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Abstract

There are certain sequences of words in the generators of a two-
generator subgroup of SL(2,C) that frequently arise in the Teichmüller
theory of hyperbolic three-manifolds and Kleinian groups. In this pa-
per we establish the connection between two such families, the family
of Farey words that have been used by Keen-Series to understand the
boundaries of the Quasifuchsian space of surfaces of type (1, 1) and the
Schottky space of surfaces of type (0, 4) and the sequences of words
that arise in discreteness algorithms for two-generator subgroups of
SL(2,C) studied by Rosenberger-Purzitsky and Gilman-Maskit and
Jiang.

1 Introduction

There are certain sequences of words in the generators of a two-generator
group that frequently arise in the Teichmüller theory of hyperbolic three-
manifolds and Kleinian groups. In this paper we establish the connection
between two such families, the family of Farey words that have been used
by Keen-Series to understand the boundary of the Teichmüller spaces of
surfaces of type (1, 1) and (0, 4) and the sequences of words that arise in
two-generator discreteness algorithms studied by Rosenberger-Purzitsky and
Gilman-Maskit and Jiang. In the case that the group under consideration is
discrete, this connection allows us to interpret the exponents that arise in the
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algorithmic words and in their Farey expansions as self-intersection numbers
of certain curves on the quotient surface.

Our first main result is theorems 5.1 and 5.2, which connect several se-
quences of integers that arise in words considered by the algorithm, pairs
of primitive associates in a two-generator free group, Farey expansions, and
continued fraction expansions. Theorem 6.1 interprets these sequences as
unwinding and winding numbers for one curve on the surface about another
curve on the surface. These sequences give what we call the complexity of a
curve on a surface; we will see that it is related to the complexity of the dis-
creteness algorithm. All the different approaches and their related sequences
are summarized in theorem 7.1.

A geometrically motivated algorithm for deciding whether or not a two-
generator real matrix group is discrete was described by Gilman-Maskit [4].
The geometric form of the algorithm built upon algebraic forms developed
by Purzitsky and Rosenberger [15] and [16] and an incomplete approach due
to Matelski [14].

Initially, the Gilman-Maskit geometric algorithm distinguishes between
the case that the given generators are hyperbolic with intersecting axes and
all other cases, called the intertwining cases [2]. In this paper, we consider the
intertwining cases with particular emphasis on the the case when the algo-
rithm decides that the group is free. In this case the quotient is topologically
a three punctured sphere; conformally the punctures are usually holes. The
axes of hyperbolic generators project onto closed geodesics on the quotient
manifold; parabolic elements appear if there are punctures. Discreteness
questions in the intersecting axes cases are treated in [2, 8, 9, 16].

The algorithm steps include two types of steps that change the generating
pair, depending upon whether the lengths of the words as words in the initial
generators grow linearly or exponentially, called non-Fibonacci and Fibonacci
steps ([3, 18]). The complexity of the algorithm can be bounded in terms
of the numbers of consecutive Fibonacci and non-Fibonacci steps and the
traces of the original generators and their product.

Specifically the algorithm determines a sequence of integers defined by the
numbers of consecutive steps between Fibonacci steps called the F-sequence.
From the F-sequence we obtain the complexity of the projections of the orig-
inal generating axes. We will show how the F-sequence describes precisely
how each such geodesic winds around simpler geodesics and intersects itself
along geodesics orthogonal to the simple curves.

Our techniques involve relating the generator sets of a free group on
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two generators produced by the algorithm, the “Farey words” obtained from
cutting sequences on a once punctured torus, [10, 11, 17], the relation of
these words to continued fractions and the non-simplicity of the projections
of the axes of these words on the underlying surface as determined by self-
intersection and the way the curve winds about the holes in the surface.

The organization of the paper is as follows. In section 2 we define basic
concepts and notation. In this section we also review some facts about the
free group F2 and give a canonical form for its primitive elements. In this
section we also define the Farey words and their relation to continued fraction
expansions and establish our first connection, that between Farey words and
primitive elements of F2. This introductory section also reviews the algorithm
for a pair of hyperbolic generators with disjoint axes. The review emphasizes
portions of the algorithm that we subsequently use. In particular, using
the F-sequence, we develop a recursive formula for the generating pairs the
algorithm considers, corollary 2.8. Finally, in proposition 2.9 we show how
the F-sequence and the sequence of primitive exponents in the primitive
words are related.

With the background laid out, we are able to discuss the relation be-
tween the F-sequences and intersection properties of geodesics. In section
3 we define essential self-intersections and in section 4 we define winding
and unwinding for geodesics encountered by the algorithm. In section 5 we
establish two main connection theorems: theorem 5.1 and theorem 5.2. In
section 6 we derive a recursive formula, theorem 6.1, for counting the num-
ber of essential self-intersections of a curve as it winds. Finally in section 7
we pull together all of the connections into one theorem, the main theorem,
theorem 7.1. The last section 8 extends the results to groups with parabolic
elements and/or generators.

2 Background and notation

2.1 Möbius Groups

Let M denote the group of all Möbius transformations of the extended com-
plex plane C = C ∪ {∞}. We associate with a Möbius transformation

f =
az + b

cz + d
∈M, ad− bc = 1,

3



one of the two matrices that induce the action of f on the extended plane

A =

(
a b
c d

)
∈ SL(2,C)

and set tr(f) = tr(A) where tr(A) denotes the trace of A. For a two generator
group, once a matrix corresponding to each generator is chosen, the matrices
associated to all other elements of the group are determined.

If the traces of all the elements of a subgroup G of M are real, then
the group leaves some disk invariant. A subgroup G of M is discrete if no
sequence of distinct elements of G converges to the identity. If the traces are
all real and the group is discrete, it is called Fuchsian. Every Fuchsian group
is conjugate to a group that leaves invariant the unit disk or one that leaves
the upper half plane invariant.

In this paper we consider two generator groups that are potential Fuchsian
groups. Thus there is no loss of generality in assuming that both generators
fix the unit disk (or equivalently the upper half plane).

Below, we will use only the notation A,B, . . . for elements of G.

2.2 Hyperbolic geometry

We will use both the unit disk model and the upper half plane model for the
hyperbolic plane H2 and denote either by U . The Möbius transformations
A act as hyperbolic isometries. They are classified as elliptic, parabolic or
hyperbolic as the trace satisfies tr2A is less than, equal to or greater than 4.

A hyperbolic transformation A has two distinct fixed points on the bound-
ary of U and it leaves its axis, that is, the geodesic joining these points,
invariant. It moves points on the geodesic a certain fixed distance in the
non-Euclidean metric. This distance will be denoted by dA and is called the
translation length of A. The axis of A will be denoted by AxA.

If M and N are two distinct hyperbolic lines, then either M and N are
disjoint or they intersect in a single point interior to or on the boundary of
U .

If M and N are non-intersecting geodesics with distinct end points there
is a unique common orthogonal. If we let RM , RN be reflections (inversions)
in these geodesics, then A = RMRLN is a hyperbolic transformation, AxA is
the common orthogonal to M and N and dA

2
is the length of the segment of

AxA between M and N .
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Conversely if A is any hyperbolic transformation and p is any point on
AxA with L a geodesic through p perpendicular to AxA, there is a unique
hyperbolic line LA, also perpendicular to AxA, such that A factors as A =
RLRLA . We use the convention, apply the rightmost reflection first. The
distance between L and LA along the axis of A is dA/2. Transformations
that are parabolic and elliptic also factor as the product of reflections in two
lines that meet either at a point on the boundary of U or interior to U .

Any three pairwise disjoint hyperbolic lines either bound a region in U
or one line separates the other two.

2.3 The free group on two generators

Let W = W (A,B) denote a word in the generators A and B of the abstract
group F2 =< A,B > so that W (A,B) = Au1Bv1Au2 . . . Bvr for some integers
u1, ..., ur; v1, ..., vr.

Primitive words in F2 are words that can be extended to a minimal set
of generators for the group. These words have a canonical form derived from
an analysis of Aut(F2)(see problem # 3 p. 169 of [12])

Theorem 2.1. Every primitive word in F2 has the form, up to interchange
of A and B,

W (A,B) = Au1Bv1Au2 . . . Bvt

for some t, where the ui are all equal to each other and are all either 1 or
−1, the vi all have the opposite sign to the vi, and |vi − vi+1| ≤ 1.

A pair of primitive words that generate F2 are called an associate prim-
itive pair. The pairs that arise in the algorithm are examples of associate
primitive pairs. We will see that the form we obtain for the algorithm words
in proposition 2.9 agrees with the form in this theorem. In particular, the
values of t and the exponents vi can be computed directly from the algorithm
steps.

2.4 Farey diagrams and continued fractions

In this section we find another form for associate primitive pairs using the
theory of cutting sequences applied to punctured tori developed by Series
(see [11]).

We begin by defining concepts defined originally by Farey (see [17] for a
modern account).
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• We define Farey Addition of rationals as

p

q
+F

r

s
=
p+ r

q + s

and we call two rationals Farey neighbors if |ps− qr| = 1.

Note that if, for a pair of Farey neighbors, p
q
< r

s
, then

p
q
< p

q
+F

r
s
< r

s
and p

q
, p
q

+F
r
s

and p
q

+F
r
s
, r
s

are both pairs of Farey
neighbors.

• We define the Farey level of the rationals n
1

for all n to be 0.
If m

n
= p

q
+F

r
s

for a pair of Farey neighbors, we define the Farey level

of m
n

to be 1 plus the bigger of the Farey levels of p/q and r/s.

• Define the Farey words of F2 inductively as follows:

W1/0(A,B) = A−1 and W0/1(A,B) = B

and if m
n

= p
q

+F
r
s

for Farey neighbors, p
q
, r
s

with ps− qr = 1 define

Wm/n = Wr/sWp/q

• Note that the word length of Wp/q is p + q. We call p/q the slope of
Wp/q.

To connect the Farey words to continued fraction expansions draw the
Farey Diagram in the upper half plane U by joining all pairs of Farey neigh-
bors by hyperbolic geodesics. These geodesics are all disjoint and meet only
at common end points. They form an infinite Tesselation of U by geodesic
triangles with vertices on R.

Given a rational p/q, its continued fraction is

p

q
= n0 +

1

n1 + 1
n2+ 1

n3+···+ 1
nk

= [n0, . . . , nk]

where n0, the integer part, is arbitrary and the remaining ni are non-negative.
The nk term is ambiguous: if nk = 1, we may delete it and increment nk−1

by 1.
We can read off the continued fraction expansion from the Farey diagram

as follows: Let C be the geodesic from p
q

that is orthogonal to the line =
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joining 0
1

and 1
0

=∞. As C goes from = to p
q

it passes through a sequence of
triangles Ti. As it passes through a triangle if there is a single vertex on the
left and two vertices on the right write L otherwise write R. Since we end
in a vertex, there is again an ambiguity at the last step. Write the sequence
obtained from C in this way by Lm0Rm1 . . . Lmj . Then one can prove ([17])

Theorem 2.2. If Lm0Rm1 . . . Lmj is the sequence obtained as above from
p
q

= [n1, . . . , nk] then j = k and mi = ni, i = 0, . . . r. Moreover
∑k

0 mi is the
Farey level of p

q
.

We can enumerate these special words by Farey level using Farey neigh-
bors.

Theorem 2.3. [11] Let p and q be non-negative integers with (p, q) = 1.
There is, up to cyclic permutation and inversion, a unique shortest word
such that if 0 ≤ p/q ≤ 1 it has the form

W (A,B) = A−1Bn1 . . . A−1Bnp

where
∑p

1 ni = q whereas if p/q > 1 it has the form

W (A,B) = BA−n1 . . . BA−nq

where
∑q

1 ni = p. If p/q is a negative rational we have Wp/q(A,B) =
W−p/q(B

−1, A)

Since the Farey words have the canonical form for primitive words, we can
combine this theorem with theorem 2.1 to obtain our first theorem connecting
the word forms for primitive pairs of generators and Farey neighbors.

Theorem 2.4. If p
q
, r
s

are Farey neighbors then the words Wp/q,Wr/s are an
associate primitive pair for F2 =< A,B >. Moreover if L,M is an associate
primitive pair for F2 =< A,B >, then there is an element C ∈ F2 and a pair
p
q
, r
s

of Farey neighbors such that CLC−1 = W±1
p/q and CMC−1 = W±1

r/s.

2.5 Normalized stopping points

For A,B ∈ M that fix U , let G =< A,B > be the group generated by A
and B. Assume G is non-elementary. If L is the common perpendicular to
AxA and AxB, we call the three lines, L,LA, LB the reflection axes. A pair
of hyperbolics A,B is normalized if trA ≥ trB > 2; and if, in the unit disk
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model, L is the real axis, AxA lies to the left of AxB in the unit disk, the
attracting fixed points of A and B lie above L and LA and LB lie below L,
see figure 1. Since G is a subgroup of index at most two in G̃ the group
generated by the reflection in the three reflection axes, {L,LA, LB}, the two
groups are simultaneously discrete or not discrete. When G is discrete, we
let S = U/G and π be the projection, π : U → S.

����� �����

�

� �

� �

Figure 1: Normalized generators A,B with oriented axes and reflection lines.
The axes are solid and the reflection lines are dotted.

Theorem 2.5. [4] If A and B are normalized then AxAB separates AxA
and AxB. The group G is discrete if AxA, AxB and AxA−1B bound (a re-
gion). Further the three axes bound a region if and only if the corresponding
reflection axes bound a region.
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Corollary 2.6. ([4]) Stopping point. When the algorithm stops at the
pair of hyperbolics An, Bn and says that G is discrete, the corresponding three
reflection axes bound a region and the axes of An, Bn, and A−1

n Bn project
to a triple of pairwise disjoint simple closed curve on the quotient surface
S = U/G. These are the shortest curves that the algorithm encounters.

Since the algorithm is trace minimizing, the three simple curves are
shorter than any other curves that the algorithm encounters.

2.6 The Algorithm

In this paper, we begin by considering groups generated by pairs of hyper-
bolics and we assume that when the group is discrete it contains no elliptic
elements and no parabolics. We treat the case where the two axes are dis-
joint. In section 8 we extend the treatment to groups containing parabolics,
including the possibility that either or both of the generators are parabolic.
All groups are assumed non-elementary. We summarize the geometric dis-
creteness algorithm for pairs of hyperbolics with disjoint axes:

The input to the algorithm is a pair of generators A,B ∈ M for a non-
elementary group G. These are normalized and labelled as in section 2.5 so
that trA ≥ trB > 2. The algorithm tests these generators and either (1) it
stops and prints out that the group G is discrete or that the group G is not
discrete or (2) it replaces the generating pair by a next pair and goes back to
the test. The next pair is a specific normalized Nielsen equivalent generating
pair. The algorithm guarantees that after a finite number of replacements, a
pair of generators is found which stops the algorithm.

Thus the algorithm determines a sequence of normalized generating pairs,

(A0, B0)→ (A1, B1)→ (A2, B2)→ · · · → (An, Bn).

The test step considers the ordered pair A,B and looks at A−1B. If A−1B
is not hyperbolic, the algorithm branches to cases we don’t consider here. If
it is, and if trA−1B < −2 it stops and the group is discrete. This is equivalent
to the reflection lines (L,LA, LB) bounding a region. If 2 < trA−1B < C0

where C0 is a constant derived from Jorgensen’s inequality, it stops because
the group is not discrete.

The algorithm replaces a pair of generators (A,B) by a next pair of
generators that is one of ((A−1B)±1, B±1) or (B±1, (A−1B)±1). The algorithm
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requires that at each step the generators are properly normalized. One can
see that this translates to

Lemma 2.7. The algorithm replaces the normalized generators (A,B) by the
normalized next pair which is either ((A−1B)−1, B) or (B−1, A−1B).

The first type of replacement is called a linear or non-Fibonacci step,
the second, a Fibonacci step (see [3] or [18]). Under Fibonacci steps, the
lengths of subsequent generators as words in the original generators will grow
exponentially and under non-Fibonacci steps the lengths grow linearly.

Thus we can associate to a given input to the algorithm a sequence of
integers ni, called the F- sequence, where n1, n2, ..., nk denotes the number of
consecutive non-Fibonacci or linear steps. There is a Fibonacci step between
each of the consecutive ni linear steps.

We let (Ãni , B̃ni) denote the normalized words in A and B that are the
output of the algorithm after the sequence of steps n1, 1, n2, ..., 1, ni, 1 has
been executed. As a corollary to lemma 2.7 we get the recursive Fibonacci-
like formulas:

Corollary 2.8.

(Ãni+1
, B̃ni+1) = ((B̃ni)

−1, (Ãni)
−1(B̃ni)

ni+1).

That is,
Ãni+1

= (B̃ni)
−1, B̃ni+1

= B̃ni−1
(B̃ni)

ni+1 .

From the normalization we get that n1 6= 0. For j > 1 we may have
nj = 0. The total number of generating pairs that the algorithm considers is
k − 1 + Σk

i=1ni.
We observe that if n2 6= 0 and n3 6= 0, the output of the algorithm is:

(A,B)→ ((A−1B)−1, B)→ ((A−1B2)−1, B)→ . . .→ ((A−1Bn1−1)−1, B)

→ (B−1, A−1Bn1)→

((B · A−1Bn1)−1, A−1Bn1)→ ((B · (A−1Bn1)2)−1, A−1Bn1)→ . . .
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→ ((B · (A−1Bn1)n2−1)−1, A−1Bn1)→

and
((A−1Bn1))−1, B · (A−1Bn1)n2)

→ . . .→ ((A−1Bn1 · [B · (A−1Bn1)n2)]n3−1)−1, B · (A−1Bn1)n2)→

([B · (A−1Bn1)n2)]−1, (A−1Bn1 · [B · (A−1Bn1)n2)]n3) . . .

We can expand B̃ni in the form

Bv0A−1Bv1A−1Bv2A−1Bv3 · · ·A−1Bvt

where v0 = v0(i) is 0 or 1 as i is odd or even, and vj = vj(i) > 0 for j =
1 . . . t = t(i). The vj(i) are called the primitive exponents for the algorithmic
words.

Proposition 2.9. The primitive exponent sequence for B̃nk can be obtained
from the F-sequence (n1, ..., nk) recursively as follows:

• If k = 1, B̃n1 = A−1Bn1, so we have t(1) = 1 and v0(1) = 0, v1(1) = n1.

• If k = 2, B̃n2 = B(A−1Bn1)n2. Thus, t(2) = n2, v0(2) = 1, and
v1(2) . . . vn2(2) = n1.

• for k = 3, t(3) = n3t(2), v0(3) = 0, and vj(3) = n1+1, j ≡ 1 mod t(2),
vj(3) = n1 otherwise.

• In general, for k > 3, t(k) = t(k−2)+nkt(k−1), vj(k) = vj(k−2), j =
0, . . . t(k − 2) − 1, and for j = t(k − 2) . . . t(k), vj(k) = v0(k − 1) +
v1(k − 1), j = t(k − 2) ≡ 0 mod t(k − 1), vj(k) = n1 otherwise.

Proof. For k = 1, there have been n1 linear steps and the first non-linear
step. We easily read off t(1) and v0(1), v1(1). For k = 2 we note that the
first factor ends with Bv0 = B while the remaining n2 factors begin with Bn1

and end with Bv0 .
At step k, we have 1+nk factors. The exponents in the first factor repeat

those of the k− 2-nd step. The new nk factors combine as they do for k = 2.
Note though, that if k is even, Bv0 = id.
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3 Intersections & Reflections

In the previous section, we related the sequence of generating pairs deter-
mined by the algorithm to special algebraic word forms. In this section
we turn to the underlying geometry. Recall from the introduction, that
if the axes of the given generators (A,B) are disjoint, and if the group
G =< A,B > is discrete, then the quotient S = U/G is topologically a three
times punctured sphere. The axes of these generators project to geodesics
π(AxA) and π(AxB) on S. If these geodesics are simple the algorithm stops;
otherwise it continues. Therefore, if the algorithm takes any steps, π(AxA)
and/or π(AxB) have self-intersections.

In the introduction, we defined the reflection lines (L,LA, LB). They
project to simple open disjoint geodesics π(L), π(LA), π(LB) joining pairs of
boundary disks (topological punctures) of S. We will see that many of the
self-intersections of π(AxA) and π(AxB) lie on these open geodesics. These
will be called essential intersections. We will show how the F-sequence of
the algorithm describes the essential self-intersections.

As always, we let (A,B) be a normalized pair of hyperbolics with disjoint
axes. We continue with the notation of section 2 where RM denotes the
reflection in the line M . We write compositions as products and apply the
factors from right to left. We observe that RRM (N) = RMRNRM for any
hyperbolic lines M and N so that

A = RLRLA , B = RLRLB ,

A−1B = RLARLB and AB = RLRLARLRLB = RRL(LA)RLB .

Let LB0 = LB. Choose LB2 and LBn for n ≥ 2 so that B2 = RLB2RL and
Bn = RLBnRL.

We interpret negative powers so that

B−1 = RLB−1RL and B−n = RLB−n
RL.

We note that

B = RLRLB = RLBRLB2 = RLBn−1RLBn .

For a normalized pair of generators (A,B) we have the configuration
shown in figures 4 and 5.
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Lemma 3.1. For each j with LBj ∩ AxA 6= ∅, let pj = LBj ∩ AxA. There
is a smallest integer n such that B−j(AxA) ∩ AxA = pj for j = 1, ..., n and
B−j(AxA) ∩ AxA = ∅ for j > n.

Proof. (See figures 4 and 5.) Let p−j = RL(pj). Then Bj(pj) = (RL ◦
RL

Bj
)(pj) = RL(pj) = p−j. As j →∞, B−j(AxA) tends to the repelling fixed

point of B. The proof follows since AxA and AxB are assumed disjoint.

Definition 3.2. If n = n(A,B) is the smallest integer such that LBn∩AxA =
∅, we call n the simplicity and say A is n simple with respect to B. We say
that A is simple with respect to B if n(A,B) = 0 (see [15]). We define
n = n(B,A) analogously.

Corollary 3.3. A is B-simple and B is A-simple if and only if G is either
discrete and free or A−1B is elliptic.

Proof. We first observe that A is B-simple if and only if the line LB does
not intersect AxA. That is, if x ∈ B(AxA) ∩ AxA, then RLB(x) ∈ AxA.
Since x and RLB(x) lie on opposite sides of LB, either LB and AxA coincide
or intersect in a single point y = LB ∩ AxA. If they coincide the group is
elementary so y is the only point on B(AxA) ∩ AxA

Now L, LA and LB either bound, separate or LA and LB intersect in
which case A−1B = RLARLB is elliptic. Since trA ≥ trB, n(B,A) 6= 0
implies n(A,B) 6= 0. LA, LB and L separate if and only if n(A,B) 6= 0.

For a stopping pair of generators we have the configuration shown in
figure 2. Let qAB be the intersection of AxAB with L.

Lemma 3.4. (See figure 2.) When G is discrete and LA, LB and L bound
a region, π(AxAB) intersects itself only at the point π(qAB).

Proof. Note AxBA = Ax(BA)−1 and is the common perpendicular to LA−1 and
LB. ThenAxA−1B−1 = AxBA intersects L at qAB also. That is, RL(Ax(BA)−1) =
AxAB. But RL(qAB) = qAB. Since the translation length of AB is twice the
distance between LA and LB−1 , π(qAB) is the only self-intersection point on
the surface.

More generally,
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Figure 2: Reflection lines bound. Axes of AB and BA intersect at qAB

Corollary 3.5. Assume G is discrete and that (A,B) are a pair of normal-
ized generators for G whose reflection axes bound. If qi denotes the point
where AxAnB intersects LA−i for 1 ≤ i ≤ n, then π(qi) is a self-intersection
point of π(AxAnB) lying on π(L) if i is even and on π(LA) if i is odd. Fur-
ther, these are the only self-intersection points on the images of the three
reflection lines.

A similar statement can be made for self intersections of ABn.

Proof. (See figure 3.) This follows from the use of perpendicularity properties
together with the fact that the images of the reflection lines tessellate the
plane. The axis of AnB is the common perpendicular to LA−n and LB since
AnB is the product of reflections in these lines. This common perpendicular
must cross LA−i for all i with 0 ≤ i ≤ n. For each such i, π(LA−i) =
π(L) or π(LA) depending upon whether j is even or odd.

Note that for every pair of generators the the three orthogonals to the
axes of generators always project to same three open geodesics. Thus we
make the following definition:
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Figure 3: Reflection lines and axes of AnB for n = 1, 2, 3

Definition 3.6. For elements W ∈ G, call self-intersections of π(AxW ) that
occur on images of the reflection axes, essential self-intersections.

4 Winding and unwinding

We want to describe how the algorithm takes us from generators with many
essential intersections to simple curves by unwinding the curves. We make
this idea precise.

Let q = L ∩ AxA and qA = LA ∩ AxA. Then [q, qA] denotes the segment
of AxA between q and qA and, as in lemma 3.1, for any integer m, let pm
denote the point on AxA where LBm intersects AxA. (See figures 4 and 5.)

Definition 4.1. We define w(A,B), the winding of A with respect to B to
be the largest integer w ≤ n(A,B) such that pw ∈ [q, qA]. We say that A is
w(A,B)-wound with respect to B. If w(A,B) = 0 we say A is unwound with
respect to B. We define w(B,A) analogously.

Lemma 4.2. Assume that A and B are normalized and that w(A,B) = w.
Then w(A−1B,B) = w − 1 and for 0 ≤ k ≤ w, w(A−1Bk, B) = w − k.
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Figure 4: Reflection lines with n1 = 2

Proof. (See figure 4.) We observe that A−1Bk is the product of the reflections
in LA and LBk , B is the product of reflections in LBk and LBk+1 and if
k < j ≤ w, then LBj must cross the axis of A−1Bk since pj will be between
pk and pw.

Corollary 4.3. w(A,B) is the number of consecutive linear steps that the
algorithm encounters beginning at (A,B); the next step is a Fibonacci step.

At each Fibonacci step of the algorithm, a new unwinding process begins.

Definition 4.4. Let Ak, Bk be the k-th ordered pair in the algorithm sequence.
We let wk = w(Ak, Bk) be the winding of the k-th pair in the sequence.
If the group G =< A,B > is discrete and the algorithm stops at the nth
generating pair, we call the sequence (w1, ..., wn) the unwinding sequence of
the algorithm.

Corollary 4.5. The unwinding sequence (w1, . . . , wn) is the same as the F-
sequence (n1, . . . , nk) of consecutive linear generator steps in the algorithm;
that is, n = k and wi = ni for all i = 1, . . . , k.

If the algorithm begins with (A,B) and ends at the pair (C,D) we can
consider the process of going from (C,D) to (A,B) as winding and the reverse
process as unwinding. It is easy to see that
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Figure 5: Reflection lines and arcs of axes of AB−n, n = 1, 2, 3

Proposition 4.6. If the unwinding sequence of (A,B) is (n1, . . . , nk) then
the winding sequence (A,B)with respect to (C,D) is (nk, . . . , n1).

When we complete the unwinding, the axes of the resulting elements
project to simple closed geodesics on the surface as we saw in the introduc-
tion. Moreover, it is easy to see that these are these are the shortest on the
surface and are unique (up to order).

Definition 4.7. The generators resulting from the algorithm are called sim-
ple generators.

5 The Connection

In this section, we give the relationship between the algorithm words with
their unwinding sequences and the Farey words with their continued fraction
expansions.

The theorem is

Theorem 5.1. Suppose C,D is the ordered pair of generators obtained at
some stage of the algorithm applied to the pair A,B so that the unwinding
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sequence at this stage is (n1, . . . , nk). Let p/q be the rational number with
continued fraction expansion [0, n1, . . . nk] and r/s that with [0, n1, ..., nk−1].
Then (C,D) = (Wr/s,Wp/q) where Wu/v denotes the u/v Farey word on A
and B.

Equivalently,

Theorem 5.2. Suppose C = Wp/q(A,B), D = Wr/s(A,B) are the new
generators obtained at some stage of the algorithm applied to (A,B) and
suppose the corresponding continued fractions are, p/q = [n0, n1, . . . , nk],
r/s = [n0, n1, . . . , nk−1]. Denote the approximating fractions by
pm/qm = [n0, n1, . . . , nm]. Then we have the recursive formulas:

pm+1 = nm+1pm + pm−1; qm+1 = nm+1qm + qm−1

with
p0 = n0, q0 = 1, p1 = n0n1 + 1, q1 = n1.

The words in the algorithm (up to inverses) are given by

W1/0 = A−1,W0/1 = B

and
Wpm+1/qm+1 = (Wpm/qm)nm+1Wpm−1/qm−1

or n
Wpm+1/qm+1 = Wpm−1/qm−1(Wpm/qm)nm+1

as m is odd or even.

Proof. The recursive formulas for pm, qm can be found in [5].
Because of our normalization that trA > trB, the first group of linear

steps replaces A by A−1Bj for j = 1 . . . , n1 − 1. In the way we have set
up the Farey words, these correspond to rationals in the interval [0, 1]. Any
Farey neighbor of a point in [0, 1] is clearly again in [0, 1]. Thus, in the
continued fraction expansion of rationals corresponding to algorithm words
at the first step and beyond, we always have n0 = 0.

The proof follows from the construction of Farey words in theorem 2.3
where the right factor corresponds to the smaller neighbor and the fact that
the approximating rationals pm/qm approach p/q alternately from left and
right. Therefore within the same group of linear steps, the multiplication is
always from the same side; it changes with the Fibonacci step which corre-
sponds to the next approximating factor.
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One can run the algorithm forwards and backwards. We have the follow-
ing connection:

Theorem 5.3. Suppose A,B are the original generators and C = Wp/q(A,B),
D = Wr/s(A,B) are the simple generators, obtained from the algorithm. If
p/q = [n1, . . . , nk], r/s = [n1, . . . nk−1] are the continued fraction expansions
respectively, then applying the recursive formulas above with [−nk, . . . ,−n1],
we obtain, up to choice of labelling, A = W−p/r(D

−1, C) and B = W−q/s(D
−1, C).

Proof. In the Farey diagram the steps correspond to products of the matrices

S =

(
1 −1
0 1

)
and T =

(
0 1
1 0

)
so that Wp/q = Sn0TSn1T . . . Snr =

(
p r
q s

)
.

This matrix maps the hyperbolic line (0,∞) to the line (p/q, r/s). Reversing
the algorithm means taking the inverse matrix and thus reversing the order
(and signs) of the ni.

We remind the reader that the inverse matrix to

(
p r
q s

)
is

(
s −r
−q p

)
The continued fractions of p/q and −r/p are essentially reverses of each other
(up to the usual ambiguity and the first digits).

6 Formulas for essential self-intersection

In this section we find a formula for the number of essential self-intersections
of a primitive element of a discrete hyperbolic group G whose quotient U/G
is a three holed sphere S. We begin with a generating pair (A,B) for G and
we assume both generators are simple. Since we are going in the winding
direction here, that is, the reverse direction of the algorithm, we start with
W1/0 = A,W0/1 = B and W−1/1 = A−1B. We let W = Wp/q(A,B) be the
given primitive word and denote the number of essential self-intersections of
W by I(W ) or Ip/q. As we saw above, the continued fraction of p/q gives us
the winding sequence for W .

We begin by noting

I(A) = 0, I(B) = 0, I(A−1B) = 0.

After 1-linear step we have normalized generators (B,AB) and

I(AB) = 1, I(B) = 0, I(AB2) = 2.
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These are easy to check by hand.
After n1 linear steps we have I(B) = 0, I(ABn1) = n1. For the first

Fibonacci step we have normalized generators ((ABn1−1)−1, (ABn1)−1. Now
we get

I((ABn1)−1(ABn1−1)−1 = I(ABn1−1ABn1) = 1 + n1 + n1 − 1

The general rule is

Theorem 6.1. Let p/q = [n0, . . . nk]. Then Ipm+1/qm+1 = 1 + nm+1Ipm/qm +
Ipm−1/qm−1

To prove this theorem we look both on S and in the covering U . To
simplify notation we write γp/q for π(AxWp/q

) so that γ∞ = π(AxA) and
γ0 = π(AxB). These are simple geodesics going around two of the holes. The
simple geodesic around the third hole is γ−1. We also set lab = π(L), la =
π(LA) and lb = π(LB). Note that lab is orthogonal to γ∞ and γ0 and disjoint
from γ−1 and similarly for la and lb. See figure 7.

Lemma 6.2. The projection γp/q goes p times around γ∞ and q times around
γ0

Proof. The proof is trivial since Wp/q contains p A’s and q B’s

Lemma 6.3. If p is odd then γp/q is the loop farthest out (in the hyperbolic
metric) along the hole bounded by γ∞ and it intersects la orthogonally whereas
if p is even, the farthest out loop intersects lab orthogonally. Similarly for q
and lb

Proof. (See figure 7) The reflections of U through the reflection lines descend
to symmetries of S through their projections. These symmetries map γp/q
to itself and the angle γp/q makes at an intersection with one of the l-lines
is sent to its negative. Thus if this angle is not π/2, the reflected seqments
of γp/q at this point cross each other but if it is π/2 there is only one such
segment and no self-intersection. Since there are finitely many loops around
γ∞ there is one farthest out and it intersects itself on only one l line; its other
(furthest out) intersection with an l line is orthogonal.

If p = 1, q = 1, the lemma follows from lemma 3.4 by projection. Using
corollary 3.5, the other cases follow by induction.

Lemma 6.4. If γp/q intersects lab orthogonally on the γ0 side, it intersects
la orthogonally on the γ∞ side and vice versa.

20



Proof. Since (p, q) = 1, at least one of p, q is odd. Now apply the previous
lemma.
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Figure 6: Finding essential intersections. The reflections lines are light solid
here. The axis of A3BA2B is dark solid

Proof. Proof of the theorem. (See figure 6) The proof proceeds by induction
on the Farey level of p/q. The first step is obviously true. Then assume it is
true for level m and take the next product.

Here is the induction step. See figure 6. Consider γpm/qm and γpm−1/qm−1 .
By the above lemmas, there is exactly one l line such that both are orthogonal
to it. Assume for argument’s sake that it is lab. Consider lifts to the upper half
plane model of U as follows. Let L, the lift of lab, be the imaginary axis with
LA, LB to the right and LĀ, LB̄ to the left. Draw a fundamental segment
Sm for Wpm/qm on the left and another Sm−1 for Wpm−1/qm−1 on the right.
Each segment ends on an image Lm or Lm−1 of L; Sm intersects Im images
of L,LA, LB and Sm−1 intersects Im−1 images of L,LA, LB. Then the axes of
Wpm+1/qm+1 = Wpm/qmWpm−1/qm−1 and Wpm−1/qm−1Wpm/qm intersect L between
its intersections with the fundamental segments. A fundamental segment for
Wpm+1/qm+1 goes from Lm to Lm−1. Thus it intersects 1 + Ipm/qm + Ipm−1/qm−1

images of the L lines as claimed.

21



�����

��� ���

���
�
	

���

�
	����

Figure 7: The winding of γ0γ
4
∞. The 4 essential intersections are marked

with a large dot

Remark 6.5. The p loops of γp/q about γ∞ and q loops about γ0 are wrapped
according to the continued fraction expansion: one loop around γ∞ is fol-
lowed by n1 loops around γ0; then, changing direction, this is followed by n2

non-simple loops around γ∞γ
n1
0 and, changing direction again, n3 non-simple

loops around (γ∞γ
n1
0 )n2 etc.

The computational complexity of the discreteness algorithm must take
into account a number of items, including the maximal translation length of
the generators, the number of generating pairs and the lengths of the words
in the original generators ([3] and [18]). The latter two can be computed
from the algorithm sequence, that is, the unwinding sequence [n1, ..., nk]. It
is in this sense that it is appropriate to term the complexity of a curve its
unwinding sequence. This leads us to define

Definition 6.6. If γp/q is the projection of the axis of a word Wp/q in the
simple generators. Then the complexity of γp/q is defined as [n1, . . . , nk] the
continued fraction expansion of p/q, or equivalently the unwinding sequence.
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7 Summary

Given G =< A,B > such that the algorithm determines G is hyperbolic and
discrete, it finds a unique normalized pair of generators (C,D) for G with
the properties that the axes of C,D and C−1D project to the only simple
closed geodesics on S = U/G and that the projections are the shortest closed
geodesics on S.

The algorithm determines a sequence of positive integers (n1, ..., nk) that
can be interpreted in many ways. We sum up our results in the following
theorem:

Theorem 7.1 (Summary of results). 1. If the F -sequence of the al-
gorithm is (n1, ..., nk), let p/q be the rational number with continued
fraction expansion [n1, ..., nk] and r/s the rational number with contin-
ued fraction expansion [n1, ..., nk−1]. Let (C,D) be the stopping pair for
the algorithm. Then C is the Farey word Wr/s and D is the Farey word
Wp/q.

2. The numbers of consecutive linear steps of the algorithm determine its
F-sequence (n1, . . . , nk).

3. There is a Fibonacci step between each pair (ni, ni+1) of consecutive sets
of linear steps. There are k− 1 Fibonacci steps. The Farey level of p/q
is
∑k

1 ni and is equal to the total number of linear steps the algorithm
executes.

4. The sequence (n1, . . . , nk) is also the unwinding sequence of the algo-
rithm.

5. Reversing the steps of the algorithm determines the winding sequence
(w̃1, . . . , w̃k) of (A,B) with respect to (C,D). We have w̃j = −nk−j for
all integers j.

6. When G is discrete the algorithm finds the three shortest geodesics on
the surface which are all simple.

7. The essential self-intersections of the projections of the axes of the orig-
inal generators can be computed from the inductive formula Ipm+1/qm+1 =
1+Ipm/qm +Ipm−1/qm−1 where pm/qm is defined by the continued fraction
[n1, . . . , nm].
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8. Associate primitive pairs of generators are in one to one correspon-
dence with pairs p/q, r/s of Farey neighbors of rational numbers. Their
primitive exponents can be found inductively from the continued frac-
tion expansion. If C = Wr/s(A,B), D = Wp/q(A,B) then p/q has
the continued fraction expansion [n0, n1, . . . , nk] with n0 = 0 and the
remaining continued fraction entries are equal to the corresponding re-
maining F-sequence entries.

9. (C,D) are an associate primitive pair of generators and each can be
written in its primitive form:

Au1Bv1Au2 . . . Bvt

for some t, where the ui are all equal to each other and are all either
1 or −1, the vi all have the opposite sign to the ui, and |vi− vi+1| ≤ 1.
The vi’s are the primitive exponents. They determine an F-sequence
(n1, . . . , nk) and a corresponding rational p/q.

10. The numbers of consecutive linear steps of the algorithm determine
its F-sequence (n1, . . . , nk) and these in turn determine the primitive
exponents vi of the primitive form.

8 Groups with parabolics

The reflection axes, L,LA, LB can be defined if one or both of the generators
are parabolic. For A hyperbolic and B parabolic define L to be the perpen-
dicular from the boundary fixed point of B to AxA; if A and B are both
parabolic, L is the line connecting their fixed points. With this definition of
L and a normalization for A and B, the other two reflection axes are well
defined. In all cases, the group G is discrete and free if the reflection axes
bound a region. The group is either not discrete or not free if two of the
reflection axes intersect interior to U .

More generally, if the group G contained a primitive parabolic generator,
then at step n for some n the algorithm might encounter a pair of hyperbolics
An, Bn where the reflection lines LAn , LBn meet on the boundary of U ; this
would imply A−1

n Bn is parabolic.
Thus at any given step one can still consider whether the reflection axes

either intersect or bound a region. If A is hyperbolic with B parabolic,
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there is still a winding of A about (the fixed point of) B, w(A,B) and the
simplicity of A with respect to B, n(A,B) is still well defined. The winding
on the surface is around the puncture.

The algorithm however, encounters no Fibonacci steps. That is, after
w(A,B) steps, either the algorithm decides that G is discrete or not discrete
or not free or it replaces the pair (A,B) by the pair ((A−1Bw(A,B))−1, B).
Then either trA−1Bw(A,B)B ≤ −2, in which case the group is discrete and
free, or the group is not free.

At the discrete stopping point, we have one of the following geometric
situations: (i) A hyperbolic, B parabolic, A−1B hyperbolic; S has a puncture
corresponding to B, π(AxA) and π(AXA−1B) are disjoint simple closed curves
on S and are the shortest curves on S. (ii) A hyperbolic, B parabolic, A−1B
parabolic; S has two punctures corresponding to B and A−1B and π(AxA) is
the unique simple closed geodesic on S and the shortest closed geodesic. (iii)
A parabolic, B parabolic, A−1B hyperbolic; again S has two punctures, this
time corresponding to A and B and π(AxA−1B) is the unique simple geodesic
on S and is the shortest curve on S. (iv) A parabolic, B parabolic, A−1B
parabolic; S is a three times punctured sphere. It has no simple geodesics.

The statements in theorems 7.1, 5.1 and 5.2 remain true. All of the
statements about intersections, winding, and unwinding make sense and the
proofs cover the siutations that arise when one or both of the generators are
parabolic. For example, the axis of AB is still the common perpendicular to
RL(LA) and LB and the single self intersection point of π(AxAB) is still the
projection of the intersection of L with the axis of AB.

Corollary 8.1. Theorems 5.1, 5.2, 6.1 and 7.1 remain valid if one or both
of the initial and/or final generators are parabolic.

Remark 8.2. The concept of winding and unwinding one curve about a
point can be extended to apply to groups that contain elliptic elements or
even generated by elliptic elements. The winding and unwinding numbers
need to be adjusted to take into account the order of the elliptic and how it
is self-wound.
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