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Abstract

We consider the iterated function system Fn = fn ◦ . . . ◦
f2 ◦ f1 formed from the holomorphic functions in the family
H(∆,Ω). The analog of stable behavior for such systems
is that the limit functions be constant. We prove that a
necessary and sufficient condition for stable behavior for all
iterated function systems formed from H(∆, Ω) is that Ω be
a proper subset of ∆. We also prove that for a given iterated
function system the constant limit functions are unique if and
only if Ω is relatively compact in ∆.

1 Introduction

Suppose that we are given a random sequence of holomorphic self
maps f1, f2, f3, . . . of the unit disk ∆. We consider the iteration
scheme

Fn = fn ◦ fn−1 ◦ . . . f2 ◦ f1

for this system. This is called the forward iteration function sys-
tems made from the sequence f1, f2, f3, . . . . There is a theory for
“backward iterated function systems” but we do not consider it here
(see [1, 8, 9]) so we simply call Fn an iterated function system. By
Montel’s theorem (see for example [2]), the sequence Fn is a nor-
mal family, and every convergent subsequence converges uniformly
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on compact subsets of ∆. The limits of those uniformly convergent
subsequences are called accumulation points. Every accumulation
point F of Fn is a holomorphic map. Therefore, every such map F
is either a nonconstant open self map of the unit disk or a constant
map. The constant accumulation points may be located either inside
the unit disk or on the boundary of unit disk.

We may look at the iterated function system as a dynamical
system acting on ∆. If z is an arbitrary point of ∆, its orbit under
the iterated function system, Fn(z) converges to F (z). Hence, if
the only limit functions are constants, the orbits of all points tend
to periodic cycles. As we will see, we can find conditions so that
whether this happens depends only on the subdomain Ω ⊂ ∆ and
not on the particular system chosen from H(∆, Ω).

If all maps fn are the same, the well known Denjoy-Wolff Theo-
rem determines all possible accumulation points.

The Denjoy-Wolff Theorem. Let f be a holomorphic self map
of the unit disk ∆ that is not a conformal automorphism. Then the
iterates fn of f converge locally uniformly in ∆ to a constant value
t, where |t| ≤ 1.

Therefore, the only accumulation points of the system fn where
f is not a biholomorphic isometry of ∆ are constants.

Many articles have studied possible generalizations of the Denjoy-
Wolff Theorem to general iterated function systems. One result of
Lorentzen [10] and Gill [7] is

Theorem(Lorentzen-Gill.) If an iterated function system is formed
from functions in H(∆, K) where K is relatively compact in ∆ then
the system Fn converges locally uniformly in ∆ to a unique constant.
This constant is, of course, located in the compact set K.

In this paper we will prove the following theorems:

Theorem 1 Let Ω be a subdomain of the unit disk ∆. Then all accu-
mulation points of any iterated function system of maps in Hol(∆, Ω)
are constant functions if and only if Ω 6= ∆.

and
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Theorem 2 The accumulation points of any iterated function sys-
tem of maps in Hol(∆, Ω) are unique if and only if Ω is a relatively
compact subdomain of ∆.

This paper as well as the work in [8] were motivated by the work
in [1] which concentrated on backward iterated function systems.
The authors there exploit the natural hyperbolic geometry of the
domains ∆ and Ω and the fact that holomorphic functions are con-
tractions with respect to the hyperbolic metric. In section 2 we will
prove the first theorem and in section 3 we will prove the second
theorem.

2 Constant Limit Functions

The proof of theorem 1 will use the reasoning developed in [1] which
compares the Poincaré distances in ∆ and in Ω. First we recall some
basic facts.

The Poincaré density of the unit disk ∆ is defined as

ρ(z) =
1

1− |z|2

for each z in ∆ and the Poincaré distance on ∆ between two points
z and w in ∆ is defined by

ρ(z, w) = inf

∫

γ

ρ(t)|dt|

where the infimum is over all rectifiable curves γ joining z and w. It
is easy to check that for any Möbius transformation A(z) preserving
∆, ρ(A(z))|A′(z)| = ρ(z) so that for any two points z and w in ∆,

ρ(z, w) = ρ(A(z), A(w))

Every open set Ω in the extended complex plane with at least
three boundary points admits ∆ as a universal covering surface. The
projection of the Poincaré density in ∆ defines a Poincaré density
ρΩ on Ω as follows:

ρΩ(z) =
ρ(a)

|π′(a)|
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where a ∈ ∆, π : ∆ → Ω is the universal covering projection and
π(a) = z. From this formula and the local injectivity of π we de-
duce that the density ρΩ is continuous. The Poincaré distance on Ω
between any pair of points z, w ∈ Ω is defined by

ρΩ(z, w) = inf

∫

γ

ρΩ(t)|dt|

where the infimum is over all rectifiable curves γ joining z and w.
The Schwarz lemma for holomorphic functions defined on ∆ says

that for any z ∈ ∆, and any f ∈ H((∆, ∆), ρ(f(z))|f ′(z)| ≤ ρ(z)
with equality if and only if f is a Möbius transformation preserving
∆. Using this we can also characterize ρΩ as

ρΩ(z) = inf
1

|f ′(0)|
where the infimum is taken over all f ∈ H(∆, Ω) such that f(0) = z.

Using this characterization we can show that for domains X, Y
and any f ∈ H(X, Y ), then ρY (fz)|f ′z| ≤ ρX(z). Applying this to
the identity map with X ⊂ Y we have ρY (z) ≤ ρX(z).

Suppose now that Ω is a subset of the unit disk ∆ such that the
complement of Ω in ∆ is nonempty. Let fn be an arbitrary sequence
of holomorphic functions in H(∆, Ω). The sequence fn generates the
iterated function system Fn = fn ◦ fn−1 ◦ . . . ◦ f1. We want to show
that all accumulation points of Fn are constant functions. Since Ω
is a proper subset of ∆, the universal covering map π : ∆ → Ω is
not surjective. Applying the Schwarz lemma to the map π we have
ρ(z) < ρΩ(z) for each z in Ω. Thus if N is any relatively compact
subset of Ω we can find a constant k(N) < 1 such that ρ(z) ≤
k(N)ρΩ(z) for all z ∈ N . iTherefore, we have the following lemma.

Lemma A. Let N = N(a, r) be the set of all points in Ω whose
ρΩ−distance from some point a in Ω is less than r. Let f be any
holomorphic map from the unit disk ∆ into Ω. If z and w are any
two points in ∆ such that f(z) and f(w) belong to N, then

ρ(f(z), f(w)) ≤ Cρ(z, w),

where the constant C = C(N) < 1 depends only on the neighbor-
hood N.

4



Lemma A was one of the key ingredients in [1]. For the reader’s
benefit, we illustrate the proof here. Let Ñ = N(a, 3r). If γ is a
geodesic in Ω which joins f(z) and f(w), then it has to stay in Ñ .
Therefore, we have

c(Ñ)ρ∆(z, w) ≥ c(Ñ)ρΩ(fz, fw) =

∫

γ

c(Ñ)ρΩ(t)|dt| ≥
∫

γ

ρ(t)|dt| ≥ ρ(fz, fw).

The proof of Theorem 1

Suppose that the sequence Fnk
converges locally uniformly on ∆

to some holomorphic map F. Since the image of each Fnk
is a subset

of the closure of Ω, the same holds for the limit F. Suppose that
F is non-constant. Then F is an open map, and so there exists a
point z0 in ∆, such that F (z0) is in Ω. If w0 is any point in ∆, with
ρ(z0, w0) < 1, then since each fi is a weak contraction, so is Fnk

and
we have ρΩ(Fnk

(w0), Fnk
(z0)) ≤ ρ(z0, w0) < 1. Therefore, Fnk

(w0)
and Fnk

(z0) both belong to N = N(F (z0), 2) for all sufficiently large
k. Lemma A yields

ρ(Fnk
(z0), Fnk

(w0)) ≤ C(N)ρ(fnk−1 ◦ . . . f1(z0), fnk−1 ◦ . . . f1(w0)) ≤

C(N)ρ(fnk−2 ◦ . . . f1(z0), fnk−2 ◦ . . . f1(w0)) ≤ . . . ≤
C(N)ρ(fnk−1

◦ . . . f1(z0), fnk−1
◦ . . . f1(w0)) ≤

C(N)2ρ(fnk−1−1 ◦ . . . f1(z0), fnk−1−1 ◦ . . . f1(w0)) ≤ . . .

Therefore ρ(Fnk
(z0), Fnk

(w0)) → 0 as k → ∞ and F (z0) = F (w0).
This shows that F is constant in a neighborhood of z0, but since F
is holomorphic, we conclude that F is a constant map. That is a
contradiction and finishes the proof of the theorem.

3 Uniqueness of limits

In this section we study the uniqueness of the accumulation points
of an iterated system of functions fn which map the unit disk to a
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proper subdomain Ω of the unit disk. We show that the accumulation
points are not necessarily unique. By the Lorentzen-Gill theorem,
if the subdomain Ω is relatively compact the limits are unique so
we assume that Ω is an arbitrary subdomain of ∆, whose boundary
intersects the unit circle.

Theorem 3 Suppose that Ω is any subdomain of the unit disk ∆
such that the closure of Ω is not a subset of ∆. Then there exists
a sequence fn of holomorphic mappings from ∆ to Ω such that the
iterated system Fn = fn ◦ fn−1 ◦ . . . f3 ◦ f2 ◦ f1 has more than one
accumulation point.

Proof. Let Ω be any subdomain of the unit disk ∆ such that the
closure of Ω is not a subset of ∆. We will construct the sequence
of maps fi from a sequence of covering maps πi of Ω together with
Möbius transformations Ai of ∆.

We start with an arbitrary point a in Ω. If we choose a point c
in Ω, which is sufficiently close, but not equal to a, then there exists
a universal covering map π1 from ∆ to Ω and a point a1 6= a in Ω,
such that π1(a) = c and π1(a1) = a.

Let h2 be a covering map from ∆ onto Ω such that h2(a) = a1.
Then there exists a point c2 in ∆ such that h2(c2) = a and ρ(a, c2) =
ρΩ(a, a1). We cannot assume, however, that c2 ∈ Ω. Since Ω is
not relatively compact in ∆, the boundary of the hyperbolic disk
(with respect to ρ) with center at a and radius ρ(a, c2) intersects
Ω. Let a2 be a point that belongs to this intersection, and let A2

be a Möbius self map of the unit disk that is a rotation around the
point a and sends a2 to c2. The covering map π2 = h2 ◦ A2 of ∆
onto Ω satisfies π2(a) = a1 and π2(a2) = a. Furthermore ρ(a2, a) =
ρ(c2, a) = ρΩ(a, a1).

Continuing this process we obtain a sequence of covering maps
πn and a sequence of points an in Ω such that

ρ(a, an) = ρΩ(an−1, a) (1)

πn(a) = an−1 (2)

and
πn(an) = a (3)

for all n.
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We slightly alter the sequence πn to obtain the desired sequence
fn. We let

f2n−1 = π2n

and
f2n = π2n−1

for all n. If Fn = fn ◦ fn−1 ◦ . . . f3 ◦ f2 ◦ f1 is the iterated function
system made of covering maps f1, f2, f3, . . . , then the equalities (2)
and (3) imply F2n(a) = a and F2n−1(a) = π2n(a) = a2n−1. The
equalities (1), (2) and (3) together with the fact that inclusion maps
are contractions, yield

ρΩ(a, a1) = ρ(a, a2) ≤ ρΩ(a, a2) = ρ(a, a3) ≤ . . . ≤ ρΩ(a, a2n−2) = ρ(a, a2n−1).

Therefore ρ(a, a2n−1) ≥ ρ(a, a1) > 0. This implies that F2n and F2n+1

have different accumulation points. ¤

We remark that the same construction gives us non-uniqueness
of limit points for backwards iterated function systems as well. Set
Gn = π1 ◦ . . . ◦ πn and study the even and the odd subsequences
of Gn. The equalities (2) and (3) imply that the even subsequence
G2n satisfies G2n(a) = a, and the odd subsequence G2n+1 satisfies
G2n+1(a) = c 6= a. Therefore these two subsequences have different
accumulation points.
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