
C1M14

Integrals as Area Accumulators

Most textbooks do a good job of developing the integral and this is not the place to provide that
development. We will show how Maple presents Riemann Sums and the accompanying diagrams and then
focus on integrals from a to x . We hear about “moving the goalpost” when standards of performance
are raised, but here that is exactly what is happening because x is a variable. We will be focusing on
functions that are bounded on their domain, which will be an interval [a, b] , and are continuous at all except
possibly a finite number of points. For this reason, when we break [a, b] up into n subintervals we may

assume that the subintervals all have the same length,
b − a

n
= ∆x . In more general situations, we allow the

subintervals to be of random length and then force the largest interval to get small as a means of controlling
the approximation in the limit which we will call a definite integral. Let’s break all this down into small
parts and then assemble them in a useful way.

1. Suppose that f is a bounded function on [a, b] , f is continuous at all but at most a finite number of
points, and n is a positive integer.

2. Let ∆x =
b − a

n
. Then there are n + 1 points

{
xi

}n

0 determined by

x0 = a = a + 0 · ∆x, x1 = a + 1 · ∆x, x2 = a + 2 · ∆x, . . . , xi = a + i · ∆x, . . . , xn = a + n · ∆x = b

3. In each subinterval [xi−1, xi] , a value ti is selected. Obviously xi−1 ≤ ti ≤ xi .

4. Intuitively, we think of f(ti) · ∆x as the area of a rectangle of height f(ti) and base with width ∆x
placed above the interval [xi−1, xi] .

5. The value
∞∑

n=1

f(ti) · ∆x is called a Riemann Sum and its value provides an approximation to the signed

area between y = f(x) and the x-axis.

6. We write lim
n→∞

∞∑
n=1

f(ti) · ∆x =
∫ b

a

f(x) dx

7. On subintervals where f(x) < 0, there will be a negative contribution, so we must be careful how
we use the phrase “the integral of f is the area beneath the curve”. It makes sense for positive f only.
Maple Examples: Maple has three plotting commands leftbox, middlebox, rightbox that illustrate
Riemann sums. It also has three numerical commands that compute Riemann sums, leftsum, middlesum,
rightsum. We will illustrate their use for x2 on the interval [1, 3] using 13 subintervals. These commands
are all in the package student.

> restart: with(plots): with(student):
> leftsum(xˆ2,x=1..3,13);

2
13

(
12∑

i=0

(
1 +

2
13

i
)2
)

> value(leftsum(xˆ2,x=1..3,13));
1362
169

> evalf(leftsum(xˆ2,x=1..3,13));
8.059171595

> rightsum(xˆ2,x=1..3,13);

2
13

(
13∑

i=1

(
1 +

2
13

i
)2
)

> value(rightsum(xˆ2,x=1..3,13));
1570
169

> evalf(rightsum(xˆ2,x=1..3,13));
9.289940825

Leftbox is on the left and rightbox is on the right.
> leftbox(xˆ2,x=1..3,13);
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Maple Animation Example: We will use the function f(x) = x sin(πx) on [0, 3] and set up an animation

of the approximation of
∫ 3

0
x sin(πx) dx using middlebox. The reader is urged to type in the commands

below or to copy and paste, and to watch the animation. The value of each Riemann sum using the midpoint
of the subinterval is shown near the top of the display.

> restart: with(plots):
> f:=x->x*sin(Pi*x);

f := x → x sin(πx)
> nstart:=5; frameno:=50;

nstart := 5
frameno := 50

> framenumbers:=[seq(nstart+i,i=0..(frameno-1))]:
> A:=display(seq(middlebox(f(x),x=0..3,i),i=framenumbers),insequence=true):
> B:=animate(f(x),x=0..3,y=-2..3,color=red, frames=frameno):
> C:=display(seq(textplot([1.3,2.2,evalf(middlesum(f(x),x=0..3,i))]),i=5..(frameno+4)),

insequence=true):
> display(A,B,C);

1.112461180

–1

0

1

2

0.5 1 1.5 2 2.5 3
x

2



Let’s look at the last approximation and the actual answer in floating point. By using uppercase “I” in
Int on the left we obtain an inert integral, while the lowercase “i” yields an active command “integrate it”
on the right in int.
> evalf(middlesum(f(x),x=0..3,frameno+4));

.9561427706
> Int(f(x),x=0..3)=evalf(int(f(x),x=0..3));∫ 3

0
x sin(πx) dx = .9549296583

Play the animation! Click on the display. A box will appear around the figure and a “tape player”
window will appear in the context bar. Click on the “Play” button and watch!
♠ It is important to note that Maple deals with definite integrals by simply including the range.

For example, the value of
∫ b

a
f(x) dx results from int(f(x),x=a..b).

Now we will turn our attention to f(x) and A(x) =
∫ x

a

f(t) dt . This integral intuitively ‘accumulates

area’ as x moves from left to right.

A(x)

f(x)

A(x)

height = area accumulated
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We will state the first part of the Fundamental Theorem of Calculus and then illustrate it using a
function defined in a piecewise manner.
The Fundamental Theorem of Calculus (Part One): Assume that f is continuous on [a, b] and that

the function A is defined by A(x) =
∫ x

a

f(t) dt for a ≤ t ≤ b . Then, A′(x) = f(x) for all x in (a, b). In

other words, A is an antiderivative for f .
Sometimes we write

Dx

(∫ x

a

f(t) dt

)
= f(x)

Maple Example: Suppose that f is defined by:

f(x) =




1 − x, if x ≤ 1
ln(x), if 1 < x < e
(x − e − 1)2, if e ≤ x

We will plot the graph of f(x) and of A(x) =
∫ x

0
f(t) dt , which of course is the area accumulator function

for f(x). We will note that f is continuous, but is not differentiable at x = 1 and x = e . It will be
important to observe that the graph of A(x) is smooth at all points, indicating that A is differentiable
everywhere, as it should be.
> restart: with(plots): with(student): with(plottools):
> e:=exp(1);
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e := e
> f:=x->piecewise(x<=1,1-x,x>1 and x<e,ln(x),x>=e,(x-e-1)ˆ2);

f := x → piecewise(x ≤ 1, 1 − x, 1 < x and x < e, ln(x), e ≤ x, (x − e − 1)2)
> A:=x->int(f(t),t=0..x);

A := x →
∫ x

0
f(t) dt

> A1:=plot(f(x),x=0..(e+2),color=red):
> A2:=plot(A(x),x=0..(e+2),color=blue):
> A3:=plot(f(x),x=0..3,color=yellow,filled=true):
> A4:=line([3,0],[3,A(3)],color=green):
> A5:=textplot([3.6,2,"A(x)"]):
> display(A1,A2,A3,A4,A5);
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Without fanfare we will state the rest of the Fundamental Theorem of Integral Calculus. The same
hypotheses still apply.
Fundamental Theorem of Calculus (Part Two): If F is any antiderivative of f , then

∫ b

a

f(x) dx = F (b) − F (a)

Suppose that f is continuous on [a, b] and that F (x) =
∫ x

a

f(t) dt . If we apply the Mean Value Theorem

to F on [a, b] , then there is a point c in (a, b) for which

F (b) − F (a)
b − a

= F ′(c)∫ b

a
f(t) dt − ∫ a

a
f(t) dt

b − a
= f(c)

1
b − a

∫ b

a

f(t) dt = f(c)

This last value is sometimes called the average value of f(x) over [a, b] . We know that F ′ = f and∫ a

a
g(x) dx = 0 for any function g and these facts were used above. We summarize this as the

Mean Value Theorem for Integrals: If f is continuous on [a, b] , then there is a number c in [a, b]

such that
∫ b

a

f(x) dx = f(c)(b − a).

Maple Example: Find a value c that satisfies the MVT for integrals for f(x) = 3 e−x + x sin(πx) on the
interval [0, 3] and display a graph that illustrates this theorem.
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> restart: with(plots): with(plottools):
> f:=x->3*exp(-x)+x*sin(Pi*x);

f := x → 3 e−x + x sin(πx)
> A:=int(f(x),x=0..3);

A := −3
(e(−3)π − 1 − π)

π
> c:=fsolve(f(x)=A/3,x,0..3);

c := .9601184662
> A1:=plot(f(x),x=0..3,color=red):
> A2:=plot(f(c),x=0..3,color=blue):
> A3:=plot(f(c),x=0..3,color=yellow,filled=true):
> A4:=line([c,0],[c,f(c)],color=green):
> A5:=textplot([.5,2.6,"f(x)"]):
> A6:=line([3,0],[3,f(c)],color=black):
> A7:=arrow([1.2,1.8],[1,1.4],.05,.13,.3,color=khaki):
> A8:=textplot([1.25,2,"(c,f(c))"]):
> A9:=textplot([1.5,.7,"f(c)(b-a)"]):
> display(A1,A2,A3,A4,A5,A6,A7,A8,A9);
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C1M14 Problems: Use Maple to solve the problems and plot the graphs.
1. For f(x) = 3 e−x sin(x) on [0, π] , evaluate (use evalf) and display graphically the left, right, and middle
sums with 47 subintervals. Remember that the commands you will need are in student.

2. Define g(x) =
1
x

for x in [1/4, 5]. Then define G(x) =
∫ x

1 g(t) dt . This is how ln(x) is defined in some
textbooks when exponentials and logarithms are delayed until after the integral has been developed. Display
g and G on the same graph and fill the graph below g(x) from 1 to 3.

3. For f(x) = x sin(x2) on [0, π] , use Maple to find the average value of f on this interval and display a
graph that illustrates the Mean Value Theorem for Integrals.
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