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1 Introduction

This article is based on my lecture at the Complex Dynamics Workshop of the
Research Institute of Mathematics at Kyoto University in October 2001. It is
an exposition of joint work with Janina Kotus.

The tangent family fλ(z) = λ tan(z) is the meromorphic analogue of the
quadratic family z2 +c. The functions fλ(z) are characterized by their mapping
properties: they are, up to scale, the only meromorphic functions fixing zero
with no critical points and two symmetric asymptotic (omitted) values. The
classification of stable behavior is essentially the same as for the quadratic fam-
ily. Again like the quadratic family, the parameter plane has a combinatorial
description based on the orbit of the singular value, appropriately interpreted.

The real axis plays a special role for the quadratic family. For real values
of the parameter, the critical value is real and so is its forward orbit. Studying
the orbit of the critical value, we can understand the observed period doubling
and renormalization. For the tangent family, the imaginary axis plays a similar
role. If the parameter lies on the imaginary axis, the asymptotic values are real
as are even of iterates. Restricting our attention to the second iterate f2

λ for
λ = iy ∈ =, we again observe period doubling.

In this paper we give an overview of the dynamical theory for the tan-
gent family and describe the period doubling phenomena and some of its con-
sequences. For details and proofs see [1, 3, 4, 5, 6] and the references cited
therein.
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2 Mapping Properties of the Tangent

Recall that the map f(z) = tan z maps the complex plane C onto the Riemann
sphere Ĉ minus the two points {±i}. It has period π. The strip {z = x + iy :
−π/2 < x ≤ π/2} is mapped 1-1 onto Ĉ \ {±i} as follows: the real axis in the
strip maps to the full real axis; the imaginary axis maps to the interval (−i, i)
in the imaginary axis; the vertical line z = π/2 + iy, y > 0 is mapped to the
imaginary axis (i∞, i) and y < 0 is mapped to (−i∞,−i); the regions y > c and
y < −c, c > 0 are mapped onto open topological disks punctured at ±i. The
regions are called asymptotic tracts and the image of any curve γ(t) = x(t)+iy(t)
such that y(t) →∞ as t →∞ is an asymptotic curve ending at the asymptotic
value i. Thus, it is sometimes convenient to think of the asymptotic value as
the “image” of infinity.

The derivative f ′(z) = sec2 z 6= 0 for any z ∈ C so there are no critical points
(and thus no critical values).

To get the mapping properties of fλ(z) we just multiply the image plane by
λ; the asymptotic values are now ±λi.

There is symmetry in both the variable and parameter:

fλ(−z) = −fλ(z) and f−λ(z) = −fλ(z)

It follows that if z0 is a periodic point of period p, fp
λ(z0) = z0 then −z0 is

also periodic of period p. Thus, for the periodic orbit, z0, z1, . . . , zp−1, either
there is a symmetric orbit −z0,−z1, . . . ,−zp−1 or p is even and the symmetric
points are contained in the orbit, z p

2 +j = −zj , j = 0, . . . p
2 − 1.

3 The Dynamic Plane

We define stability for meromorphic functions just as we do for rational maps.
A point z is stable if all the iterates fn

λ (z) are defined and if there is a
neighborhood on which these iterates form a normal family. The set of stable
points is also called the Fatou set and is denoted Fλ. It is clearly open and
completely invariant. It may be empty.

The chaotic or Julia set is defined as Jλ = Ĉ \ Fλ. It is closed, backward
invariant and forward invariant whenever the iterates are defined. It is never
empty because it always contains the poles.

The ω-limit set is the accumulation set of ∪nfn
λ (±iλ). It is denoted ωλ. It

is forward invariant and controls the dynamics.
Points that eventually land on poles are called prepoles. In [?] we proved

Theorem 3.1. The Julia set is the closure of the prepoles.

A periodic cycle is repelling, attracting or neutral as the multiplier m(λ, z0) =
|dfp

λ(z0)/dz| is greater, less or equal to 1. Note that the multiplier doesn’t
depend on the point of the cycle at which it is evaluated. If, for a neutral cycle,
m(λ, z0) = e2 p

q πi, the cycle is parabolic.
We also proved, again in [?],
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Theorem 3.2. The Julia set is the closure of the repelling periodic cycles.

Summarizing results in [?] and [4] we have have the following classification
of stable behavior for the tangent family.

Theorem 3.3. If Fλ 6= ∅ then either

• 0 < |λ| < 1 and Fλ is the complement of a Cantor set in Ĉ or

• |λ| ≥ 1 and either

1. (a) There are two symmetric periodic cycles of simply connected
components ±{Di}p−1

0 each with the same multiplier and there
is an attractive cycle contained inside each cycle of components;
ωλ is contained inside ±Di.

(b) There are two symmetric periodic cycles of simply connected
components ±{Di}p−1

0 each with the same multiplier and there
is a parabolic cycle on the boundary of each cycle; again, ωλ is
contained inside ±Di.

(c) Each cycle ±{Di}p−1
0 is a cycle of Siegel disks. That is, fp

λ |±Di

is holomorphically conjugate to an irrational rotation and the
boundary of ±Di is contained in ωλ.

2. (a) There is a single symmetric eventually periodic cycle of simply
connected components {Di}2p−1

0 such that for i = 0, . . . p − 1
Di = −Dp+i. There is a single attractive cycle contained inside
these components; ωλ is contained inside the components.

(b) There is a single symmetric eventually periodic cycle of simply
connected components as above with a single parabolic cycle con-
tained on their boundary; again, ωλ is contained inside the com-
ponents.

(c) The components form a single cycle of Siegel disks of period 2p
and the boundary of the components ±Di is contained in ωλ.

Every component of Fλ eventually lands on these periodic components.

It follows from this theorem that if Fλ 6= 0 there is a uniquely defined
multiplier m(λ), the multiplier of one or both of the cycles corresponding to the
periodic stable domains. We also conclude that either there is a single infinitely
connected component of Fλ, (|λ| < 1), or all the components of Fλ are simply
connected.

4 The Parameter Plane

If Fλ 6= 0 and if the corresponding multiplier |m(λ)| < 1 we say fλ(z) is hyper-
bolic. The hyperbolic locus of the parameter plane is then

H = {λ : Fλ 6= 0 and 0 < |m(λ)| < 1}

3



Denote a generic connected component of H by Ω. We have the following
possibilities for which we set notation

1. Ω = ∆∗ = {λ : 0 < |λ| < 1}
2. Ω = Ωp: for λ ∈ Ωp, fλ(z) has two attractive cycles of period p

3. Ω = Ω′p: for λ ∈ Ω′p, fλ(z) has a single attractive cycles of period 2p

We have

Theorem 4.1. [5] Either Ω = ∆∗ or the multiplier m(λ) defines a holomorphic
universal covering m : Ω → ∆∗.

Thus, for Ω 6= ∆∗, Ω is simply connected and holomorphically conjugate
to the upper half plane. Figure 1 was made by W.H. Jiang [3]. We see a
well defined structure to the components of H. As we saw in theorem 3.3, the
punctured unit disk is analogous to the exterior of the Mandelbrot set. The
maps are hyperbolic and the Julia sets are Cantor sets.

The parameter values such that the asymptotic value lands on a pole play a
special role analogous to the centers of the components of the Mandelbrot set.

For each integer, p > 0, set

Cp = {λ : fp−1
λ (λi) = ∞}

and set C = ∪pCp. Then C1 = {∞} and C2 = {(k + 1/2)π, k ∈ Z}.
For λ ∈ Cp, the asymptotic values can be thought of as belonging to “virtual

periodic cycles”:fp(λi) = λi. Computing

m(λ) = λpΠp
j=0 sec2 f j

λ(λi)

we see that for λ ∈ Cp, m(λ) = 0. We therefore call these parameter values
virtual centers.

Note that, unlike the centers of the Mandelbrot set, for any λ ∈ C, by
theorem 3.3, Jλ = Ĉ. Like the centers though, they can be used to enumerate
the hyperbolic components.

Theorem 4.2. [4] All components of H, except ∆∗ come in pairs (Ωp, Ω′p) with
a common boundary point λ ∈ Cp. If p = 1 there is a unique pair of components
(Ω1,Ω′1) containing the positive and negative axes with |x| > 1 respectively.
These are the only unbounded components. The pairs can be enumerated by the
prepoles of the tangent map, tan z so that there is a one to one correspondence
between the prepoles and the virtual centers.

5 The Imaginary Parameters

For quadratic maps, the real parameters play a special role. The hyperbolic
components exhibit period doubling and the period doubling cascades come
with a Sharkovskii ordering. There is an analogous phenomenon for tangent
maps with imaginary parameters.
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Figure 1: Hyperbolic components on the imaginary axis
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5.1 The Period Doubling Cascade

Consider f2
λ(z) = λ tan(λ tan z). For λ = iq, x, q ∈ R we have

f2
iq(x) = iq tan(iq tan x) = −q tanh(q tan x)

and we see that f2
iy maps the real axis to itself. Moreover, the asymptotic values

∓q are both real. We know that if fiq has an attractive cycle, the cycle attracts
the asymptotic values. The orbits of the asymptotic values lie in the real and
imaginary axes so the attractive cycle must also. The points alternate between
the real and imaginary axes so that the period must be even. Similarly, if there
is a parabolic cycle for fiq it lies in the real and imaginary axes. Looking at the
formula for the multiplier of these cycles, it is obviously real. Since ωiq ⊂ R∪=,
we deduce that there can be no Siegel disks for purely imaginary parameters.

For hyperbolic components intersecting the imaginary axis we have the fol-
lowing propositions proved in [5]. We tacitly assume that the component is not
∆∗.

Proposition 5.1. If Ω ∩ = 6= ∅ then Ω = −Ω.

Proposition 5.2. If Ω ∩ = 6= ∅, the period of the attracting cycle(s) is even.

Proposition 5.3. If Ω∩= = J 6= ∅, then J is an interval with a virtual center
at one end. At the other, the multiplier is ±1.

There is a natural ordering for components Ω intersecting the imaginary axis
based on the order of the intervals J = Ω ∩ =. In the following theorems, we
restrict ourselves to those components intersecting the positive imaginary axis.
We reflect to obtain theorems for those on the negative imaginary axis. We
write the elements of a pair (Ω,Ω′) or (Ω, Ω′) to reflect this order, and similarly
for the pairs themselves.

We have

Theorem 5.4. [5] Each parameter λk = (k + 1/2)π, k = 0, 1, 2, . . . is a virtual
center for a pair (Ω′2,Ω2). Set λ = iq. As q increases past (k + 1/2)π we have
a sequence of adjacent pairs of hyperbolic components with a common boundary
point exhibiting a period doubling cascade

(Ω′2, Ω2)(Ω4, Ω′4)(Ω8, Ω′8)(Ω16,Ω′16 . . .

These components accumulate to a unique point iq∞. The left endpoint of Ω′2
is a cusp like the cusp of the cardiod.

Note the difference between the first bifurcation pairs (Ω′2, Ω2)(Ω4,Ω′4) and
the second (Ω4,Ω′4)(Ω8, Ω′8).

In Ω2 there are two cycles of period 2 and in Ω4 there are two cycles of
period 4. This is a standard bifurcation; the multiplier of the cycle in Ω2 is
negative and becomes −1 at the parabolic point. The orbit of the asymptotic
value approaches the periodic point from both sides. As q increases, that cycle

6



of period 2 becomes repelling and a pair of points, one to the right, and one to
the left become part of a new attracting cycle of period 4. The new cycle has
positive multiplier. The orbit of the asymptotic value lies to only one side of
the new periodic points.

As iq moves to the virtual center joining Ω4 and Ω′4, the point p∗ of the at-
tracting cycle closest to the pole reaches the pole. The attracting cycle becomes
a virtual cycle. As iq increases into Ω′4, the relative positions of p∗ and the pole
interchange. It follows that the sign of f2

iq(p) changes and the two cycles of
period 4 interleave to become one of period 8. If we look at what has happened
to the multiplier of the original cycle, it is a square root of the multiplier of the
new cycle; in fact, it is the negative square root. Now the orbits of the asymp-
totic values change also. Each periodic point has the orbit of one asymptotic
value approaching from the right and the orbit of the other asymptotic value
approaching from the left. At the parabolic endpoint of Ω′4, the multiplier is
+1 but the square root is −1. As q increases, the cycle of period 8 becomes
repelling, and a pair of points, one to the right, and one to the left, of each point
in the cycle become part of an attracting cycle. Each of these points attract
a different asymptotic value so they belong to different cycles each of period
8. Thus we have the non-standard bifurcation wherein the cycle of period 8
bifurcates to two new attracting cycles of period 8.

Thus, in each interval λk, λk+1 of the imaginary axis we have a period dou-
bling cascade reminiscent of the period doubling on the real axis for quadratic
maps.

5.2 Periods of All Orders

Away from the virtual centers the functions gn(λ) = fn
λ (λi) are holomorphic in

λ. They have essential singularities at the poles of f j
λ(λi), j ≤ n− 1, and poles

at the solutions of fn−1
λ (λi) = (k + 1/2)π.

For λ = qi ∈ =, the functions g2n(q) become real valued functions of a real
variable, real analytic away from the virtual centers. We define a full branch of
g2n(q) to be a branch (with no singularities) between consecutive solutions of
g2n−2(q) = (j − 1/2)π and g2n−2(q) = (j + 1/2)π. Then

Proposition 5.5. [5] If q ∈ ((k + 1/2)π, (k + 3/2)π) any full branch of g2n(q)
has range containing the interval −(k + 1/2)π, (k + 1/2)π) and such branches
exist for −k < j ≤ k.

Using this we prove

Theorem 5.6. [5] In each interval (λk, λk+1) there exist hyperbolic components
of every even period. The ordering of the periods reflects the ordering of the
endpoints of the full branches of the g2n. There is a period doubling cascade to
the right of each left endpoint of a full branch of g2n.
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5.3 Cantor Sets with Bounded Geometry

The limit point of the period doubling cascade for real quadratic maps is the
Feigenbaum point. For this map the Julia set contains a forward invariant
Cantor set, the accumulation set of the critical value. Moreover this Cantor set
has bounded geometry; that is, the ratio of the sizes of the gaps to the remaining
intervals is bounded at all levels. We see a similar phenomenon for the limit of
period doubling for tangent maps.

Choose q ∈ ((k + 1/2)π, (k + 3/2)π) and set

hq(x) = −q tanh(q tan x)

for real x. Periodic points of hq(x) are the real periodic points of f−iq(z); their
period for hq is half the period for f−iq. Therefore, by theorem 5.4, there is an
interval Ik = [k + 1/2)π, q∞) such that as q moves from left to right, hq(x) goes
through a period doubling cascade.

Let h(x) = hq∞(x). We are interested in the set ω = ωiq∞ . This is the
part of the set ωiq that lies in R. To this end, we first study the combinatorial
structure of the periodic cycles generated in the period doubling cascade. These
are precisely the real periodic points of f2

−iq.
The only periodic points we are interested in come from the cascade so, for

readability, we mean only these when we say periodic points. Once periodic
points appear, their positions relative to those there already do not change. At
each step there is one new point appearing to the left and one to the right of
each of the existing points. At step n there are 2n periodic points; half lie in
the positive real axis and the other half lie symmetrically in the negative real
axis. We want to set up a notation for them that reflects their ordering on the
real axis.

Let sn = x1 . . . xn where xi ∈ {0, 1}. We denote the periodic points ±psn .
The map sn 7→

∑n
1

(−1)1−xj

2j orders the points on R+; for a given sn, the points
sn0 and sn1 at the next level are to the left and right of sn respectively. We
also find it convenient to set mn = 2n−1.

In [6] we give a full description of the map Θ induced by h on the sequences
sn. In this article we only consider the periodic point ps∗n = p0101...010 for odd n
and ps∗n = p0101...0101 for even n and the points ±p1

n = ±p111...11. The following
propositions and theorem are all proved in [6]. By continuity and the map Θ
we have

Proposition 5.7. The point ps∗n is closer to the pole (k +1/2)π than any other
periodic point of period less or equal to 2n. It is to the right or left of the pole
as n is even or odd. A similar statement holds for −ps∗n . The points ±p1

n are
respectively the right and leftmost periodic points. If n is odd h(ps∗n) = −p1

n and
if n is even h(ps∗n) = p1

n.

Again by continuity, since h(q∞) cannot be preperiodic, we have

Proposition 5.8. For all n,

kπ < h(q∞) < psn
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Using the map Θ and proposition 5.7 we have

Proposition 5.9. For all n > 1,

p1
n−1 < hmn(−q∞) < p1

n < hmn+1(−q∞) < p1
n+1 < . . . < q∞

This proposition, together with those above, enables us to define the struc-
ture intervals ±In(1) = [hmn(−q∞), q∞] and ±In(j) = [hmn+j(−q∞), hj(q∞)],
j = 1, . . . , mn − 1. We prove that for each n they are mutually disjoint.

We see that, for all j,

In+1(j) ⊂ In(j) and − In+1(mn + j) ⊂ In(j).

We define the gap intervals by ±Gn(1) = (hm
n (−q∞), hmn+1+mn(q∞)) so that

In(1) = −In+1(mn + 1) ∪Gn(1) ∪ In+1(1)

We also have ±Gn(1 + j) = hj(Gn(1)), j = 1, . . .mn − 1.
The theorem here is

Theorem 5.10. The set obtained by successively removing the intervals ±Gn(j),
n = 1, 2, . . . , j = 1, . . . , mn−1 from the intervals [−q∞, h(−q∞)] and [h(q∞), q∞]
is a Cantor set with bounded geometry. That is, using absolute values for lengths
of intervals, the ratios,

|In+1(j)|/|IIIn(j)|, | − In+1(j + mn)|/|IIIn(j)|, |Gn(j)|/|IIIn(j)|
are bounded above and below by bounds independent of n and j.

The techniques in the proof are similar to those for quadratic maps. One uses
the fact that h has negative Schwarzian derivative to show h is quasisymmetric.
The important difference is that we need go only half way around the cycle to
get the bounds for quasisymmetry. To get bounds on the gaps, we use the fact
that the map H(x) = |h(x)| defined on [h(q∞), q∞] has the points +psn as its
periodic points, is continuous and is unimodal.
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