∗ be an optimal s − t′ path of length ≥ ∆ + 1. Let P ∗ =
P1 ◦ P2 be some partition of P ∗ into two subpaths such that |P1| ≥ ∆+ 1. Then
Cost(P ∗) = Cost(P1) + Diff(P2,Suff(P1)).

For clarity of representation, we describe a polynomial algorithm for the Secluded
Path problem, i.e., where S = {s, t} and in addition ∆ ≤ 3, in which case
Suff(P ) = 〈v`−3, . . . , v`〉. The general case of ∆ = O(1) is immediate by the
description for the special case of ∆ = 3. The case of Secluded Steiner Tree

with a fixed number of terminals |S| = O(1) is described in [5].
The algorithm we present is based on dynamic programming. For each 4 ≤

i ≤ n, and every length-4 subpath given by a quartet of nodes σ ⊆ V (G), it
computes a length-i path π(σ, i) that starts with s and ends with σ (if such exists)
and an upper bound f(σ, i) on the cost of this path, f(σ, i) ≥ Cost(π(σ, i)). These
values are computed inductively, using the values previously computed for other
σ’s and i − 1. In contrast to the general framework of dynamic programming,
the interpretation of the computed values f(σ, i) and π(σ, i), namely, the relation
between the dynamic programming values f(σ, i) and π(σ, i) and some “optimal”
counterparts is more involved. In general, for arbitrary σ and i, the path π(σ, i)
is not guaranteed to be optimal in any sense and neither is its corresponding
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value f(σ, i) (as f(σ, i) ≥ Cost(π(σ, i))). However, quite interestingly, there is a
subset of quartets for which a useful characterization of f(σ, i) and π(σ, i) can be
established. Specifically, for every 4 ≤ i ≤ n, there is a subclass of quartets Ψ∗i ,
for which the computed values are in fact “optimal”, in the sense that for every
σ ∈ Ψ∗i , the length-i path π(σ, i) is of minimal cost among all other length-i paths
that start with s and end with σ. We call such a path a semi-optimal path, since
it is optimal only restricted to the length and specific suffix requirements. It turns
out that for the special class of quartets Ψ∗i , every semi-optimal path of σ ∈ Ψ∗i is
also a prefix of some optimal s− t′ path. This property allows one to apply Cor.
2, which constitutes the key ingredient in our technique. In particular, it allows
us to establish that f(σ, i) = Cost(π(σ, i)). This is sufficient for our purposes
since the set

⋃n
i=1 Ψ

∗
i contains any quartet that occurs in some optimal secluded

s − t path P ∗. Specifically, for every s − t optimal path P ∗, it holds that the
quartet Suff(P ∗) = P ∗[i − 3, i] satisfies Suff(P ∗) ∈ Ψ∗i . The correctness of the
dynamic programming is established by the fact that the values computed for
quartets that occur in optimal paths in fact correspond to optimal values as
required (despite the fact the these values are “useless” for other quartets).

The algorithm. If the shortest path between s and t is less than 3, then the
optimal Secluded Path can be found by an exhaustive search, so we assume
throughout that distG(s, t) ≥ 3. Let Ψ be the set of all length-4 subpaths σ in
G. That is, for every σ ∈ Ψ , we have V (σ) ⊆ V (G) and (σ[i], σ[i + 1]) ∈ E(G)
for every i ∈ [1, 3]. For σ ∈ Ψ , define the collection of shifted successor of G as
Next(σ) = {〈σ[2], . . . , σ[4], u〉 | u ∈ (N [σ[4]] \ σ)}. For every pair (σ, i), where
σ ∈ Ψ and i ∈ {1, . . . , n}, the algorithm computes a value f(σ, i) and length-
i path π(σ, i) ending with σ (i.e., π(σ, i)[i − 3, . . . , i] = σ). These values are
computed inductively. For i = 4, let π(σ, 4) = σ and

f(σ, 4) =

{
Cost(σ), if σ[1] = s

∞, otherwise

Once the algorithm has computed f(σ, j) for every 4 ≤ j ≤ i − 1 and every
σ ∈ Ψ , in step i ∈ {5, n} it computes

f(σ, i) = min{f(σ′, i− 1) + Diff(σ, σ′) | σ ∈ Next(σ′)}. (4)

Note that
Diff(σ, σ′) = Diff(σ[4], σ′) = |N [σ[4]] \N [σ′]|. (5)

Let σ′ ∈ Ψ such that σ ∈ Next(σ′) and σ′ achieves the minimum value in Eq.
(4). Then define Pred(σ) = σ′ and let

π(σ, i) = π(Pred(σ), i− 1) ◦ σ[4]. (6)

Let q∗s,t = min{f(σ, i) | i ∈ {4, . . . , n}, Last(π(σ, i)) = t}, and set P ∗ = π(σ∗, i∗)
for σ∗, i∗ such that f(σ∗, i∗) = q∗s,t. Note that there are at most O(n2) entries
f(σ, i), each computed in constant time, and so the overall running time is O(n2).
In [5], we provide a detailed analysis and establish Thm. 5. For the Secluded

Steiner Tree problem, we show the following.
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Theorem 8. On unweighted undirected degree-bounded graphs, we have the fol-
lowing: (a) for arbitrary k, the Secluded Steiner Tree problem is NP-hard; (b)
for k = O(1), the Secluded Steiner Tree problem is polynomial.

5 Secluded Connectivity for Specific Graph Families

Bounded-treewidth graphs. For a graph G(V,E), let TW (G) denote the
treewidth of G. For bounded treewidth graph, i.e. TW (G) = O(1), we have the
following.

Theorem 9. The Secluded Steiner Tree problem (and hence also the Secluded
Path problem) can be solved in linear time for graphs with fixed treewidth. In ad-
dition, given the tree decomposition of G, the Secluded Steiner Tree problem is
solvable in Õ(n3) if TW (G) = O(log n/ log log n). This holds even for weighted
and directed graphs.

Bounded Density Graphs. Let DegCost∗(S) = min{DegCost(T ) | T ∈ T (S)}.
In the full version [5], we show the following.

Proposition 1. Let G be a hereditary class of graphs with a linear number of
edges, i.e., a set of graphs such that for each G ∈ G, |E(G)| ≤ ` · |V (G)| for
some constant `, and where G ∈ G implies that G′ ∈ G for each subgraph G′ of
G. Then DegCost∗(S) ≤ 2` · q∗(S).

An example of such a class of graphs is the family of planar graphs. For
this family, the above proposition yields a 6-approximation for the Secluded

Path problem. (A more careful direct analysis for planar graphs yields a 3-
approximation.) Finally, note that whereas computing DegCost∗(S) for a con-
stant number of terminals k is polynomial, for arbitrary k, computing DegCost∗(S)
is NP-hard but can be approximated to within a ratio of Θ(log k), see [5]. Thus,
for the class of bounded density graphs, by Prop. 1, the Secluded Path problem
has a constant ratio approximation and the Secluded Steiner Tree problem
has an Θ(log k) ratio approximation.

Theorem 10. For the class of bounded-density graphs, the Secluded Path prob-
lem (respectively, Secluded Steiner Tree problem) is approximated within a
ratio of O(1) (respectively, Θ(log k)).

Acknowledgment We are grateful to Amotz Bar-Noy, Prithwish Basu and Michael
Dinitz for helpful discussions.
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Fig. 1. Example of the gap-preserving reduction from Red-Blue Set Cover to Secluded

Path. The Red-Blue Set Cover instance is given by S1 = {b1, b2, b3, r1, r3}, S2 =
{b4, r4}, S3 = {b3, r1, r5}, S4 = {b1, b3, b4, r2, r4}, S5 = {b1, b2, b4, b5, r3, r5}. The op-
timal solution for Red-Blue Set Cover is {S1, S3, S5}, which covers 3 red elements. The
corresponding s− t path is of cost 14 + 3 · 53 = 389. Note that an alternative solution of
{S1, S4} is of higher cost, covering 4 red elements, and the corresponding s− t path is of
cost 14 + 4 · 53 = 514.
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Fig. 2. Illustration of the reduction from Vertex Cover. (a) The weighted case. Top: the
graph G with the diamond graph gadgets g(e). The black nodes correspond to the heavy
neighbor attached to each node v ∈ V (G). Bottom: zoom into a single gadget. (b) The
directed case. Directionality enforces visiting the gadgets in order, precluding the tour in
V (G) nodes.
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Fig. 3. Illustration of the gap between q∗(S) and DegCost∗(S). The light purple nodes
correspond to the set of terminals S.
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