C2M5

Parametric Functions

Have you ever played with a toy called "Etch-a-Sketch"? One hand controls the x-axis while the other controls the y-axis. It is as if you are graphing $(x(t), y(t)), a \leq t \leq b$, which is exactly what happens when a function in the plane is defined parametrically. Be very careful where you place the right bracket,], when using Maple to plot parametric graphs.
Maple Example: Plot $x(t)=\sin (13 t), y(t)=\cos (7 t)$ for $0 \leq t \leq 6 \pi$ which produces a lissajou. The plot is on the left below. As you can see, the scaling is a little off because the "square" is two units on each side. For a little fun, increase the coefficients to say 43 and 37 and see what happens. You may also wish to increase the domain.
$>\operatorname{plot}([\sin (13 * \mathrm{t}), \cos (7 * \mathrm{t}), \mathrm{t}=0 . .6 * \mathrm{Pi}]$, color=navy $)$;

Maple Example: Ellipses are easy this way. Plot $\frac{x^{2}}{3^{2}}+\frac{y^{2}}{2^{2}}=1$. The Maple output is above on the right. When you have $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ you may plot this by using $x(t)=a \cos (t)$ and $y(t)=b \sin (t)$ for $0 \leq t \leq 2 \pi$. So,
$>\operatorname{plot}([3 * \cos (\mathrm{t}), 2 * \sin (\mathrm{t}), \mathrm{t}=0 . .2 * \operatorname{Pi}])$;

C2M5 Problems Use Maple to display the parametric graphs of the given functions.

1. $x=e^{t}, y=e^{2 t},-1 \leq t \leq 2$
2. $x=2 \sec t, y=\tan t,-\pi / 2<t<\pi / 2$
3. $x=t-\sin t, y=1-\cos t, 0 \leq t \leq 4 \pi$
4. $x=\cos ^{3} t, y=\sin ^{3} t, 0 \leq t \leq 2 \pi$
