C1M4

Inverse Functions and Logarithms

Each summer a new group of incoming students is inducted into the U.S. Naval Academy, they become Fouth Class Midshipmen or plebes, and identification numbers called alpha numbers are assigned. Since this year is 2000, and it is hoped that these students will graduate in 2004 , each number assigned begins with 04. So a typical alpha might be 047854 , except that 7854 is a larger number than would be needed. Unless an error has been made, there is a one - to - one relationship between a set called Plebes and a set called Alphas. If numbers are assigned to names then there is a function F so that

$$
F: \text { Plebes } \longrightarrow \text { Alphas }
$$

and, for example

$$
F(\text { John Doe })=041721
$$

And, unless two plebes are mistakenly assigned the same number, there is a unique association that allows one to identify the plebe if you have their alpha number. This means that there is an inverse function

$$
F^{-1}: \text { Alphas } \longrightarrow \text { Plebes }
$$

and

$$
F^{-1}(041721)=\text { John Doe }
$$

The discussion above is a very simplistic example of how functions and inverse functions relate. More precisely, with \Longleftrightarrow meaning "if and only if",

$$
f^{-1}(x)=y \quad \Longleftrightarrow \quad f(y)=x
$$

You have studied exponential functions recently and probably noted that when $a>1$, then a^{x} is an increasing function. We sometimes use \equiv to denote a definition or an equivalent statement.

$$
f \text { is increasing } \equiv u<v \Rightarrow f(u)<f(v)
$$

It is easy to see that when a function is increasing then it has an inverse. And, inverses of exponential functions are called logarithms. This leads to the very important relationship

$$
\log _{a}(x)=y \quad \Longleftrightarrow \quad a^{y}=x
$$

In calculus, the most important base is e and we call that logarithm the natural logarithm and identify it by \ln.

$$
\log _{e}(x) \equiv \ln (x)
$$

From which it follows that

ค $e^{\ln (x)}=x \quad e^{-\ln (x)}=\frac{1}{x} \quad a^{b}=e^{b \ln (a)} \quad \ln \left(e^{x}\right)=x \quad \ln (e)=1 \quad \ln \left(e^{2}\right)=2 \quad \ln \left(e^{3}\right)=3$

The graph of an inverse function is related to the graph of the function by reflection about the line $y=x$. In this next example we will plot several logarithmic functions and the related exponentials.
Maple Example Plot $\log _{2}(x), \ln (x), \log _{10}(x)$, their inverses $2^{x}, e^{x}, 10^{x}$, and the line $y=x$.

```
> with(plots):
> A:=plot ([log[2] (x), ln (x), log[10](x)],x=(.3)..4,color=[red,green,blue]):
> B1:=plot (2^x,x=log[2](.3)..log[2](4),color=red):
> B2:=plot (exp (x),x=ln(.3)..ln(4),color=green):
> B3:=plot (10^ x,x=log[10](.3)..log[10](4), color=blue):
> B4:=plot(x,x=log[2](.3)..4,color=khaki,scaling=constrained):
> display(A,B1,B2,B3,B4);
```


Maple Example: Plot $y=3^{x}$ and its tangent line at $x=0$ on the same coordinate axes.
Do you remember how we approximated the slope of a^{x} at $x=0$ in C1M3? We defined a function

$$
F:=x \longrightarrow \frac{1}{2} \frac{a^{x}-a^{-x}}{x}
$$

that calculated the slope of the line segment that joins the two points $P\left(-x, a^{-x}\right)$ and $Q\left(x, a^{x}\right)$ spaced equally from $x=0$. Then we selected different values of a and looked at values of this slope function as x got closer to 0 . We are going to repeat this process and then compare our approximations with certain values.

```
> F:=x-> (a^x-a^(-x))/(2*x);
            F:=x\longrightarrow\frac{1}{2}}\frac{\mp@subsup{a}{}{x}-\mp@subsup{a}{}{-x}}{x
> a:=2; seq(evalf(F(1/2^i),14),i=9..15);
                        a:=2
    .69314739230,.69314723351,.6931471938,.6931471839,.6931471815,.6931471806,.693147181
> evalf(ln}(2),14)
    .69314718055995
> a:=3; seq(evalf(F(1/2^i),14),i=9..15);
    a:= 3
    1.09861313170, 1.09861249940, 1.0986123413, 1.0986123019, 1.0986122923, 1.0986122897, 1.098612289
> evalf(ln(3),14);
    1.0986122886681
> a:=10; seq(evalf(F(1/2^i),14),i=9..15);
    a:= 10
    2.30259285469, 2.30258703341, 2.3025855781, 2.3025852143, 2.3025851234, 2.3025851002, 2.302585095
> evalf(ln(10),14);
\[
2.3025850929940
\]
```

Although we have not proved it (yet), we are strongly suspicious that at $x=0$ the slope of the line tangent to $y=a^{x}$ is $\ln (a)$. We will use this value for m in the equation for the line, $y-y_{0}=m\left(x-x_{0}\right)$.

```
> eq1:=y-1=ln(3)*(x-0);
    eq1:=y-1= ln(3)x
> plot([3^x,ln(3)*x+1],x=-2..2,color=[red,blue]);
```


C1M4 Problems: Use Maple to display the following graphs:

1. $y=5^{x}$ and $y=\log _{5}(x)$
2. $y=\log _{10}(x)+.01$ and $y=\frac{\ln (x)}{\ln (10)}, .2 \leq x \leq 5$

$$
\begin{aligned}
& \log _{a}(x)=\frac{\ln (x)}{\ln (a)} \\
& \ln (a b)=\ln (a)+\ln (b) \\
& \ln \left(x^{r}\right)=r \ln (x)
\end{aligned}
$$

3. $y=\ln (2 x)+.02$ and $y=\ln (x)+\ln (2), .2 \leq x \leq 5$
4. $y=\ln \left(x^{2}\right)+.03$ and $y=2 \ln (x), .2 \leq x \leq 5 \pi$
5. $y=5^{x}$ and the line tangent at $x=0$.
