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ABSTRACT. In this paper we describe a remarkable connection between the
group of automorphisms of the one-sided d-shift and the topology of the pa-
rameter plane for complex polynomial dynamical systems.

1. Introduction

Our goal in this paper is to present an interesting connection between two very
different areas of dynamical systems, complex dynamics and symbolic dynamics.
Usually, a dynamicist would regard symbolic dynamics as a tool to understand a
particular (and usually very complicated) type of dynamical system. In this paper,
however, we will take the opposite tack: we will use complex dynamics to explain
an interesting topic in symbolic dynamics.

Specifically, we will consider the structure of the parameter space for complex
polynomial maps. For a degree d > 2 polynomial, the parameter space is C¢71, i.e.,
one complex parameter for each finite critical point of the map. This parameter
space divides into two distinct regions. One region corresponds to the set of pa-
rameters for which all critical points escape to oo, the so-called escape locus. The
complementary region consists of those parameters for which one or more critical
points have bounded orbits. We call this (somewhat inaccurately) the boundedness
locus. In the quadratic case, this set of parameters is the well-known Mandelbrot
set. Note that, up to homotopy, we have only one non-trivial closed curve in the
complement of the Mandelbrot set. In the degree d case, the escape locus is much
more complicated from a topological point of view: there are infinitely many topo-
logically distinct curves in this piece of parameter space. That is, the topology of
the boundedness locus is much more complicated when the degree is 3 or more.

In complex dynamics, the important object from the dynamics point of view is
the Julia set. It is on this set where all of the interesting chaotic dynamics resides.
When we choose a parameter from the escape locus, then it is known that the Julia
set is homeomorphic to a Cantor set and the dynamics on this set is equivalent
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to the one-sided shift map (described below). The shift map is without doubt the
fundamental object in symbolic dynamics. Now when we follow this Cantor set as
we traverse a closed curve in the escape locus, we induce a map on the Julia set,
the monodromy map. If the loop is homotopically trivial, then the induced map
on the Cantor set is the identity map. But if the loop is non-trivial, then so is the
induced map on the Cantor set. More importantly, this induced map commutes
with the shift map. Thus we get what is called an automorphism of the shift. An
important problem in symbolic dynamics was to describe the set (actually, group)
of all automorphisms of the shift. This was resolved in 1990, thanks to work of
Boyle, Franks, and Kitchens [BFK] and Ashley [Ash]. Our goal in this paper is
to show that all automorphisms of the shift arise from such monodromies in the
escape locus.

This leads to a much more difficult unsolved question: what about automor-
phisms of the two-sided (invertible) shift map? It is known that the group structure
here is much more complicated than in the one-sided case. At the end of this paper
we discuss some musings about this situation, and suggest that it is the Hénon
mapping that may shed some dynamical light on the structure of this group.

2. Automorphisms of the Shift

In this section we describe some preliminary material regarding automorphisms
of the one-sided d-shift. Let X; denote the space of sequences on the d symbols
0,1,...,d —1. We endow X, with the usual topology, i.e., two sequences are close
if their first n entries are the same. Let 0 : ¥; — X, denote the shift map given by

0(808182 .. ) = (818283 .. )

As is well known, ¢ is a continuous, d-to-1 map onto Xg4.

An automorphism of the d-shift is a homeomorphism ¢ : ¥; — ¥ that com-
mutes with the shift map, i.e., ¢ o 0 = o o ¢. The collection of all such automor-
phisms, Autg, is clearly a group, and a natural question in symbolic dynamics is to
describe the structure of this group. Our goal in this paper is to describe a set of
generators for Autg.

ExXAMPLE 1. Let ¢ : 5 — Y5 be the map that interchanges each 0 and 1 in
a sequence in Y,. Clearly, ¢ € Auts. A result of Hedlund [H] shows that ¢ is the
only non-trivial (# identity) automorphism of X,.

EXAMPLE 2. In similar fashion, the map generated by any permutation of the
d symbols 0,1,...,d — 1 generates an automorphism of ¥;. As mentioned above,
Auty consists of many other, very different automorphisms when d > 2.

ExaMPLE 3. Consider the map ¢g defined on X3 as follows. Given a sequence
508182 ..., if 5j41 = 0, then the map interchanges 1 and 2 if these digits appear in
the s; slot. If s; = 0, nothing happens. For example

$0(10120012100. ..) = (20110012200 .)

¢o is easily seen to be an automorphism of ¥3. We call the digit 0 a marker and
the map ¢¢ a marker automorphism.

EXAMPLE 4. Again in X3, we let 0 stand for the digit “not 0,” i.e., 0 represents
either 1 or 2. Let ¢ denote the map of X3 that interchanges a 1 and 2 whenever a
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1 or 2 is followed by 0. For example
$5(11200102100 .. ) = (22200101100.. )

As before, it is easy to check that ¢5 is a marker automorphism of ¥s.

EXAMPLE 5. The map ¢, defined on X3 by “interchange 1 and 2” whenever
these digits are followed by a 1 is not an automorphism of X3 since

G (111..) = (222..) = $(222.. ),

SO ¢ is not one-to-one.

EXAMPLE 6. There are many different strings of symbols that can serve as
markers and thereby generate marker automorphisms. For example, the string 220
generates a marker automorphism ¢299 which interchanges 1 and 2 whenever these
digits are followed by 220. For example

Bo20(122022021 220 . ..) = (222022022220.. )

EXAMPLE 7. We leave it to the reader to check that the strings 100 and 100
both generate marker automorphisms in Autz. However, 101 does not generate
an element of Autz. Of course, we can generate other marker automorphisms by
interchanging the symbols 0 and 2, or the symbols 0 and 1, when they are followed
by an appropriate marker.

How can we tell if a given string can serve to generate a marker automorphism?
The general principle is that markers cannot “interfere” with previous markers in a
string. We will make this more precise below when we give an algorithm to generate
all markers for Auts.

3. Dynamics of Quadratic Polynomials

We now shift (pardon the pun) gears. In this section we recall some of the
elementary properties of complex quadratic polynomials, including a description of
their Julia sets and the Mandelbrot set. For more details on this material we refer
to [B1], [DK] [Mi].

Let P.(z) = 22 + ¢ with 2,c € C. Tt suffices to deal with quadratic maps in
this special form as any quadratic polynomial is conjugate to some P.. That is, if
@ is any quadratic polynomial, we may find an affine map h of C and a particular
¢ value for which we have ho Q(z) = (h(2))? + c¢. It follows easily that @ and P,
have the same dynamical structure as h carries Q-orbits to P.-orbits. For example,
the well known “logistic” quadratic polynomial Q(z) = 4z(1 — 2) is conjugate to
P_5(2) = 2% — 2 via the map h(z) = —4z + 2, as the reader may easily verify.

DEFINITION 1. The Julia set of P., denoted by J., is the boundary of the set

of points whose orbit escapes to cc.
Remark. J. has several other equivalent definitions. For example, J, is also the
closure of the set of repelling periodic points as well as the set of points at which
the family of iterates of P,, {P['}, fails to be a normal family. As a consequence of
this final fact, if z € J. and U is any neighborhood of z, then U, P/*(U) fills all of
C missing at most one point. This is the famous theorem of Montel.

EXAMPLE 8. Py(z) = 22 has Julia set equal to the unit circle. Indeed, P"(z) —
oo if and only if |z]| > 1.
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FIGURE 1. The case ¢ = 4.

ExAMPLE 9. This second example will be crucial to what follows. Let ¢ = 4.
We claim that J, is a Cantor set. To see this, consider the closed disk D, of radius
4 centered at the origin. If |z| > 4, then PJ*(z) — oco. This follows since

22 +4] > |2 4

> |z)* — |z
> (2| = 1)lz]
> 3|z

Hence Jy is contained in the interior of D4y. To obtain Jy, we pull this disk back
via preimages of Py.

We claim that P;'(Dy) is a figure 8 region contained in the interior of Dy.
Indeed, to obtain this preimage, we first subtract 4, obtaining a disk of radius 4
centered at —4. Then we take the square root, obtaining the result shown in Fig. 1.
In particular, note that the maximum magnitude of any point in P; ' (Dy) is 2v/2.
Thus the preimage of the open disk |z| < 4 is contained in the two interior lobes of
this figure eight. Hence Jy lies in these two lobes which we denote by Vg and V7.

Note also that Jy misses the closed disk D/, of radius 1 /2 centered at 0, for
this disk is mapped to a region that lies completely outside Vo U V;. Indeed, the
image is a disk about 4 of radius only 1/4. Since |Pj(z)| > 1 in the exterior of Dy,
it follows that |Pj| > 1 on Js.

So consider the two simply connected regions, Ip = Vo — Dy/p and I = V1 —
D, ;. We have that Jy C Io U and that either branch of P4_1 restricted to I; is a
contraction. Let ); denote the branch of P4_1 on Dy taking values in I;. Q;(IoUI;)
is a pair of small simply connected regions in I;.

Now let (sgs182...) € X2 and consider the subsets

Iso...s" = Qso 0...0 an_l (Isn)
One checks easily that
(1) ISO...8n+1 C IS(J...S"'
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FIGURE 2. The Mandelbrot set.

(2) h(sos152-..) =Npro Iso...s, 18 a point (this uses the fact that the Q; are
contractions).

(3) h is a homeomorphism of Y5 onto Jj.

(4) h(sgsi1s2-..) € Jy has itinerary (sgsi - ..) relative to Iy and I4.

Remark. The crucial ingredient in example 9 is the fact that the orbit of the
critical point tends to co. It can be shown that, whenever this occurs, J. is a
Cantor set. See [B1], [Mi]. On the other hand, if the orbit of 0 does not escape to
00, then J. is a connected set. Roughly speaking, this occurs since closed curves
outside the Julia set never contain the critical value, and therefore their preimage
is never a figure eight. Thus we have the fundamental dichotomy of quadratic
dynamics: either J, is a Cantor set, in which case P*(0) — oo, or J, is connected,
in which case P*(c) is bounded. It is the well-known Mandelbrot set M (see Fig. 2)
that gives a picture of this dichotomy: the parameter value c lies in M if and only
if J. is connected.

We now show how automorphisms of the shift arise naturally in complex dy-
namics. Given our extensive work with Py above, the construction is easy.

Consider ¢ = c¢(f) = 4e*™ so that c lies on the circle |z| = 4. For each
such ¢, the corresponding Julia set is again a Cantor set, since P, 1(D,) is again
a figure eight region well inside D4. So we may invoke symbolic dynamics exactly
as before. However, suppose we try to let Iy and I; depend continuously on c.
Since the I; are essentially given via branches of the square root, it follows that,
as € moves completely around the circle, Iy and I; only move in half-circles, i.e.,
they are interchanged. Thus, if we follow a path around this circle and consider a
point with initial itinerary s = (sgs183 -..), when we return to the initial c-value,
all of the digits in s will have been changed. That is, we induce the only nontrivial
automorphism in Auts via this process. We call the map on the Julia set of P,
induced by this process the monodromy map.
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4. Polar Coordinates

We pause to introduce the first of the tools necessary for the construction of
automorphisms, the Douady-Hubbard theory of external rays.

In a neighborhood of oo, the value of ¢ is more or less irrelevant and so P,
acts dynamically like 22. More precisely, in a neighborhood of oo, P, is analytically
conjugate to the squaring map Py(z) = z2. It is straightforward to check that the
function

Be(2) = lim (PP(z)"/*"

is analytic and satisfies ¢.(P.(2)) = (¢.(2))? [B1], [DK]. Here we choose the
principal branch of the square root. This enables us to view the dynamics of P,
near oo in “polar coordinates.” Following Douady and Hubbard [DH1], we define
the potential, or rate of escape function, by

1 P
h(z) = lim B+IFEE]

n—00 2

The map h is continuous. Via the conjugacy, we see that
h(P.(2)) = 2h(2).

Define
T. = {z € C|h(z) > h(0)}.

One checks easily that ¢, extends to a homeomorphism of I'. onto the complement
of D where R = exp(h(0)) > 1. If »r > R, ¢. maps the level curve

h(z) = log(r)

to the circle |z| = r. This gives us the radial component of our polar coordinate
system.

For fixed t, the preimage under ¢. of the ray p — pexp(2wit), p > R, is called
the external ray of argument ¢ for P.. We denote this external ray by 6;. The
external rays give the angular coordinate on T',.

We call the value log |¢.(c)| the escape rate of the critical value and Arg ¢.(c)
its external angle.

Note that, if the orbit of 0 escapes under P,., then we cannot extend the con-
jugacy ¢, further. Indeed, each point in I', has two preimages under P, with one
exception, namely the critical value c¢. Thus the level curve h(z) = h(0) is a figure
8 curve in essentially the same manner as in the previous section. See Fig. 3

On the other hand, if the orbit of 0 does not escape to oo, then h(0) = 0.
Hence we can define ¢. everywhere in the exterior of the Julia set. This is the basic
idea behind the proof that the Julia set is connected when the orbit of 0 remains
bounded. More detail on all of this construction may be found in [DH1] or [B1],
or the AMS Short Course lecture notes [DK], [D].

Note that the critical value ¢ always lies in I'.. Hence ¢.(c) is always defined.
This value plays a special role in complex dynamics. For one thing, ¢.(c) determines
the quadratic polynomial up to affine conjugacy. That is, if two polynomials of the
form 22 4+ ¢ have the same escape rate and external angle, then these maps are
identical. In addition, the mapping ®(c) = ¢.(c) is the external Riemann map that
takes the complement of the Mandelbrot set onto the exterior of the unit disk in
C. For more details, see [DH1].
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h(z)=2 h(0)

FIGURE 3. Polar coordinates.

5. The Measurable Riemann Mapping Theorem

Now we turn to our second tool, the Measurable Riemann Mapping Theorem
(MRMT) of Ahlfors-Bers. This is a difficult and highly technical subject. Our
treatment will be somewhat sketchy and without rigor, and will involve only the
ideas we need to generate automorphisms of the shift. The idea is to convey just the
flavor and power of this important result. Much more detail can be found in [B1],
[McM].

Although this theory is quite general, we will restrict here to maps of the
extended plane that are differentiable almost everywhere.

DEFINITION 2. An ellipse field or complex structure p on C is a family of
concentric ellipses that fills the tangent plane at each z € C.

Geometrically, we think of p(z) as being a single (non-trivial) ellipse in the
tangent plane at z, but technically u(z) is the entire family given by multiplying
the single ellipse by ¢t € Rt . In our case, the ellipse fields will always vary smoothly
a.e.

ExAMPLE 10. The standard structure . on C is the field for which every ellipse
is an actual circle. Note that a holomorphic map preserves u. in the sense that
the derivative of this map sends circles in the tangent plane to circles in the image
tangent plane. Indeed, a map is holomorphic if and only if it preserves p..

ExAMPLE 11. A t-horizontal ellipse field is given by an ellipse at each z whose
major axis lies parallel to the z-axis, whose minor axis lies parallel to the y-axis,
and for which the ratio of the length of the major axis to the minor axis is ¢ > 1.

ExAMPLE 12. Consider an annulus of the form

A={2€Cl|0<r <|z| <1}
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with r; < r9. The Dehn twist map T on A is given by

r—nmri

T(re*™*) = r exp(2mi(t +
o —T1
Note that T is the identity on the boundary of A and that T rotates each circle
|z| = r with r; < r < ry in the counterclockwise direction by an angle that increases
from 0 to 27 as r increases from r; to ro. We define a twisted complex structure on
C to be the standard structure outside A and the image of u, under the derivative
DT on A.

DEFINITION 3. The dilatation d,(z) of an ellipse field is the ratio of the length
of the major axis to the minor axis.

So d,(2) > 1 and d,(2) = 1 if and only if u = p,. For the complex structures
we consider, d,, will always be bounded on C.

DEFINITION 4. A homeomorphism F: C — C that is smooth almost every-
where is said to straighten an ellipse field p if DF(u) = p. almost everywhere.

That is, F' straightens p if the map takes the given complex structure to the
standard structure a.e. (It always seems strange that you “straighten” something by
making it into a circle, but such is life in conformal geometry.) In the ¢-horizontal
ellipse field above, we can straighten p by applying the map F(z,y) = (z/t,y).
Similarly, we can straighten the twisted complex structure via a map that is the
identity outside A and equal to the inverse of T' on A. We do not worry about the
structure on the boundary of A since we only require straightening a.e. We remark
that such a straightening homeomorphism is called a quasiconformal mapping or a
gc map for short.

In our framework, we can now state the celebrated Measurable Riemann Map-
ping Theorem of Ahlfors and Bers:

THEOREM 1. (MRMT). Suppose p is an ellipse field on C with bounded di-
latation. Then there is a homeomorphism F of C that straightens u. Moreover, if
we specify two values of F', then F' is unique.

We mention that our restriction to smooth a.e. ellipse fields and straightening
maps is a real restriction; the actual MRMT only requires that the ellipse field be
measurable! It is amazing that you can straighten virtually anything with a qc
map.

Here is the way that we will make use of the MRMT. Suppose Q: C — C is
a map that preserves the complex structure u. And suppose that F' straightens
p. Then the mapping P = F o Q o F~! is a mapping of the complex plane that
preserves the standard structure, by the chain rule. Thus P is a holomorphic map.
In particular, if we know that @) has finite degree, then P is a polynomial. In cases
such as this, we say that ) is quasiconformally conjugate to the polynomial P.

6. Spinning the Critical Value

Now let’s return to the quadratic example discussed above and use both the
polar coordinates and the MRMT to generate the same result. The technique we
will use is called spinning the critical value and will be the basic construction in
the more difficult case of higher degree polynomials.
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Throughout this section, we will fix ¢ € M. We will construct a map that we
will later show to be quasiconformally conjugate to P.. Choose pi, p2 such that

h(c) < p1 < p2 < 2h(c)
and consider the annular region

A={z] p1 < h(z) < p2}.
Let 7 be the modified Dehn twist on A defined as follows. Let r; = e for i =1, 2.
Let

A'={z| r < |z] <}
Note that ¢. maps A onto A’. Define the usual Dehn twist T on the annulus A’ as
in the previous section. Then set

7(2) = ¢ o T 0 §c(2).
Since the annular region A lies between the level sets of the potential containing
c and P,.(c), it follows that the inverse image P, !(A) is an annular region lying
between the level sets of the potential containing 0 and c¢. Now define

_[PR(z)  ifzg P7N(A)
Fz) = {T o Py(2) if z € P;1(A)

Clearly, F is a degree two branched cover which differs from P, only on P 1(A).
Although F' is not a polynomial, the MRMT guarantees that it is quasiconformally
conjugate to a polynomial — in fact, to P..

ProposITION 1. The map F' is quasiconformally conjugate to P..

Proof. We define a new conformal structure g on C which is preserved by F as
follows. If h(z) > h(c), we set u(z) = p«(z). We then use F to pull back u to
C — J.. That is, if h(0) < h(z) < h(c), we define u(z) = DF'(u(F(z)). Note
that there is no ambiguity here since the region h(0) < h(z) < h(c) is disjoint
from the region h(z) > h(c). Note that y = p. everywhere in this region except
in P71(A). Continuing in this fashion we may define y for all z € C — J,. By
construction, F' preserves u. Since p is the pullback of a complex structure with
bounded dilatation by a map which is analytic except on P;1(A), it follows that p
has bounded dilatation on C — J(P,).

We extend p to all of C by setting 4 = p« on J.. We may now apply the
MRMT to obtain a quasiconformal homeomorphism f of C which straightens p
a.e. Consequently, the map

Q=foFof™
preserves ji, a.e. and so is analytic on C.

We claim that () is a quadratic polynomial which is affine conjugate to P,. To
see this, we may normalize f so that f(oc) = oo and f(0) = 0. Thus, @ is a degree
two map which fixes oo and which has branch points at 0 and co. Since () preserves
I, @ is analytic. It follows that () is a polynomial of degree two. Now F' = P, on
the region h(z) > h(c), and f maps the critical orbit of F to that of Q). Hence the
external angles and escape rates of the critical values of P, and ) agree. Therefore,
P. and @ are equal. O

We now use the same idea to construct a one-parameter family of maps Fy, 0 <
t < 1; we “spin the critical value around a level curve of the potential.” We show
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FIGURE 4. The annuli A;.

that each member of this family is quasiconformally conjugate to a polynomial of
the form 22 + ¢(t) where c(t) is continuous and winds once around the Mandelbrot
set for 0 <t < 1. Hence this family induces the nontrivial automorphism of X5 as
in the special case ¢ = 4 above.

Define a one-parameter family of annuli A; for 0 <t <1 where Ag = {z|p1 <
h(z) < pa} as above. For 0 <t <1, set ny(¢) = (1 — 1t)py and no(t) = (1 — 3t)po.
Let A; denote the annular region

Ay = {z| m(t) < h(z) <mno(t)}.

That is, A; is the annular region whose inner and outer boundary curves are the
h-level curves 71 (t) and 79(t) respectively. Note that 49 = A and that A; is an
annular region contained between the level sets h(0) = 1h(c) and h(c). See Fig. 4.
For each t we define a Dehn twist 7y along the level curves of the potential in Ay

exactly as we defined 7 on A. Then we set

[P.(2) if 2 ¢ P71(Ay)
i) = {Tt oPy(2) ifz€ P (A)

Note that F; = F. Note also that there is an interval of ¢-values for which ¢ =
P.(0) € A;. As t increases, it follows that the critical value F;(0) = 7 o P.(0)
is spun once around the level curve h(z) = h(c). When t = 1, the critical value
returns to its original location, i.e., F1(0) = c.

PROPOSITION 2. The map F} is also quasiconformally conjugate to P,.
Proof. The proof is the same as before: First define a new Fj-invariant com-
plex structure as in the previous proposition. Use the MRMT with the same nor-
malizations to straighten this structure via a quasiconformal homeomorphism f;.
Then f; o Fy o f{'! is a polynomial of degree two. Note that f; is analytic on
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{z| h(2) > h(c)} and preserves the critical orbit. Hence f; o F} o f; ! is quasicon-
formally conjugate to P, as before. O

PROPOSITION 3. There is a continuous function c(t), 0 <t < 1, such that:
(1) F; is quasiconformally conjugate to 2z + c(t) for each t;
(2) h(c(t)) is constant; and
(3) the external argument of c(t) increases monotonically from 0 to 1 as t
increases from 0 to 1.

Proof. The crucial observation here is that the external rays for P, are identical to
those of F; in the exterior of P '(4;). However, the location of the critical value
7; o P.(0) relative to these rays changes. Indeed, 74 o P,(0) passes through each ray
exactly once as t increases. Thus we may invoke the preceding arguments to show
that F} is quasiconformally conjugate to 22 + c(t) where c(t) satisfies 2 and 3. O

Consequently, the polynomials which are conjugate to F; lie on a loop that
winds once around M. As in the previous section, the monodromy map around
this loop induces the non-trivial automorphism of .

7. Higher Degree Polynomials

Let P be a polynomial of degree d. The Julia set, Jp, is defined exactly as in
the quadratic case: Jp is the boundary of the set of points whose orbits tend to
oo. If the orbits of all critical points tend to oo, then the Julia set of P is totally
disconnected and P|Jp is topologically conjugate to the d-shift. The proof of this
is analogous to the proof in the quadratic case; see [B1], [Mi] for details.

The fundamental dichotomy for quadratic polynomials no longer holds when
d > 3. Nevertheless, there is an intimate relationship between the connectivity
properties of the Julia set and the orbits of the finite critical points. For example,
if all of these orbits are bounded, then the Julia set is connected. If at least one
critical point iterates to infinity, then the Julia set is disconnected, but it may or
may not be totally disconnected.

For example, consider the situation when d = 3. A generic cubic has two
distinct critical points. There are three cases:

(1) Both critical orbits are bounded. Then Jp is connected.

(2) Both critical points tend to co. Then Jp is a Cantor set, and the dynamics
of the polynomial on Jp is conjugate to the 3-shift.

(3) One critical point tends to oo and the other has a bounded orbit. When
this happens, the Julia set is disconnected, and it may even be totally-
disconnected.

Let X; be the set of all monic, centered polynomials of degree d. That is, all
polynomials of the form

2+ ad_gz‘jl*2 + ad_3zd73 +...+a12+ag

where the a; € C. Asin the quadratic case, any degree-d polynomial is conjugate to
a polynomial of this form. Hence the parameter space for X; has complex dimension
d — 1, the same as the number of critical points for a “typical” polynomial in Xj.
Let Sy be the escape locus, i.e., the subset of X, consisting of polynomials
whose critical points all escape to infinity. If P € Sy, the Julia set of P is a Cantor
set and P is conjugate to the d-shift on J(P). Sy is open in Xy. We will think of
the boundedness locus Xy — Sy as the analogue of the Mandelbrot set for degree d
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polynomials, although one might argue that this analogue should really be the set
of polynomials whose critical orbits are all bounded. Nonetheless, we will consider
loops that lie in Sy and circle around various arms of X; — Sy that extend off to
00.

To accomplish this, we generalize the spinning construction of the previous sec-
tion. The ideas here are basically the same as in the quadratic case; the presence of
additional critical points adds only some minor technicalities. As in the quadratic
case, if P € Xy, there is a neighborhood U of infinity and an analytic homeomor-
phism ¢ : U — C — D, such that ¢ o P(z) = (¢(2))%. That is, any polynomial in
X, is conjugate near oo to the map z — z?. As for quadratics, define the potential
function

log, [P"(2)|

he() = B e
For z € U, let hp(z) = log|¢(2)|. Let c1,...,cq—1 be the finite critical points
of P and vy, vs,...,v4_1 be the corresponding critical values. Then S can be

characterized by
Sq = {PEXd”LP(Ci) = (1—ihp(’l)j) > 0 for all i = 1,...,d—1}.

We will always assume that ¢, is the critical point with the slowest escape rate,
ie, hp(c1) < hp(cj) forj=2,...,d—-1.
Let P; € Sg for ¢ = 1,2, and define

Ui = {z| hi(z) > hi(c1)

where h;, ¢ are the corresponding potentials and lowest critical points for P;. Here
we have suppressed the dependence of ¢; on 1.

The next Proposition is proved more or less just as in the quadratic case.
See [BDK] for more details.

PROPOSITION 4. Let F;, for i = 1,2, be two polynomialsin Sy. If f: Uy — U, is
a quasiconformal conjugacy, then f can be extended to a quasiconformal conjugacy
defined on all of C.

Now we move to the spinning construction for higher degree polynomials. Let
P € S; and let h be the associated potential. Suppose that h(ci) < h(c;) for
7 =2,...,d — 1. Thus there exists € > 0 such that ¢; is the only critical point
in the region {z|h(z) < h(c1) + €}. We also assume that d"h(c1) # h(c;) for all
j > 1 and n. These two assumptions serve to isolate the level sets of the potential
corresponding to the orbit of ¢; from all of the other critical levels. Since these
level sets are dynamical invariants, this in turn allows us to guarantee the existence
of quasiconformal conjugacies during the spinning construction.

Let v denote the component of the level set h=(h(v1)) which contains v;.
There are precisely d — 1 components of P~1(y). We denote them by a1,...,a4 1
and assume that oy is the component containing ¢;. Hence ay is a figure eight,
while the remaining «; are simple closed curves. We may choose € > 0 small enough
so that the region

N = {z|h(v1) — € < h(2) < h(v1) + €}

is disjoint from all of the other critical level curves

(2| h(z) = dimh(uk)} m=1.2,....
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M
FIGURE 5. The components of P~1(Ny), M, N;.

Let Ny denote the component of N containing v; (and hence v). It follows that Ny
is an annular region. Let M denote the component of P~!(Ny) that contains ¢;.
See Fig. 5.

In analogy with the construction in the quadratic case, we will modify P on
M. For each t € [0,1], let A; be the annular region

Ay = {2 € Ny | h(v1) — et < h(z) < h(v1) +e(1 — 1)}

Note that A; is an annular region bounded by 7 on the outside while 4 is bounded
by ~ on the inside.
As in Section 6, there is a conformal map

¢t A = Ap = {1 <[] <o)}
and we may choose ¢; so that these maps depend continuously on t. Let
Ty : A} — A
be a Dehn twist, i.e.,
r—1

T, (re®™) = r exp(2mi(s +

))-

ro — 1
Let 1 = ¢ 1o T} o ¢. Now define

P(2) 2¢€ MNP71(A)
Fi(z) = 1
TtOP(Z) ZzEMNP (At)
PROPOSITION 5. For all t € [0,1], there is a polynomial Q; such that Q; is
quasiconformally conjugate to F;.
Proof. As above, we define a new conformal structure p; which is preserved by
F;. Let p. be the standard conformal structure. We set p; = p« in the region

{z|h(2z) > h(v1) — (1 —1t)}.
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Let p; be the pullback of p. by F;. This defines u; everywhere except on Jp. By
definition, F} preserves pi;.

We define p; on Jp by setting p; = p«. Since p; is given by pulling back a
complex structure with bounded dilatation by a polynomial, it follows that y; is a
complex structure with bounded dilatation as well.

Now apply the MRMT. This gives a quasiconformal homeomorphism f; which
straightens y;. We may normalize so that f;(co0) = co. Then we have fioQqo f;i ! =
Q; is an analytic map of degree d which has a super attracting fixed point at oo.
Therefore, @; is a polynomial. If we further normalize so that f/(co) = 1 and
f:(0) = 0, then it follows that @Q; is monic and centered. O

PRroOPOSITION 6. In the above construction, both Qg = Q1 = P.

Proof. We will prove this by writing down an explicit conjugacy g; between F;
and P for i = 0,1. These conjugacies will be quasiconformal. Moreover, they will
vanish at 0 and be equal to the identity on a neighborhood of co. Hence they are
the conjugacies that we obtained by the MRMT in the above argument.

We begin with Fy. Define I', = {z|h(z) > r}. Define go to be the identity
map on I'y(¢,)4.. Clearly, we have go o Fy = P o go on this region.

Let B C M be the component of P~1(4g) which contains ¢;. The interior of B
is an open annulus. There are two smooth maps (; : B — B, ¢ = 1,2, that satisfy
P o (; = 190 P. Each of the (; fixes one of the boundary curves of B and rotates
the other by a half twist. We choose 7 to be the {; which fixes the outer boundary
of B. Set go = 75 on B. Also define go to be the identity on T'y(.,) — B. It follows
that P o go = go o Fy. We now extend go to lower h-levels in the natural way. If z
satisfies

2h(cl) < h(z) < h(cr)

we set go(z) = P~ o gy o Fy(z) where we choose the appropriate branch of the
inverse of P~! to make go continuous.

It is important to note that P~! o Fy is not the identity on the two components
of the interior of the figure eight component of e;. Indeed, go interchanges these
two components while preserving the interiors of all other components.

Now continue as in the quadratic case. This defines a quasiconformal homeo-
morphism of C — Jp which extends quasiconformally to all of C as in Proposition
4. Hence P is quasiconformally conjugate to Fy via a conjugacy that is the identity
on a neighborhood of co. Furthermore, go fixes the critical points of P. Hence
P = Q.

We now turn to Q1. We remark that () is affine conjugate to P by Proposition
5 since fi is conformal on T'y(.,). We prefer, for later purposes, to construct fi
directly. To do this, define g1 = identity on [j(,). Let B be the component of
P~1(A;) which contains ¢;. Note that, unlike the previous case, the interior of B
consists of two disjoint annuli each mapped isomorphically onto B by P. We can
choose a map 7 on each of these components so that P o7, = 7 o P since P is
an isomorphism on each component. Hence we set g = 71 on B. Define g; to be
the identity on I'y(.,)—. — B and then continue as before. It follows again that g;
is a quasiconformal homeomorphism conjugating P and @;. Note that, unlike the
previous case, g; preserves all components of C — Thier)—e- a
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FIGURE 6. Graphs of the P,.

COROLLARY 1. As t decreases from 1 to 0, the components of the interior of
ha(h(cl)) containing ¢, are interchanged.

8. The Cubic Case: Four Examples

Rather than give the general construction of automorphisms in the cubic case,
we will restrict our attention to a number of special but nonetheless illustrative
examples. All are contained in the one-parameter family

P.(2) = 2* —3a®2 +5

where a € R The critical points of P, are +a and the value of the constant
term is of little significance other than its being large enough to display all of the
desired cases. The five examples that we discuss are defined by the graphs in Fig. 6.
In particular, the a-values are determined by these graphs. Let h,(z) denote the
corresponding potential function.

We show how to generate specific automorphisms of the 3-shift by applying the
spinning construction to each of these examples.
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Case 1: a = 0. Note that Py(z) = 23 +5 has a unique critical point at 0. The level
sets for the potential for Py containing the critical point and value are shown in
Fig. 7. Asin the quadratic case, the critical value lies on a simple closed curve. The
preimage of this curve is mapped in three-to-one fashion onto this curve, except, of
course, at 0, which is the only preimage of 5. Hence the preimage is a curve which
has three lobes pinched at 0. We denote the 3 components of ho(z) < ho(0) by 0,
1 and 2 respectively. This is analogous to the quadratic case, where we labeled the
two components Iy and I;. Note that there is an arbitrary choice involved in this
selection. If we now use the spinning construction of the previous section to spin the
critical value around the level set 7 = hy ' (ho(5)), then we induce a one-third turn
on the lobes of a = hy*(ho(0)), and this yields an automorphism that cyclically
permutes the symbols. This, of course, follows just as in the quadratic case. Now,
however, by changing a, we can separate the critical points and thereby change the
configuration of the level sets.

Case 2: a = ay. According to Fig. 6, the orbit of ¢; escapes a little more more
slowly than the orbit of ¢; when a = a;. More precisely, we see that

ha(c1) < ha(ca) < hg(v1).

The corresponding critical levels of the potential are shown in Fig. 8. The critical
values now lie on distinct level sets, each of which is a simple closed curve. Preim-
ages of level sets for which h,(z) > h,(v2) are simple closed curves. When the value
of the potential reaches h,(v2), the preimage becomes pinched at the critical point
c2. One of the lobes inside this level curve is mapped in two-to-one fashion onto
ha(z) < hg(va. This corresponds to a region containing two of the symbols from
the previous case, say 1 and 2. Thus we denote this curve by 0. This is the lobe
containing ¢;. The other lobe is mapped in one-to-one fashion onto hy(2) < hg(v2);
we denote this lobe by 0.

Now the preimage of the level curve containing v consists of two distinct curves.
One is a figure eight curve that contains ¢; and lies in 0; the other is a simple
closed curve in 0. The region {z|ha(z) < he(c1)} may again be used to describe
the symbolic dynamics on the Julia set. In analogy with the quadratic case, this
labeling indicates the existence of a homeomorphism between the Julia set J and
Y3 where each point in J contained in the disk labeled 0 (or 1 or 2 respectively) is
labeled with a sequence starting with the symbol 0 (or 1 or 2 respectively).

If we now spin the critical value v; around the curve v = h;!(hy(v1)), the
resulting automorphism simply interchanges every 1 and 2; 0 is left fixed.

Case 3: a = a». This is the special case where v, = P,(v;) and
ha(c1) < ha(e2) = ha(v1) < hg(v2).

As above, the level set hy(z) = hy(ce) is a figure eight curve with one lobe (previ-
ously called 0) mapped in two-to-one fashion onto the image, and the other mapped
in one-to-one fashion. By assumption, v; lies on this curve, but not at c;. Let us
assume that vy lies on the boundary of the lobe containing ¢;. (Actually, given the
graph of P,, this must be the case.) This forces some additional pinching in the
level set hq(z) = ho(c1); we get pinching at ¢; as well as at the two preimages of
ca. That is, the region h,(2) < hy(c1) now consists of four lobes in 0. Two of these
lobes are mapped to the lobe called 0; these we denote by 10 and 20. The other two
lobes map onto 0; these we denote by 10 and 20. These level curves are depicted in
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FIGURE 7. Level curves for a = 0.

FIGURE 8. Level curves for a = a;.

Fig. 9. In the region 0, the preimage of h,(z) = h,(c2) is a figure eight curve which
is mapped in one-to-one fashion onto h,(z) = hg(c2). Thus one of these lobes is
denoted 00, while the other (the lobe mapped onto 0) is denoted 00.

We will not spin the critical value v; at this level as the critical value does not
lie on a simple closed level curve.
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FIGURE 9. Level curves for a = as.

Case 4: a = as. Now suppose we change the parameter a so that
ha(’Ul) < ha(C2) < ha(Pa(Ul)) < ha(vg).

From the graph, it follows that v1 now lies slightly inside the level curve containing
¢a. The level set h,(z) = ho(v1) now consists of two simple closed curves, one
inside each lobe of h,(z) = hs(cz). Then the multiply pinched critical level curves
of h,(z) then break apart as shown in Fig. 10. Inside 0, we have a figure eight curve
containing ¢; and bounding the regions 10 and 20. This region is mapped onto the
level set containing v;. There are two other preimages inside 0, namely 10 and 20;
these are mapped onto the other component of h,(z) = h,(vy), specifically the one
in the region 0.

If we now spin the critical value v; around its level curve, then only the compo-
nents of the Julia set marked 10 and 20 are interchanged; the components 10 and
20 are left fixed. Thus, spinning induces the automorphism given by the marker
set 0: interchange 1 and 2 whenever followed by 1 or 2.

At this point we note that we have reached the polynomial P,, by simply
“pushing” the critical value v; down the real axis. Note that h,(v1) decreases
during this process. This will be the essential ingredient in the next section when
we show how to perform this “pushing deformation” in general.

9. The pushing deformation.

In passing from @ = a; to a = as in the previous examples, we pushed the
critical value v; down the real axis across the level set h,(z) = hg(c2). This is
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FIGURE 10. Level curves for a = as.

the second construction involving the MRMT. In the general case we will push the
critical value vy through the level set h(z) = 3 ¥h(cs) for each k > 0.

To be precise, let r satisfy hq(c2) < hqa(v1) < 3r < hga(v2) < 9r, or, equivalently,
ho(c1) <r < hg(ca) < ho(v1) < 3r. Consider the region

S={z|r < hg(z) <3r}.

Note that both v1 and c2 liein S. See Fig. 11. We can construct a homeomorphism
f of S that takes v; to a point that lies inside one of the components defined by
the 0 lobe of the level curve h,(2) = hy(c2). Let S’ denote the preimage of S that
contains ¢;

Then define

NAG) if 76 C—8'
Fz) = {foPa(z) if z € S".

Note that F'(z) is conformal outside of S’. Next we define (in the usual manner)
an F-invariant quasiconformal structure on C — S’. We pull this structure back to
C- Jp, using F'. Finally, we extend the structure to all of C by setting it equal
to the standard structure on Jp,. This structure has bounded dilatation, since F’
is conformal except on S’ and the pullback from S to S’ introduces only a finite
amount of distortion. By applying the MRMT to this new F-invariant structure,
we obtain a quasiconformal homeomorphism f : C — C such that f~' o Fo f is a
polynomial Py. Now, given Py, we can perform the spinning construction as above
to make vy spin as in Case 4.

It is important to note that the above construction is analytic in its parameters
(see [AB]). For example, if we apply it to a one-parameter family f; which varies
analytically in ¢, then the resulting polynomials Py, also vary analytically in ¢. In
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FIGURE 11. The region S.

essence, the pushing construction allows us to deform the polynomial continuously
using a quasiconformal deformation of the Riemann surface S.

Now, using the pushing deformation, we could have equally well moved v; into
the other component defined by h(z) = h(vy). This brings us to our last example.
Case 5: a = a4. The levels for this a-value satisfy

ha(’l)l) < ha(CQ) < ha(Pa(’l)l)) < ha(’l)z)

as before, but note that the critical value v; is now in the other component of
h(z) = h(v1). The level sets for h, inherit a different marking in this case. See
Fig. 12.

Spinning the critical value here interchanges the components marked 10 and
20, i.e., it induces the automorphism with marker Q.

Exercise. In cases 4 and 5 above, continue pushing the critical value deeper
and identify the corresponding automorphisms that are generated. Specifically,
first consider the case where ho(P,(v1)) = ha(c2) and sketch the level sets of the
potential. Then investigate what happens when the critical value descends further.

If we continue inductively by pushing and spinning, we create a tree whose
edges correspond to the pushing deformation and whose vertices correspond to
polynomials in the escape locus from which we begin the spinning process. This
tree thus generates a collection of automorphisms. Using results of Ashley [Ash],
we have proved in [BDK]:

THEOREM 2. The tree generated by following all possible topologically distinct
paths in the cubic escape locus yields a complete set of generators for Auts. A
similar statement holds for Aut,.



COMPLEX DYNAMICS AND SYMBOLIC DYNAMICS 21

FIGURE 12. Level curves for a = ay4.

Table 1 lists the minimal markers and marker sets of length j for j = 1,2, 3, 4.
These correspond to the vertices of T at depth j

Length 1: 0 0

Length 2: 00 00 10 20 00

Length 3: 000 000 000 010 020 100
100 200 200 110 120 210
220 000

Length 4: 0000 0000 0000 0020 0010 0100

0200 0000 0100 0110 0120 0200
0210 0220 1000 1000 1010 1020
1000 2000 2000 2010 2020 2000
1100 1100 1200 1200 2100 2100
2200 2200 1110 1210 2110 2210
1120 2120 1220 2220 0000

Table 1
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10. Conclusion

The natural question that arises involves the two-sided d-shift map. In this case
the sequence space is the set of two sided sequences (...s 25 1.508182...) where
0 < s; <d—1, and the shift map o really is a shift in this case, as ¢ simply shifts
the decimal point one spot to the right:

o(...8.25 1.508182...) = (-..5_28_150.8182...)

The question here is: What is the structure of the group of automorphisms of this
shift? It is known that, even in the case d = 2, this is a very large group.
We conjecture that the answer to this question is intimately related (in the case

d = 2) to the family of maps known as the Hénon map. This family of maps is
given by

21 =A— Byy— 22

Y1 =X.
Note that the Jacobian of this map is identically equal to B; this is what makes this
map special. In the plane, it is known that, provided A is large enough, this map has
an invariant set homeomorphic to a Cantor set on which the dynamics are equivalent
to the two-sided shift map. See [DN]. Indeed, this is a simple nonlinear version of
the classic Smale horseshoe map. If we move to C* (making the two parameters
A and B as well as z¢ and yo complex, then Hubbard and Oberste-Vorth [HOV]
have shown that similar results apply. Moreover, we can now consider the set of
parameters for which we have such a Cantor set (the analogue of the escape locus,
although there are no critical points around). As before, moving around loops in
this locus also induces non-trivial automorphisms of the two-sided shift. The big
question then is: Can we generate all automorphisms of the two-sided shift in this
way?
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