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Abstract. This is a written version of a lecture given at the International
Workshop on Teichmüller theory and moduli problems held at the Harish

Chandra Research Institute, Allahabad, U.P., India, in January 2006. It is

based on work that originally appeared in [3],[5], and [6].

1. Introduction

Let ∆ denote the unit disk and X denote a subdomain of ∆. Let f1, f2, f3, . . .
be a randomly chosen sequence of holomorphic maps fi : ∆→ X ⊂ ∆ and consider
the compositions

Fn = f1 ◦ f2 ◦ . . . fn−1 ◦ fn.

Definition 1. The sequence {Fn} is called the iterated function system IFS coming
from the sequence f1, f2, f3, . . ..

The sequence Fn forms a normal family and the limit functions F of the family
are either open maps or constant maps. The constant limit points may be located
either inside X or on ∂X.

Note that the compositions are taken in the reverse of the usual order; that is,
backwards. There is a theory for forward iterated function systems that is somewhat
simpler (see [4]).

Iterated function systems can also be defined for families of holomorphic func-
tions from any plane domain Ω onto a subdomain X ⊆ Ω. We will show what kinds
of limit functions occur and whether a given sequence admits more than one limit
function depends only on the relative geometry of X in Ω.

Clearly if Ω is the whole complex plane and X has more than two boundary
points, the only functions from Ω to X are constants and the iterated function
systems are not interesting. We therefore will assume, in this paper, that all the
domains we consider have at least two boundary points. Since such a domain admits
a hyperbolic metric, we call it a hyperbolic domain. The results here originally
appeared in [3],[5] and [6]. The reader is also referred to [7] for background and
other results.

2. History

The simplest situation occurs when all of the functions in the family are the
same. Then we have the theorem of Denjoy.
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Theorem (Denjoy). Given an IFS such that fn = f for all n and f is not a
Möbius transformation. Then

lim
n→∞

Fn = lim
n→∞

fn ≡ k

k ∈ X̄ is unique.

The first generalization of the Denjoy theorem was given independently by Gill
and Lorentzen.

Theorem (Gill(88)-Lorentzen(90)). If X is relatively compact in ∆ then

lim
n→∞

Fn ≡ k

k ∈ X, (k 6∈ ∂X) is unique.

This completely settles the question of what happens when the subdomain X
is relatively compact in ∆. The next natural case to consider is case when the
subdomain X ⊂ ∆ is not relatively compact in ∆. To this end, we recall the
following concept for subdomains of the complex plane.

Definition 2. A domain E ⊂ C is a Bloch domain if

ra = sup
r

(|z − a| < r ⊂ X) is bounded for all a ∈ X.

An example of a non-compact Bloch domain is an infinite strip whose boundary
is a pair of parallel lines.

In [2], Beardon, Carne, Minda and Ng generalize this concept as follows. Let ρ∆

denote the hyperbolic metric on ∆.

Definition 3. A domain X ⊂ ∆ is a hyperbolic Bloch subdomain of ∆, if

ra = sup
r

(ρ∆(z, a) < r ⊂ X) is bounded for all a ∈ X.

Since, in this paper we are only concerned with hyperbolic domains, we will
abuse notation and use the term Bloch subdomain to mean a hyperbolic Bloch
subdomain.

Clearly if X is relatively compact in ∆, it is a Bloch subdomain. There are,
however, lots of non-relatively compact subdomains that are also Bloch subdomains.
Let us consider some examples:

• The interior of a polygon of finite hyperbolic area is a Bloch domain. Such a
polygon may have cusps on the boundary of ∆ where the adjacent sides are
tangent. Fundamental domains of finitely generated Fuchsian groups that
represent Riemann surfaces with punctures are thus Bloch subdomains.
• The hyperbolic analog of the Euclidean infinite strip is a polygon with the

property that those sides that touch the boundary of ∆ meet there at a
finite angle. Note that such a polygon has infinite area but it is a Bloch
subdomain.
• A more interesting example is the following. Let G be a finitely generated

Fuchsian group G whose quotient S = ∆/G is a compact Riemann surface.
Let D be a fundamental polygon for G and let V = {v1, . . . , vn} be the set
of vertices of D. For any g ∈ G let g(V ) = {g(v1), . . . , g(vn)}. Then

X = ∆ \ ∪g∈Gg(V )

is an example of a non-simply connected Bloch subdomain.
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We have the following theorem about Bloch domains.

Theorem ([2],[3]). All limit functions of any IFS from ∆ to X are constant if
and only if X is a Bloch subdomain.

The “If” statement was proved by Beardon, Carne, Minda and Ng in [2] and the
“Only if” statement was originally proved in [3]. We prove it here as theorem 2 in
the next section.

3. Uniqueness of limits

If X is relatively compact in ∆ the Gill-Lorentzen theorem says that every IFS
has a unique limit. It is natural then to ask whether the same is true for limit func-
tions of iterated function systems coming from non-relatively compact subdomains
X. Answers to this question are the content of the following theorems:

Theorem 1 ( [6]). If X is non-relatively compact in ∆ and n is any integer, then
given any n points c1, c2, . . . , cn ∈ X, there is an IFS with at least n limit functions
Gi, i = 1, . . . , n such that Gi(0) = ci. If X is Bloch Gi ≡ ci and these are the only
limit functions.

When X is non-Bloch we have the following results:

Theorem 2 ( [3]). If X is non-Bloch then there always exist non-constant limit
functions – the Bloch condition is necessary for all limits to be constant.

Theorem 3 ( [5]). Suppose X is non-Bloch in ∆ and f : ∆→ X is any holomorphic
map. Then f is the limit of an IFS.

4. Proof of theorem 1

With no loss of generality we may assume that 0 ∈ X. The idea of the proof is
to construct functions fk such that the set S = {c0 = 0, c1 = F1(0) = f1(0), c2 =
F2(0) = f1 ◦ f2(0), . . . cn−1 = Fn−1(0) = f1 ◦ f2 ◦ . . . ◦ fn−1(0)} consists of distinct
points and such that the cycle relation

(1) fi ◦ fi+1 ◦ . . . ◦ fi+n−1(0) = 0

holds for all integers i. From this relation we see that Fn(0) = 0 and if m = qn+ r,
0 ≤ r < n, Fm(0) = cr. The point here is that because the iteration is backwards,
we have to find successive pre-images of the points ci.

Once we have done this, for any subsequence Fnk
= f1 ◦ f2 ◦ . . . ◦ fnk

, we see
that Fnk

(0) ∈ S for all k. It follows that any limit function must map 0 to a point
in S. Choosing subsequences appropriately, we can find n distinct limit functions
Gi such that Gi(0) = ci, i = 0 . . . n− 1.

If X is Bloch, all limit functions must be constant so these are all the limit
functions.

We divide the proof into three cases, n = 1, n = 2 and n = 4. It will be clear
from the n = 4 case how the proof for any n > 4 should go.

n = 1: This is the most trivial case. Take fi : ∆→ X as a covering map with fixed
point c, fi(c) = c. Then clearly Fn(c) = c for all n and any limit function satisfies
F (c) = c.
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n = 2: We can use covering maps again in this case. Assume 0 ∈ X and c0 = 0.
Choose a covering map

f1 : ∆→ X, such that f1(0) = c1.

The map f1 is defined up to a rotation. Choose it so that for some x1 with f1(x1) =
0 we have x1 ∈ X. Now choose f2 so that f2(0) = x1 and for some x2

f2(x2) = 0, and x2 ∈ X.

Continue to find fn and xn such that

fn(0) = xn−1, xn ∈ X, fn(xn) = 0.

We can always do this by the non-compactness of X. Then for all n we have

f1 ◦ f2 ◦ . . . ◦ f2n(0) = 0 and

f1 ◦ f2 ◦ . . . ◦ f2n+1(0) = c1.

For n ≥ 2 we need more than covering maps. In order to find the functions fn and
their successive pre-images we need a preparatory lemma.

Lemma 1. Given distinct points a1, . . . an ∈ ∆ \ {0}, there ∃f : ∆ → ∆ and
xi ∈ X, such that

f(xi) =
ai
xi
.

The function f is rational of degree n− 1.

Proof. Assume n ≥ 2 and set

A(a, z) =
z − a
1− āz

, A(a,A(−a, z)) = z.

Let g1 : ∆ → ∆ be a holomorphic function to be determined later. Choose x1 ∈
X, |x1| > |a1|. Set

f(z) =
A(x1, z)g1(A(x1, z)) + a1

x1

1 + ā1
x̄1
A(x1, z)g1(A(x1, z))

Then f(x1) = a1/x1.
Rewrite this as

A(x1, z)g1(A(x1, z)) = A(
a1

x1
, f(z)).

Want to choose x2, |x2| > |a2| such that

A(x1, x2)g1(A(x1, x2)) = A(
a1

x1
,
a2

x2
)

and so on. For 1 ≤ j ≤ k ≤ n set

ajk = A(xj , xk).

Next, for k = 2, . . . n set

(2) b1k = A(
a1

x1
,
ak
xk

)

For j = 2, . . . n− 1 and k = j, j + 1, . . . n set

(3) bjk = A(
b(j−1)j

a(j−1)j
,
b(j−1)k

a(j−1)k
).
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In order that our construction work we need to choose the xi so that the following
inequalities hold:

(4) |ai
xi
| < 1, i = 1, . . . n.

In step 1 we chose x1 so this holds for i = 1.
For all j, k such that j < k we also need to have

(5) | bjk
ajk
| < 1

We use the non-compactness of X to prove we can choose xi satisfying these
conditions. Note first that for fixed j, and all k > j, |xk| → 1 implies |ajk| → 1.

Next, as |xj | → 1,

lim sup |b1j | ≤ |A(
a1

x1
, aje

θj )| = B1j < 1

where θj is chosen so that arg ajeθj = arg a1
x1

+ π and B1j is maximal.
Since X is not relatively compact we get conditions on xi, i = 2, . . . , n so that

all the inequalities (4) and all the inequalities (5) hold with j = 1.
Now fix x2 so that (4) and (5) with j = 1 hold, assuming the remaining |xi| are

close enough to 1.
We now find bounds

lim sup
|xj |→1

|b2j | ≤ |A(
b12

a12
, B1je

θj )| = B2j < 1

where again θj is chosen to maximize B2j .
We repeat this process, choosing x3, . . . xn−1, xn, in turn so that all the inequal-

ities above hold.
Next, define the functions gk(z) : ∆→ ∆, k = 2, . . . n recursively by

A(xk, z)gk(A(xk, z)) =

(6) A(
b(k−1)k

a(k−1)k
, g(k−1)(A(x(k−1), z)))

Now take the function gn(z) ≡ 0. Then work back through equations (6) to obtain
the functions g1 and f . Note that f is rational of degree n− 1.

We check that f(xi) = ai

xi
for i = 1, . . . , n, so that we have the required points

xi and the function f . �

We show how the theorem is proved for n = 4.
Assume 0 ∈ X and c0 = 0, c1, c2, c3 ∈ X. We want the cycle relation

fi ◦ fi+1 ◦ fi+2 ◦ fi+3(0) = 0

to hold for all i.
Let π1 be a covering map such that π1(0) = c1. Choose y1, b

′
2, b
′
3 ∈ ∆ such that

π1(y1) = 0, π1(b′2) = c2, π1(b′3) = c3.

That is,
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y1 0 b′2 b′3
π1 ↓ ↓ ↓ ↓

·0 ·c1 ·c2 ·c3

Use the lemma to find g and x1, b2, b3 ∈ X so that

g(x1) =
y1

x1
, g(b2) =

b′2
b2
, g(b3) =

b′3
b3
.

Let g1(x) = xg(x). Then

x1 0 b2 b3
g1 ↓ ↓ ↓ ↓

y1 0 b′2 b′3
π1 ↓ ↓ ↓ ↓

·0 ·c1 ·c2 ·c3

Set f1 = π1g1. Choose a covering map π2 such that π2(0) = b2 and points
y21, y2, b

′
32 so that

y21 y2 0 b′32

π2 ↓ ↓ ↓ ↓
x1 0 b2 b3

g1 ↓ ↓ ↓ ↓
y1 0 b′2 b′3

π1 ↓ ↓ ↓ ↓
·0 ·c1 ·c2 ·c3

Now use the lemma to find g2 and points x21, x2, b32 so that

x21 x2 0 b32

g2 ↓ ↓ ↓ ↓
y21 y2 0 b′32

π2 ↓ ↓ ↓ ↓
x1 0 b2 b3

g1 ↓ ↓ ↓
y1 0 b′2 b′3

π1 ↓ ↓ ↓ ↓
·0 ·c1 ·c2 ·c3

Set f2 = π2g2. Now find a covering map π3 and points y321, y32, y3 so that
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y321 y32 y3 0
π3 ↓ ↓ ↓ ↓

x21 x2 0 b32

g2 ↓ ↓ ↓ ↓
y21 y2 0 b′32

π2 ↓ ↓ ↓ ↓
x1 0 b2 b3

g1 ↓ ↓ ↓ ↓
y1 0 b′2 b′3

π1 ↓ ↓ ↓ ↓
·0 ·c1 ·c2 ·c3

Then use the lemma again to find g3 and points x321, x32, x3 so that
x321 x32 x3 0

g3 ↓ ↓ ↓ ↓
y321 y32 y3 0

π3 ↓ ↓ ↓ ↓
x21 x2 0 b32

g2 ↓ ↓ ↓ ↓
y21 y2 0 b′32

π2 ↓ ↓ ↓ ↓
x1 0 b2 b3

g1 ↓ ↓ ↓ ↓
y1 0 b′2 b′3

π1 ↓ ↓ ↓ ↓
·0 ·c1 ·c2 ·c3

Set f3 = π3g3. Finally, find a covering map π4 and use the lemma to find g4 so that
0 x432 x43 x4

g4 ↓ ↓ ↓ ↓
y4321 y432 y43 y4

π4 ↓ ↓ ↓ ↓
x321 x32 x3 0

g3 ↓ ↓ ↓ ↓
y321 y32 y3 0

π3 ↓ ↓ ↓ ↓
x21 x2 0 b32

g2 ↓ ↓ ↓ ↓
y21 y2 0 b′32

π2 ↓ ↓ ↓ ↓
x1 0 b2 b3

g1 ↓ ↓ ↓ ↓
y1 0 b′2 b′3

π1 ↓ ↓ ↓ ↓
·0 ·c1 ·c2 ·c3

Set f4 = π4g4. Note f1 ◦ f2 ◦ f3 ◦ f4(0) = 0. This is the first cycle. We continue
in this way to add new points to the cycles: to find f5, f6, f7, we replace c1, c2 and
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c3 with x432, x43 and x4, respectively; for the rest of the fn, we repeat the process,
changing the indices in the obvious way.

Next we find universal covering maps πn and apply lemma 1 to the preimages
in ∆ under πn of points in the incomplete cycles to get new points in X and new
maps gn. The map fn = πngn completes the next cycle and we have added points
to the incomplete cycles. In the limit, for all i ≥ 1 we have the cycle relation

fi ◦ fi+1 ◦ fi+2 ◦ fi+3(0) = 0

for all i.
Let

Fk = f1 ◦ . . . ◦ fk.
Then, Fk(0) = cr where r = k mod 4. The accumulation points are limits of
subsequences {Fnk

}. For any such limit F , F (0) = cr for some r = 0, . . . , 3.
Because the cr are distinct, we have at least 4 distinct accumulation points.

If X is Bloch, all the limit functions of this IFS are constant. Since F (0) = ck
for some k for every limit function there are exactly 4 possible constant functions.

5. Proofs of theorems 2 and 3

Theorem 2 follows from theorem 3, but we give a separate proof that makes it
easier to understand how the Bloch condition controls the dynamics.

Theorem 2 ([4]). X is Bloch in ∆ only if all limit functions of any IFS are
constant.

The idea of the proof is: Given X, non-Bloch in ∆, construct an IFS with a
limit function that is not constant using covering maps and Blaschke products of
degree 2. We will need two lemmas. The proofs are relatively straightforward and
we omit them.

Denote the hyperbolic metric on the disk by ρ(a, z) = ρ∆(a, z) and the hyperbolic
metric on X by ρX(a, z).

Lemma 2 (Geometric Lemma). Given a ∈ X and

ρX(a, z) < 1 < C = Bloch rad at a ,

then there is a function ε(C) such that

ρX(a, z) ≤ (1 + ε(C))ρ(a, z)

and ε(C)→ 0 as C →∞.

This lemma says that in a relatively compact subset of X, ρ and ρX are equiva-
lent:

ρ(z, w) < ρX(z, w) < Kρ(z, w)
and “deep inside X”, K is very close to 1.

Lemma 3 (Blaschke product lemma). Let c 6= 0 be any point in ∆ such that
ρ(0, c) < 1. If

Aa(z) =
z(z − a)
1− az

,

then A−1
a (c) = {z1, z2} (that is, Aa(z1) = Aa(z2) = c) and

ρ(0, z1) = ρ(a, z2)→ ρ(0, c) as |a| → 1.
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This lemma says that Blaschke products contract, but the contraction constant
is close to 1 near the boundary.

Proof of Theorem 2:

Pick any two distinct points a0, w0 ∈ X such that

ρX(a0, w0) < 1/2.

Now, using the lemmas we want to recursively find fn, and compositions Fn → F
satisfying

F (0) = a0 and F (w̃) = w0

for some w̃, ρ(0, w̃) < 1. To do this we will need a sequence εn → 0 such that
Π∞1 (1 + εn)2 ≤ 2.

To get the first function, let π1 : ∆ → X, π1(0) = a0 be a universal covering
map. Then ∃c0 ∈ ∆, such that

π1(c0) = w0 and ρ(0, c0) = ρX(a0, w0)

For any choice of a1 ∈ X, find w1, w̃1 ∈ ∆ with

Aa1(w̃1) = Aa1(w1) = c0 and ρ(0, w̃1) = ρ(a1, w1)

Define f1 = π1 ◦Aa1 so that

f1(0) = f1(a1) = a0 and f1(w1) = f1(w̃1) = w0.

We need to make sure that w1 belongs to X. By the Blaschke product lemma,
if |a1| is close enough to 1

ρ(0, w̃1) = ρ(a1, w1)
< (1 + ε1)ρ(0, c0)
= (1 + ε1)ρX(a0, w0)

Moreover, we may assume that R(X,∆, a1), the radius in the ρ metric of the largest
disk in X centered at a1, satisfies R(X,∆, a1)� 1 so that w1 is inside a disk in X
“deeply enough” that by the geometric lemma

ρX(a1, w1) < (1 + ε1)ρ(a1, w1)
< (1 + ε1)2ρX(a0, w0)
< 1

We find the rest of the functions inductively. By our choice of εn, there exist
points an, wn ∈ X and w̃n ∈ ∆ such that

(7) fn(0) = fn(an) = an−1 and fn(wn) = fn(w̃n) = wn−1,

with
ρ(an, wn) = ρ(0, w̃n) < (1 + εn)ρX(an−1, wn−1)

and

ρX(an, wn) < (1 + εn)ρ(an, wn)
< (1 + εn)2ρX(an−1, wn−1).

Therefore
ρ(0, w̃n) < Πn

1 (1 + εi)ρ(0, c0) < 1 and
ρX(an, wn) < Πn

1 (1 + εi)2ρ(0, c0) < 1.
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Now if Fn = f1 ◦ f2 ◦ f3 ◦ . . . ◦ fn, formulas (7) yield

Fn(0) = a0 and Fn(w̃n) = w0.

By Montel’s theorem, Fn is a normal family so that any subsequence Fnj
con-

verges locally uniformly to a holomorphic limit function F. Therefore,

F (0) = a0 and F (w̃) = w0,

where w̃ is an accumulation point of the sequence w̃nj . Since, we have ρ(0, w̃n) < 1
for all n, the point w̃ belongs to ∆. This implies that F is a nonconstant function
concluding the proof of theorem 2.

Theorem 3 ([5]). Suppose X is non-Bloch in ∆ and f : ∆→ X is any holomorphic
map. Then f is the limit of an IFS.

Sketch of proof of Theorem 3

The reader can find the full details in [6]. The main tool is the use of infinite
Blaschke products:

Let a1, a2, a3, . . . be a sequence of points in ∆ and let k be a positive integer.
The finite Blaschke products

An(z) = zk
z − a1

1− a1z

z − a2

1− a2z
. . .

z − an
1− anz

,

form a normal family. Thus, some subsequence An(l) of An converges locally uni-
formly to an infinite Blaschke product

A(z) = zk
z − a1

1− a1z

z − a2

1− a2z
. . .

If |an| → a > 0, then A(k)(0) 6= 0 for any accumulation point A and A : ∆→ ∆ is
open.
A rough idea of the proof is:

Construct infinite Blaschke products Bi : X → ∆. Interleave the Bi with cover-
ing maps πi : ∆→ X. Set fi = πi−1Bi for i ≥ 2 and show that

B1f2f3 . . . fn → eiθz.

Next set f1 = f(e−iθB1(z)).
Because X is non-Bloch we can find cn ∈ X, |cn| → 1 and D(cn, n) ⊂ X. We

need the following lemmas.

Lemma 4. Given C > 1, ∃an = cin such that a limit A of the Blaschke product
for the an satisfies

|A(z)| ≥ e−k/2
n−2C tanh(ρ(an, z))

∀z ∈ D(an, (n+ 4)/2).

Lemma 5. For all (p, q) ∈ ∆ with ρ(p, q) < 1, and any σ > 0, ∃C > 1 such that if
n is sufficiently large, ∃pn, qn ∈ D(an, (n+ 4)/2) with

A(pn) = p, A(qn) = q, ρ(pn, qn) ≤ (1 + σ)ρ(p, q).
10



For the construction pick z0 ∈ X with z0 ∈ D(0, 1) and pick εn with
(1 + εn)2n+1 → 1. Find an such that D(an, n) ⊂ X.

To obtain B1, take subsequence of an and form the infinite Blaschke product.
Using lemmas 4 and 5 find

z1 ∈ D(0, 1) with B1(z1) = z0

an1 , q1 ∈ D(an1 , (n1 + 4)/2)

with

B1(an1) = 0, B1(q1) = z0

and

ρ(0, z1) ≤ (1 + ε1)ρ(0, z0)

ρX(an1 , q1) ≤ (1 + ε2)ρ(0, z0).

Observe that by lemma 4, B1 maps X onto ∆.
Define π1 : ∆→ X, π1(0) = an1 and find w1 with π1(w1) = q1 and

ρ(0, w1) = ρX(an1 , q1) ≤ (1 + ε2)ρ(0, z0)

To obtain B2, take a sub-subsequence and form its infinite Blaschke product.
Using lemmas 4 and 5 find z2 ∈ D(0, 1) with B2(z2) = w1. Now pull back by B1

and π1 to get an2 , q2 ∈ D(an2 , (n2 + 4)/2) with

B1π1B2(an2) = 0, B1π1B2(q2) = z0

and ρ(0, z2) ≤ (1 + ε2)3ρ(0, z0).

Note that you get an extra factor of (1 + ε2) for each pullback.
Set f2 = π1B2.
Continuing in this way, we obtain sequences of maps πn−1 and Bn with

fn = πn−1 ◦Bn

and a sequence of points zn with ρ(0, zn)→ ρ(0, z0) such that for

Gn = B1 ◦ f2 ◦ f3 . . . ◦ fn

we have

Gn(zn) = z0, Gn(0) = 0

and

ρ(0, zn) ≤ (1 + εn)2n+1ρ(0, z0).

Each Gn is holomorphic, maps the unit disk to itself and satisfies Gn(0) = 0 and
Gn(zn) = z0. Therefore any accumulation point G of Gn is a holomorphic self map
of the unit disk that maps an accumulation point of zn to z0. Thus, G(z) = eiθz.
Now to complete the proof of theorem 3, set f1 = f(e−iθz). Then the IFS Fn with
Fn = f1 ◦ . . . ◦ fn has f(z) = f1 ◦G as a limit function.
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