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a hyperelliptic Riemann surface to a “hyperelliptic” three manifold. We show that
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segments, which we call the Weierstrass lines of the handlebody. The Weierstrass
lines are, of course, the analogue of the Weierstrass points on the boundary surface.
Further, we show that the manifold is foliated by surfaces equidistant from the
convex core, each fixed by the isometry of order two. The restriction of this involution
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1. Introduction

We begin with a Kleinian group, G, a discrete group of Möbius trans-
formations. We can think of this group as acting on the closure of
hyperbolic three space. That is, on the union of H

3 hyperbolic three
space and its boundary, Ĉ the complex sphere. In addition to stabi-
lizing each of these, the group naturally stabilizes certain subdomains
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and closed subsets, yielding a number of different quotient surfaces
and manifolds. Some of these quotients have conformal structures and
others hyperbolic structures.

If the group is a Fuchsian group, it fixes both the interior and the
exterior of a disc in the complex plane, and a corresponding hyperbolic
plane lying over the disc. The limit set of the group is contained in
the circle separating the discs in the plane. In this case there are
additional quotient surfaces to consider and certain symmetries within
the quotients or among the quotients.

Kleinian groups whose limit sets are proper subsets of Ĉ and Fuch-
sian groups whose limit sets are proper subsets of the boundary of their
invariant disc are known as “groups of the second kind”. In this paper,
we consider only finitely generated groups of the second kind that are
also free groups. For such groups, we find the relations between all of
these quotients and the relations between the various hyperbolic and
conformal metrics that can be placed on these spaces.

The quotient surfaces include the Nielsen kernel, the Fuchsian quo-
tient and its Schottky double. There is also a Nielsen double. The
Schottky double is the boundary of the quotient three manifold. For a
two generator Fuchsian group (of the second kind) we prove that the
boundary of the convex core of the three manifold is the image under a
pleating map of the Nielsen double. That is, we find the Fuchsian group
that uniformizes the Nielsen double and use it to obtain an isometric
map from the Nielsen double to the boundary of the convex core of the
manifold. This map is a pleating map.

We are interested primarily in the case where the groups are two-
generator groups. For these groups (when they are free and discrete)
the quotient three manifold is a genus two solid handlebody and its
boundary is a hyperelliptic Riemann surface. In this case we general-
ize the notion of a hyperelliptic Riemann surface to a “hyperelliptic”
three manifold. We show that the handlebody has a unique order
two isometry fixing six unique geodesic line segments, which we call
the Weierstrass lines of the handlebody. The Weierstrass lines are, of
course, the analogue of the Weierstrass points on the boundary surface.
Further, we show that the manifold is foliated by surfaces equidistant
from the convex core, each fixed by the isometry of order two. The
restriction of this involution to the equidistant surface fixes six gener-
alized Weierstrass points on the surface. In addition, on each of these
equidistant surfaces we find an orientation reversing involution that
fixes curves through the generalized Weierstrass points.

The organization of the paper is outlined in the table of contents
below. We begin with basic definitions and notation. We then define
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Hyperelliptic Handlebodies 3

the various quotient spaces of the Kleinian group; that is, the Fuchsian
surfaces, the Schottky and Nielsen doubles, the handlebody and the
convex core. It turns out that there is a natural dichotomy based on
whether the axes of the generators are either disjoint or intersect. We
carry out our discussion in two parallel parts; in part I, we state and
prove all our results in the disjoint axes case and in part II we do the
same for the intersecting axes case.
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2. Setup and Notation

We let G be a finitely generated discrete group of Möbius transforma-
tions.

2.1. Möbius transformations and metrics

A fractional linear transformation or a Möbius transformation is a con-
formal homeomorphism of Ĉ of the form z → az+b

cz+d
where a, b, c, d ∈ C

, ad − bc = 1. We let M be the group of Möbius transformations.
We also consider elements of M, the group of anti-conformal Möbius
transformations. These act on Ĉ as fractional linear transformations
sending z → az̄+b

cz̄+d
.

We use the upper-half-space model for H
3. If the coordinates for

Euclidean three-space are (x, y, t), then H
3 = (x, y, t) | t > 0}; the

plane with t = 0 is ∂H
3 = Ĉ.

A Euclidean sphere whose center is on Ĉ, intersects Ĉ in a circle
and H

3 in Euclidean hemisphere whose horizon is that circle. Inversion
in such a Euclidean sphere fixes H

3. It also fixes Ĉ and its restric-
tion to Ĉ has the same action as inversion in the horizon. We include
Euclidean planes perpendicular to Ĉ as spheres, thinking of them as
“spheres” through ∞; the horizon of such a plane is a straight line or
“circle” through ∞ on Ĉ. With this convention the terms inversion and
reflection are used interchangeably.

The action of elements of M and M on H
3 is related to the action

on Ĉ as follows: each element of M can be factored as a product of
reflections in circles lying in Ĉ and its action on Ĉ is the restriction
to Ĉ of the product of reflections in the Euclidean hemispheres whose
horizons are these circles.

There is a natural metric on H
3, the hyperbolic metric, preserved

by these reflections. Products of even numbers of reflections are the
orientation preserving isometries for this metric and the hyperbolic
metric is the unique metric for which M is the full group of orientation
preserving isometries. Geodesic lines in this metric are circles (and

straight lines) orthogonal to Ĉ. The Euclidean hemispheres are geodesic
surfaces called hyperbolic planes. The boundary of a hyperbolic plane
in Ĉ is called the horizon of the plane since it is at infinite distance
from every point in the plane.

We set

∆int = {z : |z| < 1}, ∆ext = {z : |z| > 1} and ∂∆ = {z : |z| = 1}.

For readability we use ∆ for ∆int when no confusion is apt to arise.
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There is also a natural hyperbolic metric on ∆ viewed as the hyper-
bolic plane. The isometries are elements of M that fix ∆ and geodesics
are circles orthogonal to ∂∆.

We let P denote the plane in H
3 whose horizon is the unit circle. We

can think of P as consisting of Pext and Pint, the hyperplane bound-
aries of hyperbolic half-spaces lying over ∆ext and ∆int respectively.
The hyperbolic metric in H

3 restricts to a metric on P and orthogonal
projection from Pint (or Pext) with this metric to ∆int (or ∆ext) with
the usual hyperbolic metric ρ∆ (or ρ∆ext) is an isometry.

We use the notation R∂∆ to denote the reflection in ∂∆ mapping Ĉ

to itself and RP to denote the reflection in P mapping H
3 to itself.

We remind the reader that elements of M have both an algebraic
classification by their traces, and corresponding geometric classification
according to their action on H

3 or Ĉ.
In this paper, we are concerned with finitely generated free groups

that are subgroups of M. They contain no elliptic elements. We shall
also make the simplifying assumption that there are no parabolic ele-
ments. Every element A ∈ M therefore has two fixed points in Ĉ. The
line AxA in H

3 joining the fixed points is invariant under A and is
called its axis. Similarly, if the fixed points of A lie on ∂∆, the geodesic
in ∆ joining them is also called the axis. We will also denote the axis
by AxA. The context will make clear which axis we mean.

We will also have occasion to consider groups generated by elliptic
elements of order 2. These groups contain free groups as subgroups of
index 2 as well as subgroups containing certain orientation reversing
elements of order two.

2.2. Hyperelliptic surfaces and the hyperlliptic involution

If a compact Riemann surface of genus g admits a conformal involu-
tion with 2g + 2 fixed points, the involution is unique and the surface
is called a hyperelliptic surface. The fixed points of the hyperelliptic
involution are called the Weierstrass points ([18] p. 275 and [12]) of
the surface. In addition to this geometric definition, these points also
have an analytic definition in terms of the possible zeros and poles of
meromorphic functions on the surface. Every Riemann surface of genus
two is hyperelliptic. It admits a unique conformal involution with six
fixed points, the hyperelliptic involution.
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3. Subspaces and Quotient Spaces

3.1. Limit sets, regular sets, convex regions and their

quotients

We assume that G is a finitely generated Kleinian group. Since it is
discrete, it acts discontinuously everywhere in H

3. We denote the subset
of Ĉ where it acts discontinuously by Ω(G) and denote its complement

in Ĉ, which is called the limit set, by Λ(G) = Ĉ \ Ω(G).
A fundamental domain F ⊂ S for G acting discontinuously on a

space S = ∆, P, Ω, . . . is an open set such that if z1, z2 are a pair of
points in the interior of F and if W (z1) = W (z2) for some W ∈ G,
then W = Id and ∪W∈GW (F ) = S.

If W is any closed subset of Ĉ, we call the smallest closed hyperbol-
ically convex subset of H

3 containing it, the convex hull of W in H
3. If

W is the limit set of G we denote it by C(G) or simply C. Analogously, if
W is any closed subset of ∂∆, we call the smallest closed hyperbolically
convex subset of ∆ the convex hull of W in ∆.

Since the set W we use in this paper is the limit set Λ of a Fuchsian
group, we need to distinguish between its convex hull in H

3 and its
convex hull in ∆. Because the convex hull in ∆ of the limit set of a
Fuchsian group historically was called the Nielsen (convex) region for
G, we continue that tradition and denote it by K(G) or K.

The Quotients for free Kleinian groups of the second kind

The surface S As G is a group of the second kind, Ω is connected.
The holomorphic projection Ω(G) → Ω(G)/G = S determines a
Riemann surface S. Since G is finitely generated, free, and contains
no parabolics, S is a compact surface of finite genus.

The solid handlebody H̄ The projection H
3 → H

3/G = H deter-
mines H as a complete hyperbolic 3-manifold. Its boundary is the
Riemann surface S = Ω(G)/G. That is, ∂H = S. Therefore H̄ is
a solid handlebody.

The Convex Core C/G The projection C(G) → C(G)/G = C/G is
a convex closed submanifold of H. Its boundary, ∂C/G is homeo-
morphic to the surface S.

The Quotients for free Fuchsian groups of the second kind

If G is a Fuchsian group, replacing G by a conjugate if necessary we
may assume that G acts invariantly on the unit disc.
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The Fuchsian surface ∆/G . The projection ∆ → ∆/G is a com-
plete Riemann surface that we call the Fuchsian surface of G.
Since G is free and contains no parabolics, ∆/G is a surface of
finite genus with finitely many removed discs.

The Nielsen kernel K(G)/G The Nielsen kernel of G is the quotient
of the Nielsen region; that is, the surface K(G)/G. It is also called
the Nielsen kernel of the surface ∆/G. It is homeomorphic to ∆/G.

If G is a free group of rank two, then as we will see below, S is a
compact surface of genus two. Thus it is the boundary of a handlebody
H of genus two.

3.2. Schottky doubles, funnels and Nielsen doubles

In this section we use the exposition of [2] for constructing the Schottky
double and the Nielsen double for Fuchsian groups of the second kind.
We also define metrics for them.

For any compact Riemann surface of genus g with k holes, one can
always form the conformal double. We denote the conformal double of
∆/G by S and the conformal double of K(G)/G by SK . Bers termed S
the Schottky double and clarified the relationship between S and SK .
(See theorem 3.1 below.) To distinguish between these doubles we call
SK the Nielsen double.

The anti-conformal reflection in ∂∆ induces a canonical anti-conformal
involution on S which we denote by J .

As a compact Riemann surface, S admits a uniformization by a
Fuchsian group Ĝ and the projection ∆ → ∆/Ĝ = S defines a hyper-
bolic metric on S. The restriction of this metric to the Fuchsian surface
∆/G ⊂ S is called the intrinsic metric on ∆/G.

The Nielsen kernel of S, K/G, is a Riemann surface homeomeorphic
to S. One can construct its conformal double SK which we call the
Nielsen double. Again the restriction of the hyperbolic structure on SK

defines the intrinsic metric on the Nielsen kernel. The intrinsic metric
agrees with the restriction of the hyperbolic metric on the Fuchsian
surface ∆/G.

The intersection of Ω(G) with ∂∆ consists of an infinite set β of
open intervals I, called the intervals of discontinuity of G. The images
of the intervals of discontinuity project to (ideal) boundary curves of
∆/G.

Each I ∈ β corresponds to the axis of some element in AI ∈ G. Let
CircAI

be the circle determined by the axis of AI (that is, the circle in

Ĉ orthogonal to ∂∆ through the fixed points of AI), and let D(AI) be
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the disc it bounds containing I. The quotient F (AI) = D(AI)/G ⊂ S
is called a funnel in S. The curves CircAI

∩ ∆ext, CircAI
∩ ∆int and

I project onto homotopic curves on S. The first two are the boundary
curves of the funnel and the last is the central curve of the funnel.

The following theorem follows from results in [2]

Theorem 3.1. We have the following relationship between the Nielsen
kernel and the Schottky double:

S = Ω(G)/G = K(G)/G ∪ J(K(G)/G) ∪I∈β F (AI)

Moreover, the central curves of the funnels are geodesics on S. The
involution J interchanges the boundary curves and fixes the central
curve.

3.3. The three-manifold

We continue assuming G a Fuchsian group of the second kind with
invariant disc ∆. As a group acting on H

3 it acts invariantly on a
hyperbolic plane P whose horizon is ∂∆. In this section, we consider it
as acting on P.

The Nielsen double, SKP
The Nielsen region for G acting on P, KP,

is the convex hull in P of Λ(G). If we think of P as having two
sides, Pint and Pext we form the doubled kernel by taking one
copy on each side: SKP

= KPint
/G∪KPext

/G. This is isometrically
equivalent to the Nielsen double SK defined in the previous section.

The convex hull, C The hyperbolic convex hull of Λ(G) in H
3 is C =

C(G). Because G is Fuchsian, C is contained in P and has no interior
so that ∂C = C. It is, therefore, sometimes natural to think of ∂C
as two-sided with Cint, the interior side facing ∆int and Cext, the
exterior side facing ∆ext. Note we have the obvious identifications
C = KP, Cint = KPint

and Cext = KPext
.

The convex core of H, N = Nint ∪ Next Since C = ∂C the convex
core N = C/G can be thought of as consisting of two hyperbolic
surfaces Nint = Cint/G and Next = Cext/G joined along their com-
mon boundary curves. Again we have the obvious identifications
Nint = KPint

/G, Next = KPext
/G. Note that N is isometric to SKP

.

We conclude this section with a concept that relates surfaces and three
manifolds.
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The Pleated surface (S̃, pl) A pair, (S̃, pl), is a pleated surface, if
S̃ is a complete hyperbolic surface and pl is an immersion and a
hyperbolic isometry of S̃ into a hyperbolic three manifold H, such
that every point in S̃ is in the interior of some geodesic arc which is
mapped to a geodesic in H. The pleating locus is the set of points
in S̃ that are contained in the interior of exactly one geodesic arc
that is mapped by pl to a geodesic arc.

Our goal is to explain the connection between the various quotient
Riemann surfaces and related quotient hyperbolic surfaces and quotient
three manifolds we have now defined. We will restrict our discussion to
the situation where G is a free two generator Fuchsian group.

We will show that if G is a two generator Fuchsian group, then N ,
with its intrinsic metric, is the image of the Nielsen double SK , with its
intrinsic metric, under a pleating map, pl. We will see that the image
of the pleating locus consists of the identified geodesic boundary curves
of Nint and Next. Further we will show that H̄ = S × I where S is a
surface of genus 2, I = [0,∞] and S × 0 = N , S ×∞ = S, and the
surfaces S × s = S(s) are equidistant surfaces from the convex core N .

We begin with the discrete free Fuchsian group on two generators,
G =< C, D >. We want to find a set of generators 〈A, B〉 for G that
have two special properties: first, they are geometric, that is, they
are the side pairings for a fundamental polygon ([16]) and second,
the traces of A and B are less than the traces for any other pair of
generators. Although we know G is discrete, we apply what is known
as the discreteness algorithm to find the special generators. They are
the pair of generators at which the algorithm stops. We thus call 〈A, B〉
the stopping generators for G.

The first step of the algorithm determines whether the axes of the
generators intersect or not. This is determined by computing the trace
of the commutator, [C, D] = CDC−1D−1 (see [4] or [17]). If Tr [C, D] <
−2, the axes intersect; if −2 < Tr [C, D] < 2, the group contains an
elliptic element; and if Tr [C, D] > 2, the axes are disjoint. Either the
axes intersect for every Nielsen equivalent pair of generators or they are
disjoint for every pair. Since G is free, it contains no elliptics and since
we have assumed it contains no parabolics, we have |Tr [C, D]| > 2.

Our constructions are somewhat different depending on whether the
axes of the generators are disjoint or not. We separate these construc-
tions into two parts.
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Part 1. DISJOINT AXES - Tr [C, D] > 2

Throughout part I we assume the axes of the generators of G are
disjoint. We begin by finding fundamental domains for G acting on
∆ and on K(G). Next, we find the Weierstrass points for S. We then
turn to H

3 and find fundamental domains for G acting on P and on
C. We construct the Fuchsian group uniformizing SK and the pleating
map sending K(G) onto ∂C. We then use the pleating map to find
the Weierstrass points of SK . Finally, we work with the handlebody H
and construct the Weierstrass lines and the equidistant surfaces. We
conclude with a discussion of anti-conformal involutions on the various
quotients.

4. Subspaces of ∆ and quotients by G

4.1. Fundamental Domains in ∆ and K(G)

When the axes of the generators of G are disjoint, the Gilman-Maskit
discreteness algorithm [7] proceeds by successively replacing the gen-
erators with a Nielsen equivalent. After finitely many steps, it decides
whether the group generated by the original generators is discrete or
not. If the group is discrete, the final set of generators, the stopping
generators, are both geometric and have minimal traces.

The reflection lines (L, LA, LB) defined as follows for any pair of
generators, play a major role in the algorithm:

L is the common perpendicular in ∆ to the axes of A and B
LA is the geodesic in ∆ such that A factors as the product A =
RLRLA

where RK denotes reflection in the geodesic K.
LB is the geodesic in ∆ such that B = RLRLB

The stopping condition for the algorithm is that the lines (L, LA, LB)
bound a domain in ∆; that is, no one separates the other two. This is
equivalent to RL, RLA

, RLB
being geometric generators for the index

two extension of G, 〈G, RL〉; the domain bounded by (L, LA, LB) is the
fundamental domain.

Note that A−1B = RLA
RLB

so that its axis is the common perpen-
dicular to LA and LB. In fact, the axes (AxA, AxB, AxA−1B) bound
a domain if and only if the lines (L, LA, LB) do. We orient the lines
so that L is oriented from AxA to AxB, LB is oriented from AxB to
AxA−1B and LA is oriented from AxA−1B to AxA.

Taking the union of the domain bounded by the lines (L, LA, LB)
together with its reflection in L, we obtain a domain F in ∆ bounded by
the lines LA, LB, LĀ = RL(LA) = A(LA) and LB̄ = RL(LB) = B(LB).
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LB̄

LĀ

pL L

qLA

LA

pLA
qLB

LB

qL

pLB

∆

Figure 1. The domain F ⊂ ∆ is shaded. The axes, drawn with their reflections in
∂∆ are the darker circles; the lines L, LA, LB , LĀ, LB̄ drawn with their reflections
are the lighter circles.

Proposition 4.1. If 〈A, B〉 are the stopping generators for G, then
F is a fundamental domain for G acting in ∆. If FK is the domain
obtained from F by truncating along the axes of A, B, A−1B and AB−1

then FK is a fundamental domain for the action of G on the Nielsen
region of G in ∆.

Proof. By construction, the algorithm stops at the pair of generators
〈A, B〉 such that F is a fundamental domain for G acting on ∆ ([7]).

Let D(IA) be the half plane bounded by AxA that does not contain
the segment of L between the axes of A and B. Note that it is invariant
under A. Tiling ∆ with copies of F , we see that the only images of
F that intersect D(IA) are of the form An(F ), for some integer n. It
follows that D(IA) is stabilized by the cyclic group 〈A〉 and the interval
IA joining the fixed points of AxA is an interval of discontinuity for G.
The same is true for the other three intervals IB, IA−1B and IAB−1

corresponding to the other three axes that intersect F . We conclude
that these axes all lie on the boundary of the Nielsen convex region for
G.
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LB̄

LĀ

L

LA
LB̄

∆

Figure 2. The domain FK ⊂ ∆ and its reflection R∂∆(FK) are shaded.

Identifying the sides of F we easily see that ∆/G is a sphere with
three holes. The three ideal boundary curves are the projections of the
intervals IA, IB and IA−1B; note that A−1B and AB−1 are conjugate.

Since the Nielsen kernel K(G)/G is homeomorphic to ∆/G, it has
only three boundary curves. Looking at F , these must be the projec-
tions of the axes of A, B and A−1B and all their conjugates. Thus the
boundary of the Nielsen region consists of the axes of the generators
and the axes of all their conjugates and FK is a fundamental domain
as claimed.

4.2. Weierstrass points of the Schottky double S

We now want to reflect the lines in ∂∆ so we introduce subscripts to dis-
tinguish between the lines and their reflections as oriented line segments
in Ĉ. Set Lint = L, Lext = R∂∆(L), etc. The lines and their reflections
in ∂∆ form triple of circles which we denote by (CircL, CircLA

, CircLB
).

The circles are oriented so that CircL = Lint ∪ (Lext)
−1. Note further

that these three circles also bound a domain in Ĉ and in fact, a domain
in Ω(G).

kluhyphand.tex; 8/03/2004; 11:48; p.13



14 J. Gilman and L. Keen

Theorem 4.2. Suppose G = 〈C, D〉 is a discrete free Fuchsian group
such that the axes of C and D do not intersect. Let A, B be the stop-
ping generators determined by the Gilman-Maskit algorithm and let
the points pL, qL,pLB

, qLB
,pLA

, qLA
be the respective intersections of

L, LA, LB with ∂∆ (labelled in clockwise order beginning with pL and
ending with qLB

) and so that (qL, pLB
),(qLB

, pLA
),(qLA

, pL) are disjoint
segments of ∂∆ respectively in the intervals of discontinuity bounded by
the axes AxB, AxA−1B and AxA. Then the Schottky double S is a com-
pact Riemann surface of genus two and the projections of these points
onto S under the projection Ω(G) → Ω(G)/G = S are the Weierstrass
points of S.

Proof. To simplify notation, we denote the reflections RCircL
by RL,

RCircLA
by RLB

and RCircLB
by RLB

. Consider the circles CircLĀ
=

RL(CircLA
) = A(CircLA

) and CircLB̄
= CircRL(LB) = B(CircLB

).
Since (L, LA, LB) bound a domain in ∆, the four circles CircLA

,
CircLĀ

, CircLB
, and CircLB̄

bound a domain F in Ω.
This domain is the union of the domain F of figure 4.1 and its

reflection in ∂∆. Moreover, A maps the exterior of CircLA
to the interior

of CircLĀ
and B maps the exterior of CircLB

to the interior of CircLB̄
.

One can easily verify that F is a fundamental domain for G = 〈A, B〉
and that Ω(G)/G is a compact Riemann surface of genus two.

Let R∂∆ denote reflection in ∂∆ so that R∂∆ : ∆int → ∆ext. Set
E = R∂∆RL. The product of reflections in a pair of intersecting circles
is a rotation (an elliptic element of M) about the intersection points of
the circles (the fixed points) with rotation angle equal to twice the angle
between the circles. As E is the elliptic of order two with fixed points
pL, qL, it takes any circle through pL and qL into itself and interchanges
the segments between the endpoints. In particular, it sends CircL to
itself and sends Lint to (Lext)

−1.
One easily verifies that EAE−1 = A−1 and EBE−1 = B−1 so that

E is an orientation preserving conformal involution from Ω(G) to itself
that conjugates G to itself. It therefore induces a conformal involution
j : S → S.

Similarly, EA = R∂∆RLA
= EA and EB = R∂∆RLB

= EB are el-
liptic elements of order two with fixed points {pLA

, qLA
} and {pLB

, qLB
}

respectively. Therefore, E(pLA
) = A(pLA

), E(qLA
) = A(qLA

) and E(pLB
) =

B(pLB
),E(qLB

) = B(qLB
). Since EAE−1 ∈ G and EBE−1 ∈ G, we

conclude that EA, EB and E induce the same conformal involution
j. Moreover, the projections of pL, qL, pLA

, qLA
, pLB

, qLB
are distinct

points each, fixed by j. Since j is a conformal involution fixing six
distinct points, it is the hyperelliptic involution on S.
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The reflection R∂∆ also normalizes G and thus descends to a home-
omorphism of S which is the anti-conformal involution J (see sec-
tion 3.1). As we saw in section 3.2, the clockwise arc of ∂∆ joining
qLA

to A(qLA
) = RL(qLA

) projects to the central curve of the funnel on
S corresponding to the projection of interval of discontinuity bounded
by the axis of A. Similarly, the clockwise arc from RL(pLB

) to pLB

projects to the central curve of the funnel on S corresponding to the
projection of interval of discontinuity bounded by the axis of B. In
addition, the pair of segments joining (counterclockwise) qLB

to pLA

and RL(pLA
) to RL(qLB

) together project the central curve of the third
funnel corresponding to the projection of the interval of discontinuity
of A−1B. These three simple curves are fixed point-wise by J and they
partition S into two spheres with three holes (pairs of pants).

The product Jj is again an anti-conformal self-map of S. Its invari-
ant curves are the projections of the circles CircL, CircLA

, CircLB
. The

homotopy classes of these projections also partition S into two spheres
with three holes.

We remind the reader that J is an anti-conformal map on S that
fixes its three fixed curves point-wise and j is a conformal map that
sends each fixed curve into itself as a point-set, but only fixes two points
on each curve and maps the curve into its inverse.

5. The convex hull and the convex core

In this section we consider the group G acting on P, Pint and Pext which
contain respectively the convex hull C(G) in H

3 and its two boundaries
Cint and Cext. All the axes of elements of G lie in P.

Note that the reflection RP interchanges Pint and Pext. Since P ⊂ H
3,

in addition to factoring elements of G as products of reflections in
hyperbolic planes we can also factor them products of half turns about
hyperbolic lines. (See [3]). If M is a hyperbolic line in H

3, we denote
the half turn about M by HM .

5.1. Fundamental domains in P and C

Since the axes of the generators C and D do not intersect and these
axes lie in the plane P (which is another model for ∆), we can apply the
Gilman-Maskit algorithm to obtain stopping generators A, B as above.
We again have a triple of lines L, LA, LB defined as follows: L is the
hyperbolic line mutually orthogonal to the axes of A and B; it now lies
in P. The hyperbolic line LA in P is determined by the factorization
A = HLHLA

Similarly LB is the line in P such that B = HLHLB
. The
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16 J. Gilman and L. Keen

condition for A, B to be stopping generators is that the lines L, LA, LB

bound a domain in P. Set LĀ = HL(LA), LB̄ = HL(LB). It is easy to
check that LA is the mutual perpendicular to the axes of A and A−1B
while LB is the mutual perpendicular to the axes of B and A−1B

LB̄

LA
LB

Figure 3. The domain H ⊂ P ⊂ H
3.

Let H be the closed right-angled hexagon formed by the six hyper-
bolic lines, L, LA, LB and AxA, AxB, AxA−1B and shown in figure 5.1.

Proposition 5.1. The interior of the domain FC = int(H ∪ HL(H))
is a fundamental domain for G acting on the convex hull C(G).

Proof. Since C(G) ⊂ P, it is same as the Nielsen region K(GP), and the
proposition follows directly from proposition 4.1.

We define the domains by Fint = FC ∩ Pint and Fext = FC ∩ Pext

respectively. Note that Fint ⊂ Cint ⊂ Pint and Fext ⊂ Cext ⊂ Pext. An
immediate corollary of the above proposition is

Corollary 5.2. The domain Fint ∪ Fext is a fundamental domain for
G acting on Cint ∪ Cext = ∂C.

If we identify the appropriate sides of FC under the action of A and
B, we obtain a sphere with three boundary curves that are geodesic in
the intrinsic metric. Therefore, identifying the sides of Fint ∪ Fext we
obtain two such spheres. Gluing their boundary curves yields a surface
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Hyperelliptic Handlebodies 17

of genus two as the boundary of the convex core that is isometric with
the Nielsen double of G.

6. The Pleated Surface

In this section we explicitly construct the pleated surface (S̃, pl) where
the hyperbolic surface S̃ = SK . As usual we assume we have simple
stopping generators with disjoint axes.

To define the pleated surface we need first to construct a hyperbolic
surface of genus two. We do this by constructing a Fuchsian group and
forming the quotient. The hyperbolic surface we obtain is the Nielsen
double, SK .

6.1. The Fuchsian group for the Nielsen double

We begin with the fundamental domain FK = H∪RL(H) ⊂ ∆ defined
in section 4 for the Nielsen kernel. Set FΓ = FK ∪ RAxA

(FK) ⊂ ∆.
Note that FΓ contains four copies of the hexagon H. Define a new
group acting on ∆ by Γ = 〈A, A′, B, B′〉, where A′ = RAx

A−1B
RAxA

and B′ = RAxB
RAxA

.

RAxA
(L(H))

LB̄

LĀ

L

LA

LB

L(H)

H

AxA

AxB

Figure 4. The fundamental domain for Γ is a union of four copies of H. The circle
sides, LA, LĀ, LB , LB̄ and their reflections in AxA are drawn dotted. The axis sides
are drawn solid.
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18 J. Gilman and L. Keen

Proposition 6.1. The domain FΓ is a fundamental domain for the
group Γ = 〈A, A′, B, B′〉 acting on ∆. The Fuchsian surface S̃ = ∆/Γ
is a Riemann surface of genus two isometric to the Nielsen double SK .

Proof. It suffices to show that the sides are identified in pairs by ele-
ments of Γ and the angles at the vertices satisfy the conditions of the
Poincaré polygon theorem ([13]).

In FK the pair of sides that are segments of LB and LB̄ are identified
by B; similarly the sides of LA and LĀ in FΓ are identified by A. In FΓ

the pair of sides that are segments AxB and RAxA
(AxB) are identified

by (B′−1 since RAxA
: RAxA

(AxB) → AxB and RAxB
: AxB → AxB.

Then the sides that are segments of RAxA
(LB) and RAxA

(LB̄) are iden-
tified by B′B(B′)−1. Similarly, The sides that are segments of AxA−1B

and RAxA
(AxA−1B) are identified by (A′)−1 and the sides that are

segments of AxAB−1 and RAxA
(AxAB−1) are identified by AA′A−1.

(See figure 6.1.)
It is easy to check that the twelve vertices of FΓ are partitioned into

three cycles of four vertices. Denote the three vertices of H in FΓ as
follows: let qA be the intersection of AxA−1B with LA, let pB be the
intersection of AxA−1B with LB and let qB be the intersection of AxB

and LB. The cycles are then

{pA, A′(pA), AA′(pA), A(pA)},

{pB, B(pB), B′B(pB), B′(pB)},

{qB, A′(qB), B(qB), B′B(B′)−1A′(qB)}

As each angle in FΓ is a right angle, the sum of the angles at each cycle
of vertices is 2π.

We conclude that FΓ is a fundamental domain for the group gener-
ated by the side pairing transformations. Since these are generated by
the generators of Γ, FΓ is a fundamental domain for Γ.

Sides of FΓ either are termed axis sides or reflection sides depending
upon whether they are segments of an axis of an element of G or
segments of a reflection line of G.

Now FK is composed of two copies of H, and, as we saw in section 4,
identifying non-axis sides (segments of LA, LĀ, LB, LB̄) yields a sphere
with three holes. The boundaries of the holes are the identified axes
AxA, AxB, AxAB−1 . Similarly RAxA

(FK) with non-axis sides identified
is another three holed sphere. The axis sides (AxA, AxB, AxAB−1) of
FΓ are identified as indicated above, and the two three holed spheres
join up to form a compact surface S̃ of genus two. Since FΓ is just FK

doubled, the surface S̃ is isometric to the Nielsen double SK .

kluhyphand.tex; 8/03/2004; 11:48; p.18



Hyperelliptic Handlebodies 19

6.2. The pleating map

To construct the pleating map pl : ∆/Γ → H
3/G, we begin by defining

a pleating map PL : ∆ → H
3. We first define PL on FΓ and then

extend by the groups Γ and G. Recall that the domain FΓ ⊂ ∆ is a
union of two copies of FK , and Fint ⊂ Pint and Fext ⊂ Pext as defined
in section 5.1 are each isometric to FK . Set PL : FK → Fext. Next set
PL : RAxA

(FK) → Fint. Define the group homomorphism φ : Γ → G
by first defining it on the generators:

A 7→ A, B 7→ B, A′ 7→ id, B′ 7→ id.

To show that this map on generators gives a group homomorphism from
Γ to G we must show that φ preserves the defining relation(s) of Γ. We
know from the Poincaré polygon theorem that the reflection relations
and the cycle relations form a complete set of relations for Γ There
are no reflection relations and it is easy to calculate that substituting
φ(A), φ(A′), φ(B), and φ(B′) into the cycle relation gives the identity.

We now extend PL to a map from ∆ into H
3. That is, for x ∈ ∆ let

g ∈ Γ be chosen so that g(x) ∈ FΓ and set PL(x) = φ(g−1)◦PL◦ g(x).
This is well defined when g(x) lies interior to FΓ and when g(x) lies on
a boundary curve of FΓ or on AxA it is defined by continuity. Thus,
(∆, PL) is a pleated surface with image in H

3 whose pleating locus is
the image of the axis sides of FΓ and all their images under Γ.

We now define the map pl : S̃ → H
3/G by taking quotients. The

map pl is clearly a hyperbolic isometry since PL is and its pleating
locus consists of the images of AxA, AxB and AxA−1B.

By corollary 5.2, we can apply the group G to identify PL(FΓ)
with ∂C, and taking quotients, identify pl(SK) with the convex core
boundary ∂N = Cint/G ∪ Cext/G.

6.3. The Weierstrass points of the Nielsen double SK

We now determine the Weierstrass points of SK . This is very reminis-
cent of our earlier discussion of the Weierstrass points of the Schottky
double, except that now, instead of using the simple reflection in ∂∆
we need to use reflections in the axis sides of H that correspond to the
generating triple with simple axes.

Let E0 = RLRAxA
. Let p be the fixed point of E0 .

Let E1 = RLRAxB
. Let q be the fixed point of E1

Let E2 = RLA
RAxA

. Let qA be the fixed point of E2.

Note that E1 = B′E0 and E2 = A−1E0. The vertices of FΓ are
also fixed points of order two elliptics: pA is the fixed point of E3 =

kluhyphand.tex; 8/03/2004; 11:48; p.19



20 J. Gilman and L. Keen

E2A
′−1 = A−1E0A

′−1, qB is the fixed point of E4 = A−1E0A
′B−1A =

E3B
−1A and pB is the fixed point of E5 = E1B = B′E0B.

Theorem 6.2. The Weierstrass points of SK are the projections of the
six points p, q, pA, qA, pB, qB.

Proof. Since E0 = RLRAxA
, we see that E0(FΓ) = FΓ and verify that

E0 normalizes Γ. It follows that E0 induces a conformal involution j̃
on S̃.

Similarly, Ei, i = 1, . . . 5 preserves the tiling by images of FΓ and
thus normalizes Γ so that Ei projects a conformal involution. Since the
products of pairs of the Ei’s are elements of Γ, they all project to the
same conformal involution j̃ on S̃. As the six points are inequivalent
under Γ, they project to six distinct fixed points of the involution j̃,
characterizing it as the hyperelliptic involution.

7. Weierstrass points and lines in the handlebody

In this section we give an explicit description of the handlebody H as
S × I where S is a compact surface of genus two and I is the interval
[0,∞]. We show that H admits a unique order two isometry j that we
call the hyperelliptic isometry of H. It fixes six unique geodesic line
segments, which we call the Weierstrass lines of H. The Weierstrass
lines are, of course, the analogue of the Weierstrass points on the
boundary surface.

In addition, we show that H is foliated by surfaces S(s) = (S, s)
that are at hyperbolic distance s from the convex core, and that each
S(s) is fixed by j. The restriction of j to S(s) fixes six generalized
Weierstrass points on S(s). On each S(s) we also find an orienta-
tion reversing involution J that fixes curves through the generalized
Weierstrass points.

7.1. Construction of the foliation

We construct the hyperelliptic isometry for H as follows. We saw, in
section 5.1, that G is generated by products of even numbers of half-
turns in the lines (L, LA, LB). It follows that G is a normal subgroup
of index two in the group 〈HL, HLA

, HLB
〉. Since HL, HLA

and HLB

all differ by elements of G, their actions by conjugation on G all induce
the same order two automorphism j under the projection π : H

3 →
H

3/G = H. The fixed points of j in H are precisely the points on
the images of the lines L, LA, LB; denote the projection of the lines by
(π(L), π(LA), π(LB)).
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We work with the lines L and π(L) but we have analogous state-
ments for the lines LA and LB and their projections. As we saw in
theorem 4.2, the endpoints (p, q) of L on ∂∆ project to Weierstrass
points on the Schottky double S = ∂H = S(∞).

In theorem 6.2 we found the Weierstrass points of the Nielsen dou-
ble SK . In the fundamental domain FΓ ⊂ ∆ for Γ we found points
p ∈ FΓ and q ∈ ∂FΓ such that PL(p) and PL(q) both lie on the
line L ∈ P. For the moment, call the hyperelliptic involution on SK ,
jSK

and the hyperelliptic involution on H, jH . By construction, the
pleating map pl commutes with these involutions: pl ◦ jSK

= jH ◦ pl. It
follows that the projections p̃ = π(PL(p)) and q̃ = π(PL(q)) are fixed
under jH . By the same argument, we find two other pairs of points
π(PL(pA)), π(PL(qA)) on π(LA) and π(PL(pB)), π(PL(qB)) on π(LB)
fixed by jH . They lie on the genus two surface ∂N = S(0) and are its
generalized Weierstrass points.

The segment of the line π(L) from p̃ to q̃ lies inside N and its
complement consists of two segments: one from p̃ to π(p) ∈ S(∞) which
we denote Lp, and the other from q̃ to π(q) ∈ S(∞) which we denote by
Lq. Each of these is point-wise fixed under jH . We call the two segments
outside N , the generalized Weierstrass lines of H. Similarly, we have
two other pairs of generalized Weierstrass lines (π(LAp), π(LAq)) and
(π(LBp), π(LBq)).

We can parameterize these lines by hyperbolic length. We next con-
struct the family of surfaces S(s). We will show that jH , which we
denote again simply by j since it will not cause confusion, is an order
two isometry of S(s) that has as its set of fixed points, the intersection
points of these six lines with the surface.

For a point p ∈ P, let V (t), t ∈ (−∞,∞) be the line in H
3 per-

pendicular to P at p and parameterized so that s = |t| is hyperbolic
arc length and oriented such that V (s) is exterior to P and V (−s) is
interior to P. There is a family of surfaces Π(±s) with boundary ∂∆,
passing through the point V (±s) such that the distance from any point
on Π(±s) to P is s. We call them equidistant surfaces. We can think of
Π(s) ∪ Π(−s) as the (full) equidistant surface from P at a distance s,
with the points lying above P having directed distance s and the points
below P having directed distance −s. (See [3] chapters III.4 and IV.5).
Note that since G acts on H

3 by isometries, it leaves the hyper-surfaces
Π(±s) invariant.

Using orthogonal projection, we can project Cext onto Π(s) to obtain
Cext(s) and project Cint(s) onto Π(−s) to obtain Cint(s).

Each quotient, Next(s) = Cext/G and Nint(s) = Cint(s)/G, is topo-
logically a sphere with three boundary curves. In analogy with our
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Figure 5. The convex core inside the handlebody

construction of the Schottky double, we want to join these boundary
curves, in pairs, by funnels to form the surface S(s).

Let EqA(s) be the equidistant cylinder in H
3 about AxA. Note that,

for each s > 0, A maps EqA(s) to itself. Because AxA lies in P, A(±s) =
EqA(s)∩Π(±s) is the orthogonal projection of AxA onto Π(±s); notice
that EqA(s) and Π(±s) are tangent along A(±s). The curves A(±s)
intersect Cext and Cint in boundary curves. The curves A(±s) divide
EqA(s) into two pieces, each a doubly infinite topological strip. Both
of these strips intersect P, one on each side of the axis of A. Thus one
strip intersects C and one does not; we denote the strip disjoint from C
by RecA(s).

Similarly, we form RecB(s), RecA−1B(s), RecAB−1(s), . . . , for each
of the boundary curves of C. The quotient of each of these strips under
the action of G is a funnel; there are three distinct funnels and we
denote them FA(s), FB(s) and FA−1B(s).

The surface S(s) is defined as

S(s) = Next(s) ∪ Nint(s) ∪ FA(s) ∪ FB(s) ∪ FA−1B(s)

We have

Proposition 7.1. The surface S(s) is invariant under the involution
j.

Proof. By construction, the distance from each point of S(s) to the
convex core N is s. As the involution j : H → H is an isometry and it
preserves N , it leaves S(s) invariant.

We want to find the fixed points of j acting on S(s). To this end
consider the intersection points of the line segments Lp(s) and LAp(s)
with RecA(s); denote them respectively by p(s) and pA(s). Similarly,
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define the points q(s) and qB(s) as the intersection points of the line
segments Lq(s) and LBq(s) with RecB(s) and the define the points
qA(s) and pB(s) as the intersection points of the line segments LAq(s)
and LBp(s) with RecA−1B(s).

Proposition 7.2. The projections of the points p(s), q(s), pA(s), qA(s)
and pB(s), qB(s) lie on the surface S(s) ⊂ H and comprise the set of
fixed points of j restricted to S(s).

Proof. Each of these points lies on one of the six generalized Weierstrass
lines in H at distance s from the convex core. These lines are distinct
so the points are distinct. Since these lines are fixed pointwise by j,
and since j leaves S(s) invariant, these are fixed points of j on S(s) as
claimed.

We call these projected points the generalized Weierstrass points of
S(s).

We summarize these results as

Theorem 7.3. The projections of the lines L, LA, LB in P ⊂ H are
point-wise fixed by the involution j. The projection of each line con-
sists of three segments. The endpoints of the internal segment, lying
in the convex core, are generalized Weierstrass points of (S, 0). Each
line has two external segments, parameterized by hyperbolic arc length
and called generalized Weierstrass lines. The points at distance s on
the generalized Weierstrass lines are the generalized Weierstrass points
of the surface (S, s). The endpoints of the external segments lie on the
boundary the handlebody and are the Weierstrass points of the boundary
surface S = (S,∞).

7.2. Anticonformal involutions

We can also construct the anti-conformal involution J acting on H,
by defining it to be the self-map of H induced by the anti-conformal
reflection in the plane P, RP. Since the axes of the generators A and
B of G lie in P, RP fixes theses axes point-wise and since RP is an
orientation reversing map, it induces an orientation reversing map on
H.

We want to see how J acts on

S(s) = Next(s) ∪ Nint(s) ∪ FA(s) ∪ FB(s) ∪ FA−1B(s)

Since RP is an isometry, RP(Cext(s)) = Cint(s) and J(Next) = Nint.
The involution maps RecA(s) to itself, fixing the curve that is the
intersection of the plane P with RecA(s). We call the projection of this
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curve the central curve of the funnel. Since RP interchanges the part of
RecA(s) on one side of P with the part on the other, we deduce that J
maps the funnel FA(s) to itself, interchanging its boundary curves and
fixing the central curve.

There is another anti-conformal self-map of H induced by RP ◦HL;
Ĵ = J ◦ j. To see how Ĵ acts on S(s) we first look at the fundamental

domains Fext(s) and Fint(s). Both j and J interchange these so Ĵ
leaves each of them invariant. We look at Fext(s): Let PL be the plane
orthogonal to P through the line L and let PL(s) be the intersection
of PL and Π(s); equivalently, PL(s) is the orthogonal projection of L
onto Π(s). Looking back at the construction of Fext, we see that it
symmetric about L and the symmetry is given by RP ◦HL; thus Fext(s)

is symmetric about PL(s) by the same map. It follows that Ĵ maps
Next(s) to itself with fixed curve, the projection of PL(s). We have an
analogous symmetry for Nint(s).

The plane PL also bisects the region RecA(s). The map RP ◦ HL

interchanges the two halves of RecA(s). Thus Ĵ maps each funnel to
itself; it leaves each boundary curve and the central curve invariant, but
changes its orientation. On the central curve, it leaves the Weierstrass
points fixed but interchanges the segments they divide the curve into.

Part 2. INTERSECTING AXES - Tr [C, D] < −2

In this part we always assume the axes of the generators of G inter-
sect. The organization parallels part I. We begin by finding fundamental
domains for G acting on ∆ and on K(G). Next, we find the Weierstrass
points for S. We then turn to H

3 and find fundamental domains for G
acting on P and on C. We construct the Fuchsian group uniformizing
SK and the pleating map sending K(G) onto ∂C. We then use the
pleating map to find the Weierstrass points of SK . Finally, we work
with the handlebody H and construct the Weierstrass lines and the
equidistant surfaces. We conclude with a discussion of anti-conformal
involutions on the various quotients.

8. Subspaces of ∆ and quotients by G

Any pair of generators in the intersecting axes case are geometric (see
[8], [9]). To unify our discussion with the non-intersecting case and
to simplify our constructions and proofs below, however, we again re-
place the generators by some Nielsen equivalent generators with special
properties.

kluhyphand.tex; 8/03/2004; 11:48; p.24



Hyperelliptic Handlebodies 25

Let Ex denote the elliptic element of order two that leaves the disc
∆ invariant and fixes the point x. We let p = AxC ∩ AxD and choose
pC and pD so that C = Ep ◦ EpC

and D = Ep ◦ EpD
. Note that p and

pC both lie on AxC and that ρ∆(p, pC) is half the translation length of
C, where ρ∆ is the usual hyperbolic metric in ∆.

In a manner analogous to the steps of the algorithm in the case
when the commutator is elliptic ([5]), one can replace the original gen-
erators by generators A, B so that the distance between the three points
p, pA, pB is minimal (among all Nielsen equivalent pairs of generators).
That is, ρ∆(p, pA) ≤ ρ∆(p, pB) ≤ ρ∆(pA, pB) and the traces of A and B
are minimal among all pairs of generators. Geometrically, this condition
says that the triangle with vertices p, pA, pB is acute. This acute triangle
is the analog of the domain bounded by the lines L, LA, LB.

By analogy with the disjoint axes case, we will call the minimal trace
generators stopping generators. In this part we will always assume that
the generators A and B are the stopping generators of G.

8.1. Fundamental Domains in ∆ and K(G)

We begin by constructing a fundamental domain for G acting on ∆
whose side pairings are the stopping generators.

We observe that Ax[A,B] is disjoint from the axes AxA and AxB

as follows. Following [14] construct h, the perpendicular from pB to
AxA. By the trace minimality of the stopping generators, h intersects
AxA between pA and A−1(p) (or vice-versa) [5]. Let δ be a geodesic
perpendicular to h passing through pB. The transformation Ep ◦EpA

◦
EpB

identifies δ and A(δ). It is easily seen to be the square root of
the commutator [A, B−1] so that both have the same axis, the common
perpendicular to δ and A(δ). By construction, this axis must be disjoint
from AxA and AxB. The construction also assures that the axes of the
commutators [B−1, A−1],[A, B−1],[B, A],[A−1, B] are disjoint from the
axes of A and B.

Lemma 8.1. Let MA ∈ ∆ be the mutual orthogonal to Ax[B−1,A−1] and
Ax[A−1,B] and MB the mutual orthogonal to Ax[B−1,A−1] and Ax[A,B−1].
Then MA passes through pA and MB passes through pB. Moreover, if
pĀ = A(pA), and pB̄ = B(pB) and if MĀ is the mutual orthogonal to
Ax[B,A] and Ax[A,B−1] and MB̄ is the mutual orthogonal to Ax[B,A] and
Ax[A−1,B] then MĀ passes through pĀ and MB̄ passes through pB̄.

Proof. (See figure 8.1) We give the proof for MA. The others follow
in the same way. We factor A and B as A = EpEpA

= EpĀ
Ep and

B = EpEpB
= EpB̄

Ep. Then we easily compute

[B−1, A−1] = EpA
[A−1, B]EpA
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pA

pB

p

AxA

Ax[A,B−1]

Ax[B,A]

Ax[B−1,A−1]

Ax[A−1,BA]

MA

MB

MĀ

MB̄

Figure 6. The construction of the stopping generators: The commutator axes are
dark circles, AxA and AxB intersect at the origin. The fundamental domain FK is
bounded by the dark lines MA, MĀ and the dotted circles MB , MB̄ .

so that EpA
interchanges the axis of [B−1, A−1] and the axis of [A−1, B].

The elliptic sends any geodesic lying on ∆ and passing through pA to
its inverse and moves any geodesic not passing through pA. Since it
interchanges the axes, it must send their the mutual orthogonal to
itself. Thus pA is on this orthogonal as claimed. In the case of MB,
note that MB is the same as δ.
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This construction yields a new description of a fundamental do-
main for the intersecting acting case, one not previously used in the
literature.

Proposition 8.2. The domain F bounded by the geodesics MA,MB,MĀ

and MB̄ is a fundamental domain for the action of G on ∆ and ∆/G is
a torus with a hole. The domain FK obtained by truncating F along the
commutator axes is a fundamental domain for G acting on the Nielsen
region.

Proof. Note that the lines MA, MB, MĀ and MB̄ are mutually disjoint
since if two of them intersected, they would form, together with one of
the commutator axes, a triangle with two right angles.

Next, by definition, MA and MĀ are identified by A and MB and
MB̄ are identified by B and so, by Poincaré’s theorem, they bound a
fundamental domain for G acting on ∆.

Let D(I[B,A]) be the half plane with boundary Ax[B,A] that does not
contain the point p. It is invariant under [B, A]. Tiling ∆ with copies
of F , we see that the only images of F that intersect D(I[B,A]) are
of the form [B, A]n(F ), for some integer n. It follows that D(I[B,A]) is
stabilized by the cyclic group 〈[B, A]〉 and the interval I[B,A] joining the
fixed points of Ax[B,A] is an interval of discontinuity for G. The same
is true for the other three intervals I[A,B−1], I[A−1,B] and I[A−1,B−1]

corresponding to the other three commutators whose axes intersect F .
Identifying the sides of F we obtain a torus with one hole. (See

figure 8.1). The ideal boundary of the hole is made up the four segments
of F̄ ∩ I[B,A], F̄ ∩ I[A,B−1], F̄ ∩ I[A−1,B] and F̄ ∩ I[A−1,B−1]. There is one
funnel, the quotient D(I[B,A])/〈[B, A]〉.

Truncating F along the four commutator axes intersecting it we have
a fundamental domain for the Nielsen region of G as claimed.

8.2. Weierstrass points of the Schottky double

We note that the Schottky double S is a surface of genus two with
one funnel whose central curve is the projection of I[B,A]. We now
characterize its Weierstrass points.

Let p, pA, pB ∈ ∆ be the intersection points of axes as in the previous
section and let q, qA, qB be their respective reflections in ∂∆. Let E be
the elliptic of order two with fixed point p, and E leaves ∂∆ invariant,
its other fixed point is q. We can factor A as A = E ◦ EA where EA is
the elliptic of order two with fixed point pA and second fixed point qA.

Similarly factor B = E ◦ EB where EB is a third elliptic of order
two with fixed points pB and qB.
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π(MA)

π(MB)

π(MĀ)

π(MB̄)

π(pA)

π(qB)

π(p)

π(AxA)
π(AxB)

Figure 7. Intersecting axes: the quotient ∆/G

Theorem 8.3. Let G = 〈A, B〉 be a discrete free Fuchsian group such
that the axes of A and B intersect. Let (p, q), (pA, qA), (pB, qB) be the
respective fixed points of the elliptics E, EA, EB where A = E ◦EA and
B = E ◦EB. Then the projections of these points onto the surface S of
genus 2 under the projection Ω(G) → Ω(G)/G = S, are the Weierstrass
points of S.

Proof. We saw above that ∆/G is a torus with a hole so that its double
S is a surface of genus two with one funnel.

Conjugation of the group G by E sends A to A−1 and B to B−1

since p lies on both their axes. It follows that E induces a conformal
involution j of S. Moreover, since EA = E ◦ A and EB = E ◦ B,
these elliptics induce the same involution on S. The projection of each
of the six points is fixed by j, characterizing j as the hyperelliptic
involution.

There is again an anti-conformal involution J of S induced by the
symmetry of the group G with respect to ∂∆, that is by R∂∆. As a
Schottky double, S has a single funnel and the central geodesic of this
funnel is the projection, γ, of Ω ∩ ∂∆; it is point-wise invariant under
J . Note that γ does not contain any of the Weierstrass points.

Both of the involutions j and J of S fix γ. The first is conformal
and fixes no point on γ. The other involution J is anti-conformal and
fixes the entire curve point wise.
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π(pA)

π(pB)

π(p)

π(AxA)

π(AxB)

π(q)

π(qA)

π(qB)

Figure 8. Intersecting axes, one view of Ω(G)/G: on the left we have the projection
of ∆int/G with the projections of the axes of A and B and the Weierstrass points
π(p), π(pA), π(pB) indicated and on the right we have the projection of ∆ext/G with
the projections of the axes of A and B and the Weierstrass points π(q), π(qA), π(qB)
indicated.

There is a third involution Ĵ = Jj. This is the anti-conformal map
on S induced by the product R∂∆ ◦ E. Since j fixes the Weierstrass
points, both J and Ĵ have the same action on the Weierstrass points.
Namely, they both interchange the projections of p and q, pA and qA

and pB and qB respectively.

9. The convex hull and the convex core

As in section 5, we again consider the group G acting on P, Pint and
Pext which contain respectively the convex hull C(G) in H

3 and its two
boundaries Cint and Cext.

9.1. Fundamental domains in P and C

We now work in P and draw in the axes AxA, AxB, AxAB, AxBA,
AxA−1B, AxAB−1 ; again we denote the intersection point of AxA and
AxB by p, the intersection point of AxA and AxA−1B by pA and the
intersection point of AxB and AxA−1B by pB.
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π(pA)

π(qB)

π(p)

πAxA

π(AxB)

π(q)

π(qA)

π(qB)

Figure 9. Intersecting axes: alternate view of Ω(G)/G. Here ∆/G is viewed as lying
inside J(∆/G)

Denote the half turns about lines orthogonal to P that pass through
p, pA, pB by Hp, HpA

, HpB
respectively. When restricted to P these are

the same as the rotations of order two we denoted by Ep, EpA
and EpB

.
We define the lines MA, MĀ, MB, MB̄ just as we did in ∆ and obtain

a domain FP in P. The arguments of the proof of lemma 8.2 applied to
P instead of ∆ give an immediate proof of

Proposition 9.1. The domain F ⊂ P bounded by the lines MA,MĀ,
MB, MB̄ is a fundamental domain for G acting on P. The truncation
FC of F along the axes of the commutators is a fundamental domain
for the convex hull C(G) in H

3.

Proof. Since C(G) ⊂ P, it is precisely the Nielsen convex region for G
acting on P and lemma 8.2 applies.

Again we define Fint = FC ∩ Pint and Fext = FC ∩ Pext as domains
in Pint and Pext respectively. As an immediate corollary we have

Corollary 9.2. The domain Fint ∪ Fext is a fundamental domain for
G acting on Cint ∪ Cext = ∂C.
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10. The Pleated Surface

In this section we explicitly construct the pleated surface (S̃, pl) for
the intersecting axis case. Again, we do this by first constructing a
Fuchsian group Γ that uniformizes the Nielsen double SK = ∆/Γ. We
then construct a pleating map PL : ∆ → H

3 that intertwines the
actions of Γ on ∆ and G on C ∈ H

3. Finally, we take quotients.

10.1. The Fuchsian group for the Nielsen double

We begin with the domain FK ⊂ ∆ defined in proposition 8.2 for the
Nielsen region K. For readability, denote the reflection RAx[B−1,A−1]

by

R0. Define the domain FΓ = FK ∪ R0(FK) ⊂ ∆. Let A′ = R0AR0 and
B′ = R0BR0 and let Γ = 〈A, B, A′, B′〉.

Proposition 10.1. The domain FΓ is a fundamental domain for Γ
acting on ∆. The Fuchsian surface SK = ∆/G is a Riemann surface
of genus two, the Nielsen double.

Proof. (See figure 10) The sides of the domain FK of proposition 8.2
are MA,MĀ,MB and MB̄. Set M ′

A = R0(MA), M ′
B = R0(MB), M ′

Ā
=

R0(MĀ) and M ′
B̄

= R0(MB̄). The axis Ax[B−1,A−1] divides MA = M ′
A

into two segments; without causing confusion we will say MA is the
segment in FK and M ′

A is the segment in R0(FK) and similarly for MB

and M ′
B.

Using the side identifications

A : MA → MĀ, B : MB → MB̄

we see that if we set A′ = R0AR0 and B′ = R0BR0 we obtain the
identifications

A′ : M ′
A → M ′

Ā
, B′ : M ′

B → M ′
B̄

Now denote the reflection in the axis Ax[A−1,B] by R1 and note that

R1 = BR0B
−1. The axes Ax[A−1,B] and Ax[B−1,A−1 are both orthogonal

to MA. Thus we see that

R1R0 = (B′)−1B : Ax[A,B−1] → R0(Ax[A,B−1])

Similarly
(A′)−1A : Ax[A−1,B] → R0(Ax[A−1,B])

A′B′B−1A−1 : Ax[B,A] → R0(Ax[B,A])

Including the two vertices where MA meets M ′
A and where MB

meets M ′
B there are 14 vertices in all. They fall into two cycles of
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MA

MĀ

MB̄

M ′Ā

M ′
B̄

A

B A′

B′

MB̄

R0(Ax[B,A])
Ax[B,A]

Ax[B−1,A−1]

Ax[A−1,B]

Figure 10. The domain FK and its reflection in Ax[B−1,A−1] forms a fundamental
domain for Γ

four vertices where there angles are all right and two cycles of three
vertices, two where there are right angles and one where there is a
straight angle. That Γ is Fuchsian and FΓ is a fundamental domain
now follows from Poincaré’s theorem. Identifying the sides MA and
MĀ and the sides MB and MB̄ of FK yields a torus with a hole where
the remaining unidentified sides (arcs of commutator axes) fit together
to form the boundary of the hole. Similarly, identifying corresponding
sides of R0(FK) yields another torus with a hole. In FΓ, the commutator
axis sides are identified and the two tori with a hole join up to form
the Nielsen double SK as a compact surface of genus two.

kluhyphand.tex; 8/03/2004; 11:48; p.32



Hyperelliptic Handlebodies 33

10.2. The pleating map

We now construct the pleating map pl : ∆/Γ → H
3/G just as we did in

section 6.2. We use the definitions of FΓ ⊂ ∆ as a union of two copies of
FK , and the the domains Fint ∈ Pint and Fext ⊂ Pext from section 9.1.
Again we begin by defining a pleating map PL : ∆ → H

3. We first
define PL on FΓ and then extend by the groups Γ and G.

Set PL : FK → Fext. Next we set PL : R0(FK) → Fint. Define the
group homomorphism φ : Γ → G by first defining it on the generators:

A 7→ A, B 7→ B, A′ 7→ id, B′ 7→ id.

To show that this map on generators gives a group homomorphism from
Γ to G we must show that φ preserves the defining relation(s) of Γ. As
in the previous case, we know that there are no reflection relations and
the cycle relations form a complete set of relations for Γ. Again, it is
easy to calculate that substituting φ(A), φ(A′), φ(B), and φ(B′) into
the cycle relation gives the identity.

We now extend PL to a map from ∆ into H
3. That is, for x ∈ ∆ let

g ∈ Γ be chosen so that g(x) ∈ FΓ and set PL(x) = φ(g−1)◦PL◦ g(x).
This is well defined when g(x) lies interior to FΓ and when g(x) lies on
a boundary curve of FΓ or on Ax[B,A] it is defined by continuity. Thus,

(∆, PL) is a pleated surface with image in H
3 whose pleating locus is

the image of the axis sides of FΓ and all their images under Γ.
We now define the map pl : SK → H

3/G by taking quotients. The
map pl is clearly a hyperbolic isometry since PL is and its pleating
locus consists of the images of the commutator axes.

By corollary 9.2, we can apply the group G to identify PL(FΓ)
with ∂C, and taking quotients, identify pl(SK) with the convex core
boundary ∂N = Cint/G ∪ Cext/G.

10.3. The Weierstrass points of the Nielsen double SK

We again now determine the Weierstrass points of SK in a manner
reminiscent of our discussion of the Schottky double. The map Ep

is a conformal involution that maps FK to itself and maps R0(FK)
to its image under AB(B′)−1(A′)−1. Therefore Ep preserves the FΓ

tiling of ∆ which implies that Ep conjugates Γ to itself. It follows that
Ep induces a conformal involution j of SK . It is easy to check that
the points p, pA, pB, p′, p′A, p′B are mapped by Ep to points that are
equivalent under the action of Γ and thus project to fixed points of j.
This characterizes j as the hyperelliptic involution of SK .

Note that PL(p) ∈ Fint and PL(p′) ∈ Fext, but as points in P,
PL(p) = PL(p′) and similarly for the other pairs of Weierstrass points.
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For the other elliptics fixing these six points in FΓ we have:

EpA
= EpA, EpB

= EpB, Ep′ = EpAB(B′)−1(A′)−1,

Ep′
A

= Ep′A
′, Ep′

B
= Ep′B

′

so that they also induce the involution j.

11. Weierstrass points and lines in the handlebody

In this section we give an explicit description of the handlebody H as
S × I in the case where the axes of the generators intersect. We show
that again, H admits a unique order two isometry j that we call the
hyperelliptic isometry of H. It fixes six unique geodesic line segments,
which we call the Weierstrass lines of H.

We show, again, that H is foliated by surfaces S(s) = (S, s) that are
at distance s from the convex core, and that each S(s) is fixed by j. The
restriction of j to S(s) fixes six generalized Weierstrass points on S(s).
Moreover, on each S(s) we find an orientation reversing involution J
that interchanges pairs of generalized Weierstrass points.

11.1. Construction of the foliation

We modify our construction in section 7 to construct the hyperelliptic
isometry for H as follows. In section 9.1, we defined the half-turns
about lines orthogonal to P at the points p, pA, pB in P. Set pint and
pext as the point p considered in Pint or Pext respectively, and similarly
for the other points.

Following our notation in section 7.1 we parameterize these orthog-
onal lines by arc length and denote them by Vp(t),VpA

(t) and VpB
(t)

respectively, such that Vp(0) = p, VpA
(0) = pA and VpB

(0) = pB.
Direct them so that for t > 0, Vp(t) is in the half-space with boundary
Pext and similarly for the other lines. With this convention we write
Vp(±s),VpA

(±s) and VpB
(±s) where s = |t|.

Since the fundamental domains Fext and FK are related by orthog-
onal projection we see that for p, q ∈ FK we have pext = PL(q) ∈
Fext is equal to lims→0 Vp(s) = Vp(0

+) and pint = PL(p) ∈ Fint is
equal to lims→0 Vp(−s) = Vp(0

−). Also, p ∈ FK ⊂ ∆int is equal to
lims→∞ Vp(−s) and q ∈ R∂∆(FK) ⊂ ∆ext is equal to lims→∞ Vp(s) and
similarly for the other points.

We saw that A and B may be factored into products of pairs of
these half turns and it follows that G is a normal subgroup of index
two in the group generated by these half turns. Since the half-turns all
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differ by elements of G, their actions by conjugation on G all induce
the same order two automorphism j under the projection π : H

3 →
H

3/G = H. The fixed points of j in H are precisely the points on the
images of the six lines Vp(±s),VpA

(±s) and VpB
(±s): denote them by

π(Vp)(±s),π(VpA
)(±s) and π(VpB

)(±s).
We work with the lines Vp and π(Vp) but we have analogous state-

ments for the lines VpA
and VpB

and their projections. As we saw in
theorem 8.3, the endpoints p ∈ ∆int and q ∈ ∆ext of Vp project to
Weierstrass points on the Schottky double S = ∂H = S(∞).

In theorem 6.2 we found the Weierstrass points of the Nielsen double
SK . In the fundamental domain FΓ ⊂ ∆ for Γ we found points p, q ∈
FΓ ∈ ∆ such that pint = PL(p) = Vp(0

−) and pext = PL(q) = Vp(0
+).

For the moment, call the hyperelliptic involution on SK , jSK
and the

hyperelliptic involution on H, jH . By construction, the pleating map
pl commutes with these involutions: pl ◦ jSK

= jH ◦ pl. It follows
that the projections π(PL(p)) ∈ Nint and π(PL(q)) ∈ Next are fixed
under jH . By the same argument, we find two other pairs of points
π(PL(pA)), π(PL(qA)) on π(LA) and π(PL(pB)), π(PL(qB)) on π(LB)
fixed by jH . They lie on the genus two surface ∂N = S(0) and are its
generalized Weierstrass points.

Each of the segments of the line π(Vp(±s) is point-wise fixed under
jH . We call each a generalized Weierstrass line of H. Similarly, we
have two other pairs of generalized Weierstrass lines π(VpA

(±s)), and
π(VpB

(±s)).
We next construct the family of surfaces S(s). We will show that

jH , which we denote again simply by j since it will not cause confusion,
is an order two isometry of S(s) that has as its set of fixed points, the
intersection points of these six lines with the surface.

We again consider the family of equidistant surfaces Π(±s) with
boundary ∂∆ at distance s from the plane P. Using orthogonal projec-
tion, we can project Cext onto Π(s) to obtain Cext(s) and project Cint

onto Π(−s) to obtain Cint(s).
Each quotient Next(s) = Cext(s)/G and Nint(s) = Cint(s)/G is

topologically a torus with one boundary curve. In analogy with our
construction of the Schottky double, we want to join these boundary
curves, by a funnel to form the surface S(s).

Let Eq[B,A](s) be the equidistant cylinder in H
3 about Ax[B,A]. Note

that, for each s > 0, [B, A] maps Eq[B,A](s) to itself. Because Ax[B,A]

lies in P, [B, A](±s) = Eq[B,A](s)∩Π(±s) is the orthogonal projection of
Ax[B,A] to Π(±s). The curves [B, A](±s) intersect Cext(s) and Cint(s) in
their boundary curves. The curves [B, A](±s) divide Eq[B,A](s) into two
pieces, each an infinite topological strip. Both of these strips intersect
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P, one on each side of the axis of [B, A]. Thus one strip intersects C
and one does not; we denote the strip disjoint from C by Rec[B,A](s).

Similarly, we form strips for each of the boundary curves of C. The
quotient of each of these strips under the action of G is a funnel; there
is only one conjugacy class of boundary curves, so only one funnel,
denoted F[B,A](s).

The surface S(s) is defined as

S(s) = Next(s) ∪ Nint(s) ∪ F[B,A](s)

We have

Proposition 11.1. The surface S(s) is invariant under the involution
j.

Proof. By construction, the distance from each point of S(s) to the
convex core N is s. As the involution j : H → H is an isometry and it
preserves N , it leaves S(s) invariant.

We want to find the fixed points of j acting on S(s). To this end
consider the intersection points of the line segments Vp(±s) with Π(±s);
denote them respectively by q(s) and p(s). Similarly, define the points
qA(s) and pA(s) as the intersection points of the line segments VpA

(±s)
with Π(±s) and define the points qB(s) and pB(s) as the intersection
points of the line segments VpB

(±s) with Π(±s).

Proposition 11.2. The projections of the points p(s), q(s), pA(s), qA(s)
and pB(s), qB(s) lie on the surface S(s) ⊂ H and comprise the set of
fixed points of j restricted to S(s).

Proof. Each of these points lies on one of the six generalized Weierstrass
lines in H at distance s from the convex core. These lines are distinct
so the points are distinct. Since these lines are fixed point-wise by j,
and since j leaves S(s) invariant, these are fixed points of j on S(s) as
claimed.

We call these projected points the generalized Weierstrass points of
S(s).

We summarize these results as

Theorem 11.3. The projections of the line segments Vp(±s), VpA
(±s)

and VpB
(±s), orthogonal to P ⊂ H are point-wise fixed by the involution

j. The endpoints of each segment, lying in the boundary of the con-
vex core, are the generalized Weierstrass points of (S, 0). Each line is
parameterized by hyperbolic arc length and is called a generalized Weier-
strass line. The points at distance s on the generalized Weierstrass
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lines are the generalized Weierstrass points of the surface (S, s). The
endpoints of the Weierstrass lines lie on the boundary the handlebody
and are the Weierstrass points of the boundary surface S = (S,∞).

r0 r−r+q+ q0
q− p− p0

p+

Figure 11. The convex core is a one holed torus inside the handlebody. Its
boundary is indicated in dotted lines. The Weierstrass points are marked as fol-
lows: p− = π(Vp(−∞)), p0 = π(Vp(0)), p+ = π(Vp(+∞)), q− = π(VpA

(−∞)),
q0 = π(VpA

(0)), q+ = π(VpA
(+∞)),r− = π(VpB

(−∞)); r0 = π(VpB
(0)),

r+ = π(VpB
(+∞)). The Weierstrass lines join q+ to q0, q0 to q−, p− to p0, p0

to p+, r− to r0, and r0 to r+.

Note that there are no generalized Weierstrass points on the central
curve of the funnel. It is invariant under j and is mapped to its inverse.

11.2. Anticonformal involutions

We can also construct the anti-conformal involution J acting on H,
by defining it to be the self-map of H induced by the anti-conformal
reflection in the plane P, RP. Since the axes of the generators A and
B of G lie in P, RP fixes theses axes point-wise and since RP is an
orientation reversing map, it induces an orientation reversing map on
H.

We want to see how J acts on

S(s) = Next(s) ∪ Nint(s) ∪ F[B,A](s)
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Since RP is an isometry, RP(Cext(s)) = Cint(s) and J(Next) = Nint. As
J is orientation reversing, it maps the projection of the line Vp(s)) to
the projection of the line Vp(−s) and interchanges the projections of
p(s) and q(s). It acts on the other lines and generalized Weierstrass
points similarly.

The involution maps Rec[B,A](s) to itself, fixing point-wise the curve
that is the intersection of the plane P with Rec[B,A](s). We call the
projection of this curve the central curve of the funnel. Since RP in-
terchanges the part of Rec[B,A](s) on one side of P with the part
on the other, we deduce that J maps the funnel F[B,A](s) to itself,
interchanging its boundary curves and sends the central curve to its
inverse.

There is another anti-conformal self-map of H induced by RP ◦HL;
Ĵ = J ◦ j. To see how Ĵ acts on S(s) we first look at the fundamental
domains Fext(s) and Fint(s): J interchanges these domains but j leaves

them invariant, so Ĵ interchanges them.
It follows that Ĵ maps Next(s) to Nint(s) maps the funnel to itself,

interchanging the boundary curves and interchanges the generalized
Weierstrass points.
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