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1.1 Introduction

In this paper we discuss several more or less well-known theorems about
primitive and palindromic words in two generator free groups. We de-
scribe a geometric technique that ties all of these theorems together and
gives new proofs of all but the last of them, which is an enumerative
scheme for palindromic words. This geometric approach and the enu-
merative scheme will be useful in applications. These applications will
be studied elsewhere [GKgeom].

The main object here is a two generator free group which we denote
by G = 〈A,B〉.

Definition 1 A word W = W (A,B) ∈ G is primitive if there is another
word V = V (A,B) ∈ G such that W and V generate G. V is called a
primitive associate of W and the unordered pair W and V is called a
pair of primitive associates.

We remark that if W,V is a pair of primitive associates then both
WV and WV −1 are primitive and W,WV ±1 and V,WV ±1 are both
primitive pairs.

Definition 2 A word W = W (A,B) ∈ G is a palindrome if it reads the
same forward and backward.

In [GKwords] we found connections between a number of different
forms of primitive words and pairs of primitive associates in a two gen-
erator free group. These were obtained using both algebra and geome-
try. The theorems that we discuss, Theorems 1.2.1, 1.2.2 and 1.2.3, can
be found in [GKwords] and Theorem 1.2.4 can be found in [Piggott].
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2 Gilman and Keen

Theorem 1.2.5, the enumeration scheme, along with another proof of
Theorem 1.2.4 can be found in [GKenum].

There are several different geometric objects that can be associated
to two generator free groups; among them are the punctured torus, the
three holed sphere and the genus two handlebody. Here we focus on the
punctured torus and use “cutting sequences” for simple curves to obtain
proofs of Theorems 1.2.1, 1.2.2 and 1.2.4.

A similar treatment can be made using the three holed sphere. Look-
ing at the technique developed in Vidur Malik’s thesis [Malik] for the
three holed sphere representation of two generator groups we first no-
ticed that the palindromes and products of palindromes were inherent
in the geometry. The concept of a geometric center of a primitive word
was inherent in his work. We thank him for his insight.

1.2 Notation and Definitions

In this section we establish the notation and give the definitions needed
to state five theorems and we state them. Note that our statements of
these theorems gather together results from several places into one the-
orem. Thus, for example, a portion of the statements in Theorem 1.2.3
appears in [KS] while another portion appears in [GKwords].

We assume that the reader is familiar with standard group theory
terminology as found in Magnus-Karass-Solitar [MKS], but we review
some terms here. We give fuller details of well known terms related to
continued fraction expansions and Farey sequences as we work intensely
with these.

A word W = W (A,B) ∈ G is an expression An1Bm1An2 · · ·Bnr for
some set of 2r integers n1, ..., nr,m1, ..., nr.

A word X1X2X3 · · ·Xn−1Xn in G is freely reduced if each Xi is a
generator of G and Xi 6= X−1

i+1. It is cyclically reduced if it is freely
reduced and X1 6= X−1

n . We note that given a cyclically reduced word
X1X2X3 · · ·Xn−1Xn, a cyclic permutation of the word is a word of the
form XrXr+1 · · ·XnX1X2X3 · · ·Xr−1 where 1 ≤ r ≤ n. A cyclic per-
mutation of such a word is also cyclically reduced and is conjugate to
the initial word.

Our ultimate aim is to characterize the exponents that occur in W =
W (A,B) when W is primitive. These will be called primitive exponents.
Before we do that we associate to each rational p/q ∈ Q, where p and q
are relatively prime integers, a set of words which we denoted by {Wp/q}
as follows:
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Definition 3 If p/q ≥ 1 set

{Wp/q} = {Bn0ABn1ABn2 . . . ABnq} (1.1)

where n0 ≥ 0, ni > 0, i = 1, . . . q and p =
∑q
i=1 ni.

If p/q ≤ −1, then replace A by A−1 in (1.1) and if |p/q| < 1, inter-
change both A and B and p and q in (1.1) so that after the interchanges
q =

∑p
i=1 ni.

Note that because the exponents of A and the exponents of B always
have the same sign, each word in {Wp/q} must be cyclically reduced and
thus, there are no shorter words in its conjugacy class. Also note that
in the union of the sets {Wp/q} over all p/q, we never have both a word
and its inverse.

After we recall some elementary number theory in the next section, we
will be able to state Theorem 1.2.3 which gives necessary and sufficient
conditions on the exponents ni so that a particular word Wp/q ∈ {Wp/q}
is primitive.

Using the notation [ ] for the greatest integer function, one immediate
corollary of Theorem 1.2.3 is

Corollary 1.2.1 If Wp/q ∈ {Wp/q} is primitive, then the primitive
exponents satisfy nj = [|p/q|] or nj = [|p/q|] + 1, 0 < j ≤ p.

Another immediate corollary of Theorem 1.2.3 is

Corollary 1.2.2 The primitive word Wp/q ∈ {Wp/q} is unique up to
cyclic permutation and inverse.

In what follows, we will pick unique representatives for elements in
the set {Wp/q} using iteration. These will be termed the W -iteration,
the V -iteration and the E-iteration schemes. The W iteration scheme
is patterned on Farey sequences. We will show:

We can characterize pairs of primitive associates as follows:

Corollary 1.2.3 Two primitive words Wp/q and Wr/s that occur in
the W -iteration scheme are a pair of primitive associates if and only if
|ps− qr| = 1.

We will see that this corollary also holds for the V - and E-iteration
schemes.
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1.2.1 Farey arithmetic

In the rest of this section we work only with rationals r/s ∈ [0,∞]
where we assume r, s ≥ 0, but not simultaneously 0, and that they are
relatively prime, which we denote by (r, s) = 1. We use the notation
1/0 to denote the point at infinity. We use Q+ to denote these rational
numbers and we think of them as points on the real axis in the extended
complex plane.

To state the second theorem, we need the concept of Farey addition
for fractions in Q+.

Definition 4 If p
q ,

r
s ∈ Q+, the Farey sum is

p

q
⊕ r

s
=
p+ r

q + s

Two fractions are called Farey neighbors or simply neighbors if |ps−qr =
1|; the corresponding words are also called neighbors.

Note that the Farey neighbors of 1/0 are the rationals n/1. If p
q <

r
s

then it is a simple computation to see that
p

q
<
p

q
⊕ r

s
<
r

s

and that both pairs of fractions

(
p

q
,
p

q
⊕ r

s
) and (

p

q
⊕ r

s
,
r

s
)

are neighbors if (p/q, r/s) are.
We can create the diagram for the Farey tree by marking each fraction

by a point on the real line and joining each pair of neighbors by a semi-
circle orthogonal to the real line in the upper half plane. The points
n/1 are joined to their neighbor 1/0 by vertical lines. The important
thing to note here is that because of the properties above none of the
semi-circles or lines intersect in the upper half plane. To simplify the
exposition when we talk about a point or a vertex we also mean the word
corresponding to that rational number. Each pair of neighbors together
with their Farey sum form the vertices of a curvilinear or hyperbolic
triangle and the interiors of two such triangles are disjoint. Together
the set of these triangles forms a tessellation of the hyperbolic plane
which is known as the Farey tree.

Fix any point ζ on the positive imaginary axis. Given a fraction, p
q ,

there is a hyperbolic geodesic γ from ζ to p
q that intersects a minimal

number of these triangles.
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Definition 5 The Farey level or the level of p/q, Lev(p/q), is the num-
ber of triangles traversed by γ

Note that the curve (line) γ joining ζ to either 0/1 or 1/0 does not
cross any triangle so these rationals have level 0. The geodesic joining ζ
to 1/1 intersects only the triangle with vertices 1/0, 0/1 and 1/1 so the
level of 1/1 is 1. Similarly the level of n/1 is n.

We emphasize that we now have two different and independent order-
ings on the rational numbers: the ordering as rational numbers and the
ordering by level. That is, given p

q and r
s , we might, for example, have

as rational numbers p
q ≤

r
s , but Lev( rs ) ≤ Lev(pq ). If we say one rational

is larger or smaller than the other, we are referring to the standard order
on the rationals. If we say one rational is higher or lower than the other,
we are referring to the levels of the fractions.

Definition 6 We determine a Farey sequence for p
q inductively by choos-

ing the new vertex of the next triangle in the sequence of triangles tra-
versed by γ.

The Farey sequence for 8
5 is shown in Figure 1.1.

Given p/q, we can find the smallest and largest rationals m/n and
r/s that are its neighbors. These also have the property that they
are the only neighbors with lower level. That is, as rational numbers
m/n < p/q < r/s and the levels satisfy Lev(m/n) < Lev(p/q) and
Lev(r/s) < Lev(p/q), and if u/v is any other neighbor Lev(u/v) >

Lev(p/q). Thinking of the Farey diagram as a tree whose nodes are the
triangles of the diagram leads us to define

Definition 7 The smallest and the largest neighbors of the rational p/q
are the parents of p/q.

Note that we can tell which parent r/s is smaller (respectively larger)
than p/q by the sign of rq − ps.

Farey sequences are related to continued fraction expansions of frac-
tions (see for example, [HardyWright]). In particular, write

p

q
= a0 +

1
a1 + 1

a2+
1

a3+...+ 1
ak

= [a0, . . . , ak]

where aj > 0, j = 1 . . . k.
The level of p/q can be expressed in terms of the continued fraction
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Fig. 1.1. Farey sequence for 8/5
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expansion by the formula

Lev(p/q) =
k∑
j=0

aj .

The parents of p/q have continued fractions

[a0, . . . , ak−1] and [a0, . . . , ak−1, ak − 1].

1.2.2 Farey words, continued fraction expansions and

algorithmic words

In this section we relate primitive words with their associated rationals
p/q to Farey sequences. We tacitly assume p/ ∈ Q+; for negative p/q
we use the transformation rules in Definition 3.

The next theorem gives a recursive enumeration scheme for primitive
words using Farey sequences of rationals. This is theW iteration scheme.

Theorem 1.2.1 (The W -iteration scheme) ([GKwords, KS]) The prim-
itive words in G = 〈A,B〉 can be enumerated inductively by using Farey
sequences as follows: set

W0/1 = A, W1/0 = B.

Given p/q, consider its Farey sequence. Let m
n and r

s be its parents
labeled so that

m

n
<
p

q
<
r

s
.

Then

W p
q

= Wm
n ⊕

r
s

= Wr/s ·Wm/n.

A pair Wp/q,Wr/s is a pair of primitive associates if and only if p
q ,

r
s are

neighbors, that is, |ps− qr| = 1.

Because a product of primitive associates is always primitive, it is
clear that the words we obtain in the theorem are primitive. As we will
see when we give the proofs of the theorems, the words Wp/q in the
theorem belong to the set {Wp/q} we defined above so the notation is
consistent.

We note that the two products Wm/n · Wr/s and Wr/s · Wm/n are
always conjugate in G. In this W -iteration scheme we always choose
the product where the larger subscript comes first. The point is that
in order for the scheme to work the choice has to be made consistently.
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We emphasize that Wp/q always denotes the word obtained using this
enumeration scheme.

The other enumeration schemes are the V -scheme where the words
come from the algorithm discussed below and the E-enumeration scheme
that gives the words in a palindromic form or a canonical product palin-
dromic form. While it might seem that we have introduced more nota-
tion here than necessary, we have done so because want to emphasize
the different ways in which the primitive words can arise.

The Wp/q words can be rewritten using the entries in the continued
fraction expansion instead of the primitive exponents. Since this is the
form in which the words arise in the PSL(2,R) discreteness algorithm
[G3, Compl, YCJiang, Malik], the rewritten form is also known as algo-

rithmic form of the primitive words.
The algorithm begins with a pair of generators (X0, Y0) for a sub-

group of PSL(2,R) and runs through a sequence of primitive pairs of
generators. At each step the algorithm either replaces a generating pair
(X,Y ) with a new generating pair (XY, Y ), called a “linear step” and or
it replaces a generating pair with the pair (Y,XY ) called a “Fibonacci
step”. There can be many linear steps between Fibonacci steps; the re-
placement pair after N linear steps is (XNY,X). Each Fibonacci step,
however, occurs between two linear steps. The algorithm thus generates
new pairs of primitive associates at each step, and as we will see, the
entries of the continued fraction are visible in the form of the words
generated.

The main point of the discreteness algorithm, however, is not only
to generate new pairs of primitive generators but to decide whether a
particular pair of matrices generates a discrete group. Therefore, at
each step a “stopping condition” is tested for and when it is reached,
the algorithm prints out either: the group is discrete or the group is not

discrete. The pair of generators given by the algorithm when it stops
are called the stopping generators. Associated to any implementation
of the algorithm is a sequence of integers, the F -sequence, or Fibonacci
sequence, which gives the number of linear steps that occur between
consecutive Fibonacci steps at the point the algorithm stops. The F -
sequence is usually denoted by [a1, ..., ak]. The stopping generators can
be determined from the F -sequence.

The algorithm can be run backwards from the stopping generators
when the group is discrete and free, and any primitive pair can be ob-
tained from the stopping generators using the backwards F -sequence.
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The F -sequence of the algorithm is used in [G3] and [YCJiang] to de-
termine the computational complexity of the algorithm. In [G3] it is
shown that most forms of the algorithm run in polynomial time and in
[YCJiang] it is shown that all forms do.

The entries in the F -sequence, also called the algorithmic exponents.
In [GKwords] it is shown that they are also the the entries in the contin-
ued fraction expansion of the rational corresponding to that primitive
word determined by the algorithm — hence the same notation. Some
of theorems below are stated in [GKwords] with the term F -sequence
instead of the equivalent term, the continued fraction expansion.

The next theorem exhibits the primitive words with the continued
fraction expansion exponents in its most concise form.

If p/q = [a0, . . . , ak], set pj

qj
= [a0, . . . , aj ], j = 0, . . . k. These fractions,

called the approximants of p/q, can be computed recursively from the
continued fraction for p/q as follows:

p0 = a0, q0 = 1 and p1 = a0a1 + 1, q1 = a1

pj = ajpj−1 + pj−2 , qj = ajqj−1 + qj−2 j = 2, . . . , k.

Theorem 1.2.2 ([GKwords]) If [a0, . . . , ak] is the continued fraction
expansion of p/q, the primitive word Wp/q can be written inductively
using the continued fraction approximants pj/qj = [a0, . . . , aj ].

Set

W0/1 = A, W1/0 = B and W1/1 = BA.

For j = 1, . . . , k if pj−2/qj−2 > p/q set

Wpj/qj
= Wpj−2/qj−2(Wpj−1/qj−1)aj

and set

Wpj/qj
= (Wpj−1/qj−1)ajWpj−2/qj−2

otherwise.

The relationship between the Farey sequence and the approximants of
p/q is that the Farey sequence contains the approximating fractions as
a subsequence. The points of the Farey sequence between pj

qj
and pj+1

qj+1

have continued fraction expansions

[a0, a1, . . . aj + 1], [a0, a1, . . . , aj + 2], . . . , [a0, a1, . . . aj + aj+1 − 1].

As real numbers, the approximants are alternately larger and smaller
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than p
q . The number aj counts the number of times the new endpoint

in the Farey sequence lies on one side of the old one. Theorem 1.2.2 is
thus an easy consequence of Theorem 1.2.1.

We have an alternative recursion scheme which reflects the form of
the words as they show up in the algorithm; this is not quite the same
as the form in Theorem 1.2.2. Words at linear steps are formed as
in Theorem 1.2.2 but words that occur at Fibonacci steps are slightly
different; they are a cyclic permutation of the words in Theorem 1.2.2.
We use the notation V for these words. To define the V -scheme, assume
without loss of generality that p/q > 1 and write p/q = [a0, . . . ak]. By
assumption a0 > 0. Set V−1 = B and V0 = Wp0/q0 = ABa0 . Then for
j = 1, . . . , k, set

Vj = Vj−2[Vj−1]aj .

In the V words we see the entries of the continued fraction occurring
as exponents. When we expand the word as a product of A’s and B’s,
we see the primitive exponents. The next theorem gives us formulas for
the primitive exponents in terms of the entries of the continued fraction
expansion and hence necessary and sufficient conditions to recognize
primitive words in {Wp/q}.

The notation here is a bit cumbersome because there are several in-
dices to keep track of. When we expand the word Vj as a product of A’s
and B’s, we need to keep track both of the index j and the primitive
exponents of Vj so we denote them ni(j).

Theorem 1.2.3 ([GKwords, Malik]) Given p/q > 1, expand the words
Vj into

Vj = Bn0(j)ABn1(j) . . . ABntj
(j)

for j = 0, . . . , k. Then Vk ∈ {Wp/q}; it is primitive and its exponents are
related to the continued fraction of p/q = [a0, . . . , ak] or the F -sequence
as follows:

If j = 0, then t0 = 1 = q0, n0 = 0 and n1(0) = a0.
If j = 1, then t1 = a1 = q1, n0(1) = 1 and ni(1) = a0, i = 1, . . . , t1.

If j = 2 then t2 = a2a1 + 1 = q2, n0(2) = 0 and for i = 1, . . . , t2,
ni(2) = a0 + 1 if i ≡ 1 mod t2 and ni(j) = a0 otherwise

For j > 2, . . . , k,

• n0(j) = 0 if j is even and n0(j) = 1 if j is odd.
• tj = qj.
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• For i = 1 . . . tj−2, ni(j) = ni(j − 2).
• For i = tj−2 + 1 . . . tj, ni(j) = a0 + 1 if i ≡ 1 + tk−2 mod tk−1

and ni(j) = a0 otherwise.

Moreover any word in {Wp/q} whose exponents, up to cyclic permuta-
tion, satisfy the above conditions is primitive.

There is an ambiguity because [a0, . . . , ak] = [a0, . . . , ak − 1, 1] and
these continued fractions give different words. One, however, is a cyclic
permutation of the other.

Using the recursion formulas for the exponents in theorem, we obtain
a new proof of the following corollary which was originally proved in
[BuserS]. We omit the proof as it is a fairly straightforward induction
argument on the Farey level.

Corollary 1.2.4 ([BuserS]) In the expression for a primitive word Wp/q,
for any integer m, 0 < m < p, the sums of any m consecutive primitive
exponents ni differ by at most ±1.

We note that the authors in [BuserS] also prove that this exponent
condition is also sufficient for a word to be primitive.

The following theorem was originally proved in [OZ] and in [Piggott]
and [KR].

Theorem 1.2.4 ([GKenum, KR, OZ, Piggott]) Let G = 〈A,B〉 be a two
generator free group. Then any primitive element W ∈ G is conjugate
to a cyclic permutation of either a palindrome in A,B or a product of
two palindromes. In particular, if the length of W is p + q, then, up to
cyclic permutation, W is a palindrome if and only if p+ q is odd and is
a product of two palindromes otherwise.

We note that this can be formulated equivalently using the parity of
pq which is what we do below.

In the pq odd case, the two palindromes in the product can be chosen
in various ways. We will make a particular choice in the next theorem.

1.2.3 E-Enumeration

The next theorem, proved in [GKenum], gives yet another enumera-
tion scheme for primitive words, again using Farey sequences. The new
scheme to enumerate primitive elements is useful in applications, espe-
cially geometric applications. These applications will be studied else-
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where [GKgeom]. Because the words we obtain are cyclic permutations
of the words Wp/q, we use a different notation for them; we denote them
as Ep/q.

Theorem 1.2.5 (The E-iteration scheme) ([GKenum]) The primitive
elements of a two generator free group can be enumerated recursively
using their Farey sequences as follows. Set

E0/1 = A, E1/0 = B, and E1/1 = BA.

Given p/q with parents m/n, r/s such that m/n < r/s,

• if pq is odd, set Ep/q = Er/sEm/n and
• if pq is even, set Ep/q = Em/nEr/s. In this case Ep/q is the

unique palindrome cyclically conjugate to Wp/q.

Ep/q and Ep′/q′ are primitive associates if and only if pq′− qp′ = ±1.

Note that when pq is odd, the order of multiplication is the same as
in the enumeration scheme for Wp/q but when pq is even, it is reversed.
This theorem says that if pq is even, Ep/q is the unique palindrome
cyclically conjugate to Wp/q. If pq is odd, then Ep/q is a product of a
uniquely determined pair of palindromes.

In this new enumeration scheme, Farey neighbors again correspond
to primitive pairs but the elements of the pair (Wp/q,Wp′/q′) are not
necessarily conjugate to the elements of the pair (Ep/q, Ep′/q′) by the
same element of the group. That is, they are not necessarily conjugate
as pairs.

1.3 Cutting Sequences

We represent G as the fundamental group of a punctured torus and
use the technique of cutting sequences developed by Series (see [S, KS,
Nielsen]) as the unifying theme. This representation assumes that the
group G is a discrete free group. Cutting sequences are a variant on
Nielsen boundary development sequences [Nielsen]. In this section we
outline the steps to define cutting sequences.

• It is standard that G = 〈A,B〉 is isomorphic to the fundamental group
of a punctured torus S. Each element of G corresponds to a free homo-
topy class of curves on S. The primitive elements are free homotopy
classes of simple curves that do not simply go around the puncture.
Primitive pairs are classes of simple closed curves with a single inter-
section point.
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• Let L be the lattice of points in C of the form m+ni, m, n ∈ Z and let
T be the corresponding lattice group generated by a = z 7→ z+ 1, b =
z 7→ z+ i. The (unpunctured) torus is homeomorphic to the quotient
T = C/T . The horizontal lines map to longitudes and the vertical
lines to meridians on T.

The punctured torus is homeomorphic to the quotient of the plane
punctured at the lattice, (C \ L)/T . Any curve in C whose endpoints
are identified by the commutator aba−1b−1 goes around a puncture
and is no longer homotopically trivial.
• The simple closed curves on T are exactly the projections of lines

joining pairs of lattice points (or lines parallel to them). These are
lines Lp/q of rational slope p/q. The projection lp/q consists of p
longitudinal loops q meridional loops. We assume that p and q are
relatively prime; otherwise the curve has multiplicity equal to the
common factor.

For the punctured torus, any line of rational slope, not passing
through the punctures projects to a simple closed curve and any sim-
ple closed curve, not enclosing the puncture, lifts to a curve freely
homotopic to a line of rational slope.
• Note that, in either case, if we try to draw the projection of Lp/q

as a simple curve, the order in which we traverse the loops on T (or
S) matters. In fact there is, up to cyclic permutation and reversal,
only one way to draw the curve. We will find this way using cutting
sequences. This is the content of Theorem 1.2.3. Below, we assume
we are working on T.

• Choose as fundamental domain (for S or T) the square D with corners
(puncture points) {0, 1, 1 + i, i}. Label the bottom side B and the top
side B̄; label the left side A and the right side Ā. Note that the
transformation a identifies A with Ā and b identifies B with B̄. Use
the translation group to label the sides of all copies of D in the plane.
• Assume for simplicity that p/q ≥ 0. We will be indicate how to modify

the discussion otherwise. Choose a fundamental segment of the line
Lp/q and pick one of its endpoints as initial point. It passes through
p + q copies of the fundamental domain. Call the segment in each
copy a strand.

Because the curve is simple, there will either be “vertical” strands
joining the sides B and B̄, or “horizontal” strands joining the sides A
and Ā, but not both.

Call the segments joining a horizontal and vertical side corner strands.
There are four possible types of corner strands: from left to bottom,
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from left to top, from bottom to right, from top to right. If all four
types were to occur, the projected curve would be trivial on T. There
cannot be only one or three different types of corner strands because
the curve would not close up. Therefore the only corner strands occur
on one pair of opposite corners and there are an equal number on each
corner.
• Traversing the fundamental segment from its initial point, the line

goes through or “cuts” sides of copies of D. We will use the side
labeling to define a cutting sequence for the segment. Since each side
belongs to two copies it has two labels. We have to pick one of these
labels in a consistent way. As the segment passes through, there is the
label from the copy it leaves and the label from the copy it enters. We
always choose the label from the copy it enters. Note that the cyclic
permutation depends on the starting point.
• If p/q > 1, the resulting cutting sequence will contain p B’s and q

A’s and there will be p− q horizontal strands and q corner strands; if
0 ≤ p/q < 1, the resulting cutting sequence will contain q B’s, p A’s
and there will be q−p vertical strands and p corner strands. If p/q < 0
we either replace A by Ā or B by B̄. We identify the cutting sequence
with the word in G interpreting the labels A,B and the generators
and the labels Ā, B̄ as their inverses.
• Given an arbitrary word W = Am1Bn1Am2Bn2 . . . AmpBnp in G, we

form a cutting sequence for it by drawing strands from the word
through successive copies of D. We then draw translates of the re-
sulting strands by elements of the lattice group so that they all lie in
the fundamental domain D. The strands in D are all disjoint up to
homotopy if and only if the word is primitive.

Let us illustrate with three examples. In the first two, we draw the
cutting sequences for the fractions p

q = 1
1 and p

q = 3
2 . In the third, we

construct the cutting sequence for the word A2B3. See figure ??.

• A fundamental segment of l1/1 can be chosen to begin at a point on
the left (A) side and pass through D and the adjacent copy above D;
There will be a single corner strand connecting the A side to a B̄ side
and another connecting a B side to an Ā side.

To read off the cutting sequence begin with the point on A and
write A. Then as we enter the next (and last) copy of D we have an
B side. The word is thus AB.

Had we started on the bottom, we would have obtained the word
BA.
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• A fundamental segment of L3/2 passes through 5 copies of the fun-
damental domain. (See Figure 2.) There is one “vertical” segment
joining a B and a B̄, 2 corner segments joining an A and a B̄ and two
joining the opposite corners. Start on the left side. Then, depend-
ing on where on this side we begin we obtain the word ABABB or
ABBAB.

If we start on the bottom so that the vertical side is in the last copy
we encounter we get BABAB.
• To see that the word AABBB cannot correspond to a simple loop,

draw the a vertical line of length 3 and join it to a horizontal line
of length 2. Translate it one to the right and one up. Clearly the
translate intersects the curve and projects to a self-intersection on the
torus. This will happen whenever the horizontal segments are not
separated by a vertical segment.

Another way to see this is to try to draw a curve with two meridian
loops and three longitudinal loops on the torus. You will easily find
that if you try to connect them arbitrarily the strands will cross on T,
but if you use the order given by the cutting sequence they will not.
Start in the middle of the single vertical strand and enter a letter every
time you come to the beginning of a new strand. We get BABAB.
• Suppose W = B3A2. To draw the cutting sequence, begin on the

bottom of the square and, since the next letter is B again, draw a
vertical strand to a point on the top and a bit to the right. Next,
since we have a third B, in the copy above D draw another vertical
strand to the top and again go a bit to the right. Now the fourth
letter is a A so we draw a corner strand to the right. Since we have
another A we need to draw a horizontal strand. We close up the curve
with a last corner strand from the left to the top.

Because we have both horizontal and vertical strands, the curve is
not simple and the word is not primitive.

1.4 Proofs

Proof of Theorem 1.2.3.
A word is primitive if and only if its cutting sequence defines a curve

with no intersecting strands in the fundamental domain. The word cor-
responding to the cutting sequence is determined up to cyclic permuta-
tion, depending on which strand is chosen as the first one, and inverse,
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depending on the direction. It therefore corresponds to a line of ratio-
nal slope p/q. This means that given a word in {Wp/q} we can check
whether it is primitive by drawing its cutting sequence.

We start with a line of slope p/q and find its cutting sequence. This
process will determine conditions on the form of the corresponding word
that will be necessary and sufficient for the word to be primitive.

The cases p/q = 0/1, 1/0 are trivial. We suppose first that p/q ≥ 1
and treat that case. The other cases follow in the same way, either
interchanging A and B or replacing B by B.

Set p/q = [a0, . . . ak]. Since p/q > 1 we know that a0 > 0. Note
that there is an ambiguity in this representation; we have [a0, . . . ak −
1, 1] = [a0, . . . ak]. We can eliminate this by assuming ak > 1. With this
convention, the parity of k is well defined.

Assume first k is even; choose as starting point the lowest point on
an A side. The line Lp/q has slope at least 1 so there will be at least
one vertical strand and no horizontal strands. Because there are no
horizontal strands, we must either go up or down; assume we go up.
The first letter in the cutting sequence is A and since the strand must
be a corner strand, the next letter is B. As we form the cutting sequence
we see that because there are no horizontal strands, no A can be followed
by another A. Because we always go up or to the right, no strand begins
with B̄. Because we started at the lowest point on A, the last strand we
encounter before we close up must start at the rightmost point on a B
side. Since there are p+ q strands, this means the sequence, and hence
the word belongs to {Wp/q}. Since we begin with an A, n0 = 0 and the
word looks like

ABn1ABn2A . . . Bnq ,

q∑
i=1

ni = p

with all ni > 0. If we use the translation group to put all the strands
into one fundamental domain, the endpoints of the strands on the sides
are ordered. We see that if we are at a point on the B side, the next time
we come to the B side we are at a point that is q to the right mod(p).

Let us see exactly what the exponents are. Since we began with the
lowest point on the left, the first B comes from the qth strand on the
bottom. There are p strands on the bottom; the first (leftmost) p − q
strands are vertical and the last q are corner strands. Since we move to
the right p strands at a time, we can do this a0 = [p/q] times. The word
so far is ABa0 .

At this point we have a corner strand so the next letter will be an A.



Cutting Sequences and Palindromes 17

Define r1 by p = a0q+ r1. The corner strand ends at the right endpoint
r1 + 1 from the bottom and the corresponding corner strand on the A
side joins with the (q − r1)th vertical strand on the bottom. We again
move to the right q strands at a time, a0 times, while a0q − r1 > p− q.
After repeating this some n times, a0q − r1 ≤ p − q. This number, n,
will satisfy q = r1n+ r2 and r2 < r1. Notice that this is the first step of
the Euclidean algorithm for the greatest common denominator of p and
q and it generates the continued fraction coefficients at each step. Thus
n = a1 and the word at this point is [ABa0 ]a1 . Since we are now at a
corner strand, the next letter is an “extra” B. We repeat the sequence
we have already obtained a3 times where r1 = a3r2 + r3 and r3 < r2.
The word at this point is [ABa0 ]a1B[[ABa0 ]a1 ]a3 which is the word V3

in the V -recursion scheme.
We continue in this way. We see that the Euclidean algorithm tells

us that each time we have an extra B, the sequence up to that point
repeats as many times as the next ai entry in the continued fraction
expansion of p/q. When we come to the last entry ak, we have used all
the strands and are back to our starting point. The exponent structure is
thus forced on us by the number p/q and the condition that the strands
not intersect.

If we had intersecting strands we might have a horizontal strand vio-
lating the condition on the A exponents. If a vertical strand intersected
either another vertical strand or a corner strand, or if two corner strands
intersected, the points on the top or bottom would not move along q at
a time and the exponents wouldn’t satisfy the rules above.

If k is odd, we begin the process at the rightmost bottom strand and
begin the word with B and obtain the recursion.

Note that had we chosen a different starting point we would have
obtained a cyclic permutation of Wp/q, or, depending on the direction,
its inverse.

For 0 < p/q < 1 we have no vertical strands and we interchange the
roles of A and B. We use the continued fraction q/p = [a0, . . . , ak] and
argue as above, replacing “vertical” by “horizontal”.

For p/q < 0, we replace A or B by Ā or B̄ as appropriate.
Thus, we have proved that if we have a primitive word its exponents

satisfy the conditions in Theorem 1.2.3 up to to cyclic permutation. In
addition, if the exponents ni of a word W ∈ {Wp/q}, or some cyclic
permutation of it, do not satisfy the exponent conditions, the strands
of its cutting sequence must either intersect somewhere or they do not
close up properly and the word is not primitive. The conditions are
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therefore both necessary and sufficient for the word to be primitive and
Theorem 1.2.3 follows. �

It is obvious that the only primitive exponents that can occur are a0

and a0 +1. This gives the simple necessary conditions of Corollary 1.2.1.
�

For the proof of Corollary 1.2.3 we want to to see when two primitive
words Wp/q and Wr/s are associates. Note the vectors joining zero with
m + ni and r + si generate the lattice L if and only if |ps − qr| = 1;
or equivalently, if and only if (p/q, r/s) are neighbors. Fundamental
segments of lines Lp/q, Lr/s correspond to primitive words in {Wp/q}
and {Wr/s}. If we choose words Wp/q and Wr/s and draw their cutting
sequences they both start at a point closest to the left bottom corner.
Connecting the strands for each word we see that they become generators
for the lattice and hence associates if and only if (p/q, r/s) are neighbors.
�

Proof of Theorem 1.2.1 and 1.2.2. Although Theorem 1.2.1 and
1.2.2 can be deduced from the proof above, we give an independent
proof.

The theorems prescribe a recursive definition of a primitive word as-
sociated to a rational p/q. We assume p/q ≥ 0 and that m/n and r/s

are parents with
m

n
<
p

q
<
r

s
.

We need to show that if we draw the strands for the cutting sequences
of Wm/n and Wr/s in the same diagram, then the result is the cutting
sequence of the product.

Note again that if r/s,m/n are neighbors, the vectors joining zero
with m + ni and r + si generate the lattice L. Draw a fundamental
segment sm/n for Wm/n joining 0 to m+ni and a fundamental segment
sr/s for Wr/s joining m + ni to (m + r) + (n + s)i. The straight line s
joining 0 to (m + r) + (n + s)i doesn’t pass through any of the lattice
points because by the neighbor condition rn − sm = 1, sm/n and sr/s
generate the lattice. We therefore get the same cutting sequence whether
we follow sm/n and sr/s in turn or follow the straight line s. This means
that the cutting sequence for Wp/q is the concatenation of the cutting
sequences of Wr/s and Wm/n which is what we had to show.

If p/q < 0, reflect the lattice in the imaginary axis. This corresponds
to applying the rules in Definition 3.
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We note that proving Theorem 1.2.2 is just a matter of notation.
�

Proof of Theorem 1.2.4.
We prove the theorem for 0 < p/q < 1. The other cases follow as

above by interchanging the roles of A and B or replacing B by B. The
idea is to choose the starting point correctly.

Suppose pq is even. We want to show that there is a unique cyclic
permutation of Wp/q that is a palindrome.

Draw a line of slope p/q. By assumption, there are horizontal but
no vertical strands and p − q > 0 must be odd. This implies that in a
fundamental segment there are an odd number of horizontal strands. In
particular, if we pull all the strands of a fundamental segment into one
copy of D, one of the horizontal strands is the middle strand. Choose
the fundamental segment for the line in the lattice so that it is centered
about this middle horizontal strand.

To form the cutting sequence for the corresponding word W , begin
at the right endpoint of the middle strand and take as initial point
the leftpoint that it corresponds to. Now go to the other end of the
middle strand on the left and take as initial point the rightpoint that
it corresponds to and form the cutting sequence for a word V . By the
symmetry, since we began with a middle strand, V is W with all the A’s
replaced by A’s and all the B’s replaced by B’s. Since V = W−1, we see
that W must be a palindrome which we denote as W = Pp/q. Moreover,
since it is the cutting sequence of a fundamental segment of the line of
slope p/q, it must is a cyclic permutation of Wp/q.

Note that since we began with a horizontal strand, the first letter in
the sequence is an A and, since it is a palindrome, so is the last letter.

When q/p > 1, there are horizontal and no vertical strands, and there
is a middle horizontal strand. This time we choose this strand and go
right and left to see that we get a palindrome. The first and last letters
in this palindrome will be B.

If p/q < 0, we argue as above but either A or B is replaced by respec-
tively Ā or B̄. �

Heuristic for the enumeration, Theorem 1.2.5.
The proof of the enumeration theorem, Theorem 1.2.5, involves purely

algebraic manipulations and can be found in [GKenum]. We do not re-
produce it here but rather give a heuristic geometric idea of the enu-
meration and the connection with palindromes that comes from the
PSL(2,R) discreteness algorithm [G2, G3].
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Note that the absolute value of the trace of an elementX ∈ PSL(2,R),
|trace(X)|, is well-defined. Recall that X is elliptic if |trace(X)| < 2 and
hyperbolic if |trace(X)| > 2. As an isometry of the upper half plane,
each hyperbolic element has an invariant geodesic called its axis. Each
point on the axis is moved a distance l(X) towards one endpoint on the
boundary. This endpoint is called the attractor and the distance can be
computed from the trace by the formula cosh l(X)

2 = 1
2 |trace(X)|. The

other endpoint of the axis is a repeller.
For convenience we use the unit disk model and consider elements of

PSL(2,R) as isometries of the unit disk. In the algorithm one begins
with a representation of the group where the generators A and B are
(appropriately ordered) hyperbolic isometries of the unit disk. The algo-
rithm applies to any non-elementary representation of the group where
the representation is not assumed to be free or discrete. The axes of
A and B may be disjoint or intersect. We illustrate the geometric idea
using intersecting axes.

If the axes of A and B intersect, they intersect in unique point p. In
this case one does not need an algorithm to determine discreteness or
non-discreteness as long as the multiplicative commutator, ABA−1B−1,
is not an elliptic isometry. However, the geometric steps used in deter-
mining discreteness or non-discreteness in the case of an elliptic commu-
tator still make sense. We think of the representation as being that of a
punctured torus group when the group is discrete and free.

Normalize at the outset so that the translation length of A is smaller
than the translation length of B, the axis of A is the geodesic joining −1
and 1 with attracting fixed point 1 and the axis of B is the line joining
eiθ and −eiθ. This makes the point p the origin. Replacing B by its
inverse if necessary, we may assume the attracting fixed point of B is
eiθ and −π/2 < θ ≤ π/2.

The geometric property of the palindromic words is that their axes all

pass through the origin.

Suppose (p/q, p′/q′) is a pair of neighbors with pq and p′q′ even and
p/q < p′/q′. The word Wr/s = Wp′/q′Wp/q is not a palindrome or
conjugate to a palindrome. Since it is a primitive associate of both
Wp′/q′ and Wp/q the axis of AxWr/s

intersects each of the axes AxWp/q

and AxWp′/q′ in a unique point; denote these points by qp/q and qp′/q′

respectively. Thus, to each triangle, (p/q, r/s, p′/q′) we obtain a triangle
in the disk with vertices (0, qp/q, qp′/q′).

The algorithm provides a method of choosing a next neighbor and
next associate primitive pair so that at each step the longest side of the
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triangle is replaced by a shorter side. The procedure stops when the
sides are as short as possible. Of course, it requires proof to see that
this procedure will stop and thus will actually give an algorithm.

There is a similar geometric description of the algorithm and palin-
dromes in the case of disjoint axes.

The first author would like to thank the Rutgers Research Council
and Yale University for support. The second author would like to thank
PSC-CUNY for support.
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