
C1M10

Using the Derivative to Sketch the Function

The behavior of the derivative reveals a lot about the shape of a curve. Everything we know on this topic
depends on one theorem which will be discussed later. Because of the importance of this theorem I would
like to touch on it now and at least make you aware of what it says geometrically. Some mathematicians
refer to it as The Fundamental Theorem of Differential Calculus because so much of what we do in beginning
calculus depends on it. This theorem is usually known as The Mean Value Theorem. We will use a different
format than usual by identifying two hypotheses, H1 and H2, and the conclusion C.
The Mean Value Theorem (MVT):
H1: f is a continuous function on the closed interval [a, b] .
H2: f is differentiable on the open interval (a, b).
C: There is a point c in (a, b) that satisfies

f ′(c) =
f(b)− f(a)

b − a

Do you remember how we commented earlier that theorems that assert the existence of some mathematical

entity are often very strong theorems? First, let’s recognize that the number
f(b)− f(a)

b − a
is the slope of the

line that joins (a, f(a)) and (b, f(b)). So, the MVT asserts that there is a tangent line to the curve at some
interior point that is parallel to this line. Our picture looks like this:
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There are a couple of comments that might help here. There may be several points, c1, c2, . . . cn , that
satisfy the condition. The point c MUST NOT be an endpoint.

Maple Example: Use Maple to plot the graph of f(x) = x sin(3x) +
1
2
on the interval [1, 3] and to draw

the line tangent to this curve at the point (c, f(c)) where c satisfies the conclusion for the MVT.
Actually, the graph is shown in the diagram above. We will provide the Maple for all but the labeling.

> restart: with(plots): with(plottools):
> f:=x->x*sin(3*x)+1/2;

f := x → x sin(3x) +
1
2

> a:=1; b:=3;
a := 1
b := 3

> C:=(f(b)-f(a))/(b-a);

C :=
3
2
sin(9)− 1

2
sin(3)

> fprime:=unapply(diff(f(x),x),x);
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fprime := x → sin(3x) + 3x cos(3x)
> c:=fsolve(fprime(x)=C,x,1..3);

c := 1.672139733
> m:=fprime(c); y0:=f(c);

m := .5476177153
y0 := −1.095451597

> eq1:=y-y0=m*(x-c);
eq1 := y + 1.095451597 = .5476177153x − .9156933402

> y:=solve(eq1,y);
y := −2.011144937 + .5476177153x

> P1:=plot(f(x),x=a..b,color=red,scaling=constrained):
> P2:=plot(y,x=a-1..b+1,color=blue):
> P3:=line([a,f(a)],[b,f(b)],color=magenta):
> P4:=line([c,0],[c,f(c)],color=green):
> P5:=plot(f(x),x=-.3..(-.1),color=white):
> P6:=line([a,0],[a,f(a)],color=cyan):
> P7:=line([b,0],[b,f(b)],color=cyan):
> display(P1,P2,P3,P4,P5,P6,P7);

Suppose that f ′(x) > 0 on (a, b). Then f(b)−f(a)
b−a > 0 and f(b)− f(a) > 0, or f(a) < f(b). But, using

the same argument for a ≤ x1 < x2 ≤ b and applying the MVT on [x1, x2] we see that f(x1) < f(x2), or in
other words, f is strictly increasing on [a, b] . Similarly, if f ′(x) < 0 on [a, b] , then f is strictly decreasing
on [a, b] . When the derivative is positive, the function is moving uphill as you move from left to right.

Place your hand so that your fingers are pointing down at about a 45◦ angle in front of you. Assume
that there is an imaginary bar a few inches in front of the tip of your fingers. Now move your hand so that
it moves under that bar and upwards in a smooth motion. Imagine the slope of your hand to be −1 as you
begin, then the slope increases to 0 as you level out, and then it increases to +1 as you stop. It is fair to say
that the derivative function is increasing. If we now let the derivative, f ′ , play the role of f in the MVT,
then the derivative of the derivative of f must be strictly positive. Let’s take a very simple example as our
model. Suppose that f(x) = x2 . Then f ′(x) = 2x and f ′′(x) = 2. The derivative is negative when x < 0,
0 at x = 0 and positive when x > 0. Note that f ′′(x) > 0 for all x . A function that behaves like x2 is
called concave upwards.

Now for the opposite situation. If our model is like g(x) = −x2 , begin with your hand in front of you
pointing upwards at 45◦ and then move your hand smoothly over a bar and downward. The slope was
initially about +1, it became 0 at the top, and ended at −1. Here the derivative was a decreasing function,
so the derivative of the derivative must be negative. We say that a function that behaves like −x2 is concave
downwards.

We will learn later that it is important to discover where a function stops being concave one way and
starts being concave the other. Such points occur where the second derivative is zero, or, does not exist and
are called inflection points. Suppose that p(x) = ax2 + bx + c , so that p′(x) = 2ax + b and p′′(x) = 2a .
Then there is no way this quadratic can have an inflection point - the second derivative is a constant, so
that p is always concave up (a > 0) or is always concave down (a < 0). In order for a polynomial to have
an inflection point the degree must be at least three, so only cubics, quartics, quintics,.., and so forth will
have points where the concavity changes. In the figure which follows you see a graph of y = 3

√
x = x1/3 .

The derivative does not exist at x = 0 (the tangent line would be vertical, which is a ”no, no”), but the
concavity changes from up to down as we move from left to right.
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You probably assume that the graph above was produced by

> plot(xˆ(1/3),x=-3.5..3.5);
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WRONG!! Maple doesn’t like taking fractional powers of negative numbers, and rightly so. In order to
get this graph we used rotate, which is in plottools. First we plotted y = −x3 , and then we rotated it
90◦ .
> R:=plot(-xˆ3,x=-1.5..(1.5),scaling=constrained):
> display(rotate(R,Pi/2));

Now let’s look at x2 and 2− x2 , and their first and second derivatives.
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Concave Upwards Concave Downwards
Now we will do another Maple example where we illustrate what happens when the second derivative is

positive, zero, and negative. We have drawn vertical dotted lines at the points where the second derivative is
zero. Please note how the concavity of F changes at these points. Although we did not make special mention
of the behavior of F ′ , its slope is zero at these points, as it should be. And the zeroes of F ′ correspond to
where our function F crests or bottoms out.
Maple Example: For F (x) = x4 − 6x2 + 3 on [−3, 3], plot F , its derivative, and its second derivative
on the same coordinate system and note the relationships.
> restart: with(plots): with(plottools):
> F:=x->xˆ4-6*xˆ2+3;

F := x → x4 − 6x2 + 3
> Fprime:=unapply(diff(F(x),x),x);

Fprime := x → 4x3 − 12x
> solve(Fprime(x)=0,x);

0,
√
3,−

√
3

> F2prime:=unapply(diff(Fprime(x),x),x);
F2prime := x → 12x2 − 12

> solve(F2prime(x)=0,x);
1,−1

> S1:=plot(F(x),x=-3..3,color=red):
> S2:=plot(Fprime(x),x=-3..3,color=blue):
> S3:=plot(F2prime(x),x=-3..3,color=green):
> S4:=textplot([-2.5,20.2,"F"]):
> S5:=textplot([-2.5,-48,"F’"]):
> S6:=textplot([-2.2,80,"F’’>0"]):
> S61:=textplot([.45,-40,"F’’<0"]):
> S62:=textplot([2.2,80,"F’’>0"]):
> S7:=line([-1,-70],[-1,90],color=khaki,linestyle=3):
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> S8:=line([1,-70],[1,90],color=khaki,linestyle=3):
> display(S1,S2,S3,S4,S5,S6,S61,S62,S7,S8);
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C1M10 Problems:

1. Given f(x) = x3 − x + 2 on [−1, 2]. Using the first Maple Example as a prototype, plot the graph of
f(x) and the tangent line at the point which satisfies the conclusion of the Mean Value Theorem.

2. Given g(x) = 3x4 − 4x3 on [−5/4, 2]. Use Maple to plot g(x), g′(x), and g′′(x).

3. Given h(x) = cos(x) + sin(2x) on [−2, 2]. Use Maple to plot h(x), h′(x), and h′′(x). Use fsolve to
find those values where h′′(x) is 0 and put vertical lines there. Remember, you can specify the range for
the solution in fsolve, as we did in one of the examples.
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