C2M7

Solutions of Differential Equations

A differential equation arises when there is a relationship involving a function and one or more of its derivatives. For example

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0
$$

is such an equation. A function is a solution of this equation if you obtain 0 when you add its second derivative to 5 times its first derivative and then add 6 times the function itself.
Maple Example 1 Use Maple to verify that $y(t)=a e^{-3 t}+b e^{-2 t}$ is a solution of the differential equation shown above, where a and b are arbitrary constants.
$>$ with (student):
$>\operatorname{de1}:=\{\operatorname{diff}(y(\mathrm{t}), \mathrm{t}, \mathrm{t})+5 * \operatorname{diff}(\mathrm{y}(\mathrm{t}), \mathrm{t})+6 * \mathrm{y}(\mathrm{t})=0\} ;$

$$
d e 1:=\left\{\left(\frac{\partial^{2}}{\partial t^{2}} y(t)\right)+5\left(\frac{\partial}{\partial t} y(t)\right)+6 y(t)=0\right\}
$$

$>y 1:=a * \exp (-3 * t)+b * \exp (-2 * t) ;$

$$
y 1:=a \mathbf{e}^{(-3 t)}+b \mathbf{e}^{(-2 t)}
$$

$>\operatorname{eval}(\mathrm{de} 1, \mathrm{y}(\mathrm{t})=\mathrm{y} 1)$;

$$
\{0=0\}
$$

which shows that for any constants a and $b, y(t)$ is a solution of the given equation.
Maple Example 2 Determine whether $y(x)=e^{x}+c e^{-2 x}$ is a solution of

$$
y^{\prime}+2 y=3 e^{x}
$$

for any value of the constant c.

$$
\begin{aligned}
& >\operatorname{de2}:=\{\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+2 * \mathrm{y}(\mathrm{x})=3 * \exp (\mathrm{x})\} ; \\
& \\
& \begin{aligned}
>\mathrm{y} 2:=\exp (\mathrm{x})+\mathrm{c} * \exp (-2 * \mathrm{x}) ; & d e 2:\left\{\left(\frac{\partial}{\partial x} y(x)\right)+2 y(x)=3 \mathbf{e}^{x}\right\} \\
>\operatorname{eval}(\operatorname{de} 2, \mathrm{y}(\mathrm{x})=\mathrm{y} 2) ; & y 2:=\mathbf{e}^{x}+c \mathbf{e}^{(-2 x)} \\
& \left\{3 \mathbf{e}^{x}=3 \mathbf{e}^{x}\right\}
\end{aligned}
\end{aligned}
$$

How would we know if we did not have a solution? let's define a different function and see what happens.
$>y 3:=2 * \exp (\mathrm{x})+\mathrm{C} * \exp (-2 * \mathrm{x})$;
$>\operatorname{eval}(\mathrm{de} 2, \mathrm{y}(\mathrm{x})=\mathrm{y} 3)$;

$$
\begin{gathered}
y 3:=2 \mathbf{e}^{x}+C \mathbf{e}^{(-2 x)} \\
\left\{6 \mathbf{e}^{x}=3 \mathbf{e}^{x}\right\}
\end{gathered}
$$

Now in order for $y 3$ to be a solution, the last equation, $6 e^{x}=3 e^{x}$, would have to be true for every x. But this is true for no x, so $y 3$ is not a solution.
C2M7 Problems: Use Maple and the method illustrated above to determine whether the given function is a solution of the differential equation.

1. $y=\sin x+x^{2}, \quad y^{\prime \prime}+y=x^{2}+2$
2. $y=e^{2 x}-3 e^{-x}, \quad y^{\prime \prime}-y^{\prime}-2 y=0$
3. $x=2 e^{3 t}-e^{2 t}, \quad \frac{d^{2} x}{d t^{2}}-x \frac{d x}{d t}+3 x=-2 e^{2 t}$
4. $x=\cos 2 t, \quad \frac{d x}{d t}+t x=\sin 2 t$
5. $x=\cos t-2 \sin t, \quad x^{\prime \prime}+x=0$
