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Abstract

In this paper we give a complete description of the space QF of quasifuchsian
punctured torus groups in terms of what we call pleating invariants. These are
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horocycles extend to BM-slices on which the pleating invariants of one component
of ∂C are fixed.
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and that their boundaries can be found explicitly. This means, answering questions
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1 Introduction

In his recent paper [35], Minsky gave a full description of the space of punc-
tured torus groups in terms of their ending invariants. These invariants are
the conformal structures of the quotient surfaces of the regular set of the
group acting on the Riemann sphere, or, if a component is degenerate, the
corresponding ending lamination of Thurston.

In this paper we give an alternative description of quasifuchsian space QF in
terms of what we call pleating invariants. These replace conformal structures
at infinity by natural invariants of the geometry of the boundary of the convex
core of the associated three manifold. These invariants again extend naturally
to ending laminations for groups on the boundary of QF . Pleating invariants
have considerable computational advantages: we show how they can be used
to explicitly locate the group with given invariants, and to compute the shape
and boundary of QF , for any embedding into C2.

A punctured torus group < G; A,B > is a free marked two generator dis-
crete subgroup of PSL(2,C) such that the commutator of the generators is
parabolic. Such a group is the image of a faithful representation ρ of the funda-
mental group of a punctured torus T1 with presentation π1(T1) =< α, β >; the
commutator of the generators represents a loop around the puncture and the
ordered pair (A,B) = (ρ(α), ρ(β)) is the marking. The group G acts as a dis-
crete group of isometries of hyperbolic space H3 and the quotient hyperbolic
manifold M = H3 /G is a product T1 × (−1, 1).

A punctured torus group also acts as a group of conformal automorphisms of
the Riemann sphere Ĉ and partitions it into two invariant subsets, the open
(possibly empty) regular set Ω and the closed limit set Λ. The group G is
quasifuchsian if Ω consists of two non-empty simply connected invariant com-
ponents denoted Ω±. The quotients Ω±/G are punctured tori with conformal
structures inherited from Ĉ.

Quasifuchsian space QF is the space of quasifuchsian marked punctured torus
groups modulo conjugation in PSL(2,C); Fuchsian space F is the subset such
that the components Ω± are round disks.

The convex hull C of Λ in H3 is also invariant under G. The hyperbolic mani-
fold C/G is called the convex core of G. If G is quasifuchsian, but not Fuchsian,
∂C/G consists of two components, ∂C±/G. Each component is homeomorphic
to T1 and admits an intrinsic hyperbolic structure making it a pleated sur-
face in the sense of Thurston. Such a surface is a hyperbolic surface “bent”
along a geodesic lamination called the pleating locus or bending lamination.
The pleating locus carries a natural transverse measure, the bending measure
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pl±(G).

For any measured geodesic lamination µ on a hyperbolic surface Σ, we denote
the projective class of µ by [µ] and the underlying lamination by |µ|. Writing lµ
for the lamination length of µ, we note that if µ, µ′ are in the same projective
class, so that µ = cµ′, c > 0, then lµ = clµ′ . We define the pleating invariants
for G ∈ QF −F to be the projective class of the pair (µ±, lµ±) for any choice
of measured laminations µ± in [pl±].

We prove

Theorem 1 A non-Fuchsian quasifuchsian marked punctured torus group is
determined by its pleating invariants, uniquely up to conjugacy in PSL(2,C).

The essential idea is to study the sets in QF on which some or all of the
pleating invariants are constant; in particular, we study the set Pµ,ν ⊂ QF
for which [pl+] = [µ], [pl−] = [ν]. Clearly Pµ,ν depends only on the projective
classes [µ], [ν] of µ, ν. We prove that these sets are connected real two dimen-
sional submanifolds of QF whose boundaries meet F and ∂QF in specific
analytic curves; as the projective classes vary, the sets Pµ,ν , which for obvious
reasons we call pleating planes, foliate QF − F . We are also able to describe
exactly how the closure of Pµ,ν meets F .

The spaceQF has a natural C2-holomorphic structure induced from PSL(2,C).
Let U ⊂ QF . An R2-locus in U is a set f−1(R2) ∩ U where f : U → C2 is
a non-constant holomorphic function defined on U . A singularity is a point
where Det(Jacf (z)) = 0. For example, Fuchsian space is an R2-locus in QF ,
(see section 7.1).

The starting point for our analysis of Pµ,ν is to prove that for µ ∈ ML,
the length function lµ on F extends to a holomorphic function λµ, called the
complex length of µ, on QF , and that λµ is real valued at points where the
projective class of pl± is [µ]. Thus Pµ,ν is contained in the R2-locus of the
holomorphic function Lµ,ν = λµ × λν from QF to C2.

To describe Pµ,ν more precisely, we recall some facts about Fuchsian space F .
Let µ be a measured geodesic lamination on a hyperbolic surface Σ. The dis-
tance t earthquake Eµ(t) along µ gives a one parameter family of deformations
of F which generalize Fenchel-Nielsen twists along simple closed geodesics.
For a point p ∈ F , we denote the earthquake path {Eµ(t)(p) : t ∈ R} through
p by Ep

µ. The earthquake path is contained in F and meets ∂F , the Thurston
boundary of F , in the point [µ]. Kerckhoff proved that for each measured
lamination ν whose intersection i(µ, ν) with µ is non-zero, the length function
lν has a unique minimum along Ep

µ.
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In the special case of the punctured torus, it is an easy consequence of Ker-
ckhoff’s results that for each c > 0, there is a unique earthquake path Eµ,c

on which lµ ≡ c. We denote the point at which lν is minimal on this path by
pµ,ν,c, and set fµ,ν(c) = lν(pµ,ν,c). For fixed µ, ν and variable c, the points pµ,ν,c

define an analytic path Fµ,ν , which we call a critical line; it meets ∂F in the
points [µ], [ν]. The length functions lµ, lν are monotonic on Fµ,ν and fµ,ν(c) is
continuous, decreasing monotonically from ∞ to 0 on its domain (0,∞).

The following result completely describes the pleating planes Pµ,ν ; in particular
it shows that Pµ,ν can be viewed as an extension into QF of the critical line
Fµ,ν .

Theorem 2 Let (µ, ν) be measured laminations on T1 with i(µ, ν) > 0. Then
Pµ,ν is a non-empty connected non-singular component of the R2-locus in
QF − F of the function Lµ,ν. The restriction of Lµ,ν to Pµ,ν is a diffeomor-
phism to the open region under the graph of the function fµ,ν in R+ ×R+.

The boundary of the closure of Pµ,ν in QF is the critical line Fµ,ν ⊂ F ; it is
mapped homeomorphically by Lµ,ν to the graph of fµ,ν . The planes Pν,µ and
Pµ,ν are disjoint with common boundary Fµ,ν in QF . The set Pµ,ν ∪Pν,µ ∪F
is an R2-locus in QF and the union Pµ,ν ∪Pν,µ ∪Fµ,ν may be regarded as the
extension of the µ, ν critical line to QF .

The three components of the boundary of the image of Pµ,ν in R+ × R+

correspond to three distinct parts of its closure in the set of algebraic limits
of groups in QF . As above, the component corresponding to the graph of fµ,ν

represents groups on the critical line Fµ,ν ⊂ F . For limit groups corresponding
to the axis λµ = 0 the component Ω+ has degenerated and the support |µ|
of µ is an ending lamination; the bending measure of ∂C−, however, is still in
the projective class of ν. Likewise, for limit groups corresponding to the axis
λν = 0, the component Ω− has degenerated and the ending lamination is |ν|.
The boundary point (0, 0) represents a doubly degenerate group, unique by the
results of [35] (or [17] in the rational case), with the two ending laminations
|µ| and |ν|.

Theorems 1 and 2 together show that we have a nice coordinate system on
QF −F : theorem 1 shows that the map to pleating invariants is injective and
theorem 2 describes the image.

The measured lamination µ is called rational if its support is a simple closed
geodesic. Such a geodesic can only belong to the pleating locus |pl±| if its
representatives V ∈ G are purely hyperbolic and hence have real trace. Given
any embedding QF into C2, the generators of G are holomorphic functions
of the embedding parameters and Tr V is a polynomial in the entries of the
generators. In particular, given any elements V,W ∈ G representing distinct
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simple closed curves |µ|, |ν| on T1, one can compute the position of the critical
line Fµ,ν . If both laminations µ, ν are rational, we call Pµ,ν a rational pleating
plane. Theorem 2 implies

Theorem 3 Let µ, ν be rational laminations represented by non-conjugate el-
ements V, W ∈ G. Then Pµ,ν and Pν,µ are the unique components of the
R2-locus of the function Tr V × Tr W in QF − F whose closures meet F in
Fµ,ν. On Pµ,ν ∪Pν,µ the function Tr V ×Tr W is non-singular and the bound-
ary of Pµ,ν ∪Pν,µ can be computed by solving Tr V = ±2 and Tr W = ±2 on
this component.

We also prove

Theorem 4 The rational pleating planes are dense in QF .

In the late 1960’s, Bers asked whether it was possible to find the shape of
quasifuchsian space by explicit computation; one would expect the punctured
torus to be the easiest case. Partial results were obtained by a number of
people, some using computational methods, among them [16,41,47], others
developing new tools and techniques [13,30]. For the punctured torus, the
above results give an effective means of finding the boundary of the image of
any chosen embedding of QF into C2, answering Bers’ question in full.

We also study the way in which the pleating planes fit together transversally
to the real locus of Lµ,ν . This is done by fixing the pleating invariants of one
side of ∂C; one can regard this as analogous to fixing the ending invariant
on one side in QF , to obtain the classical Bers slice [1]. Thus for a fixed
measured lamination µ and c > 0, we define the BM-slice BM+

µ,c as the subset
of QF on which [pl+] = [µ] and λµ = c. The BM-slices are subsets of the
quakebend planes Qµ,c obtained by Thurston’s quakebend construction along
the measured lamination µ (see [9] and section 7 below). These are extensions
of the earthquake path Eµ,c into QF . Unlike the path Eµ,c which is completely
contained in F , the quakebend plane Qµ,c is not totally contained in QF . We
prove

Theorem 5 Let µ be a measured lamination on T1 and let c > 0. Then the
closures in QF of exactly two of the connected components of Qµ,c∩(QF−F)
meet F . These components are the slices BM±

µ,c and the closure of each slice
meets F precisely in the earthquake path Eµ,c. Furthermore, each slice is simply
connected and retracts onto Eµ,c.

Thus, just like the Bers slices, the BM -slices are complex planes inQF and like
them, they foliate QF −F . We note that while the boundary of the pleating
planes consists of smooth curves, the boundary of a BM -slice is typically a
fractal-like curve. Pictures of such curves may be found in [18,38,47].
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The basis of the proofs of the above results are two important theorems which
control the local behavior of pleating invariants. We call these the limit pleating
theorem and local pleating theorem respectively. Roughly, the limit pleating
theorem states that if the pleating invariants of a sequence of groups in QF
converge, then the groups converge to an algebraic limit; furthermore the limit
group is in QF provided the limit pleating lengths are non-zero. It is closely
related to Thurston’s double limit theorem [44], and also to the ‘Lemme de
fermeture’ in [5].

The local pleating theorem makes essential use of the complex length function
λµ. As mentioned above, if q ∈ QF , then λpl+(q) ∈ R. In general, the converse
of this result is false; however the local pleating theorem gives a partial result:
if q ∈ Pµ so that λµ(q) ∈ R, then for q′ near q, the condition λµ(q′) ∈ R
implies that q′ ∈ Pµ. (As discussed in the introduction of [20] this result does
not hold for higher genus.)

The theory of quakebends as developed in [9] allows us to extend the earth-
quake paths Eµ,c into a family of holomorphic planes Qµ,c in QF . We reduce
the problem of studying the sets Pµ,ν by restricting to the subset Pµ,ν,c of Pµ,ν

on which the value of λµ is fixed at c ∈ R+. For reasons that will be clear
below, we call such a set a pleating ray. In Qµ,c, the complex length λν restricts
to a holomorphic function of one variable and it follows from the limit and
local pleating theorems that Pµ,ν,c is both open and closed in the R-locus of
λν in Qµ,c ∩QF .

The fact that the pleating rays are non-empty and the discussion of how they
meet Fuchsian space F results from the detailed study of the situation near
F which was carried out in [20]. We also have detailed information from [39]
about rays for which the laminations µ, ν are rational and correspond to a
pair of generators of T1. Combining this information allows us to prove

Theorem 6 Let µ, ν be measured laminations on T1 with i(µ, ν) > 0 and
let c > 0. Then the set Pµ,ν,c ⊂ QF on which [pl+] = [µ], [pl−] = [ν] and
lµ = c, is a non-empty connected non-singular component of the R-locus of
the restriction of λν to Qµ,c. This restriction is a diffeomorphism onto its
image (0, fµ,ν(c)) ⊂ R+.

Theorem 2, and hence also theorem 1, are immediate consequences of this
result. We also easily deduce theorem 5.

For groups on the boundary of QF , at least one of the components Ω± de-
generates and it is clear that our pleating invariants extend naturally to the
corresponding ending laminations for which the length (and also the complex
length) is always 0. It is also clear that these invariants should also character-
ize boundary groups; careful analysis requires the study of generalized Maskit

6



slices in which the fixed ending lamination is irrational, see [31].

The reader is referred to [35] for a good outline of the history relating to the
study of punctured torus groups.

Some of the ideas of this paper, in particular the relation of pleating planes to
the Kerckhoff picture of F and the idea of looking at the BM -slices, grew out
of discussions with John Parker, and we should like to thank him for his input
into this work. We should also like to thank our referees for their detailed
reading of earlier versions of this paper, in particular, for having signalled, in
view of the examples in [24], a gap in our proof of theorem 15, as well as having
suggested a more direct proof of lemma 41 and a simplification of the proof of
theorem 23. We would also like to thank Yair Minsky for conversations which
helped us precisely locate the above mentioned gap, and Francis Bonahon and
Cyril Lecuire for very useful discussions about how to rectify it.

The paper is organized as follows. Section 2 contains background on the punc-
tured torus, geodesic laminations and surfaces. Section 3 explains the picture
of earthquake paths and critical lines in F and in section 4 we review results
on pleated surfaces and the convex hull boundary. We prove the limit pleat-
ing theorem in section 5. In section 6 we show how to complexify the length
functions and show that the complex length of the pleating locus is real. In
section 7 we review results about quakebends and the convex hull boundary
and then in section 8 prove the local pleating theorem. We also derive vari-
ous important consequences of this result, including the proof of theorem 4.
In section 9 we prove our main results, theorem 6 on pleating rays and theo-
rem 2 on pleating planes. In section 10 we study BM-slices, proving theorem 5,
and we conclude in section 11 with a discussion of rational pleating planes,
computation, and some explicit examples. For readability, the proofs of three
technical results are deferred to the appendix.

2 Background

2.1 Punctured torus groups and markings

Let T1 be a torus with one puncture and a fixed orientation. Any pair of
simple closed loops on T1 that intersect exactly once are free generators of
π1(T1). Let (α, β) be such an ordered pair of free generators, chosen so that
their commutator αβα−1β−1 represents a loop around the puncture that is
positively oriented around the component of T1 not containing the puncture.
The ordered pair (α, β) is called a marking.
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A punctured torus group is a discrete subgroup G ⊂ PSL(2,C) that is the
image of a faithful representation ρ of π1(T1) such that the image of the loop
around the puncture is parabolic. If (α, β) is a marking of T1, and if A =
ρ(α), B = ρ(β), then the commutator K = ABA−1B−1 is parabolic and the
ordered pair (A,B) = (ρ(α), ρ(β)) is called a marking of G. If γ is any simple
closed curve on T1, then we can always choose a curve δ such that (γ, δ) is
a marking of T1. Setting ρ(γ) = V, ρ(δ) = W , then all possible markings
(V, W ′),W ′ ∈ G of G are of the form (V, V mW ),m ∈ Z.

The group G is quasifuchsian if the regular set Ω consists of two non-empty
simply connected invariant components Ω±. The limit set Λ(G) is topologi-
cally a circle. Quasifuchsian space QF is the space of marked quasifuchsian
punctured torus groups modulo conjugation in PSL(2,C); it has a holomor-
phic structure induced from the natural holomorphic structure of SL(2,C).
Fuchsian space F is the subset such that the components Ω± are round disks.
It is canonically isomorphic to the Teichmüller space of marked conformal
structures on T1.

The quotients Ω±/G are punctured tori with conformal structures, and hence
also orientations, inherited from Ĉ; the orientations of Ω+/G and T1 agree
whereas those of Ω−/G and T1 are opposite. This means Ω+(G) is the com-
ponent such that A−, B+, A+, B− occur in counterclockwise order around its
boundary Λ(G), where, for a loxodromic g ∈ SL(2,C), g+ and g− denote its
attracting and repelling fixed points respectively. Thus an alternative way to
choose a marking of G is to choose any pair of generators X,Y of G, and to
specify the choice of Ω+ by choosing it to be the component such that the
fixed points X−, Y +, X+, Y − run counterclockwise around its boundary.

A point q ∈ QF represents an equivalence class of marked groups in PSL(2,C).
We choose once and for all a triple of distinct points in Ĉ and let G = G(q)
denote the representative normalized by choosing A−, A+, K∞ to be this this
fixed triple, where K∞ is the fixed point of the parabolic K. We will refer to
this as the standard normalization. If it is clear from the context, for readabil-
ity, we suppress the dependence on q.

Note that throughout this paper, QF and F refer to the special case of the
once punctured torus T1 only.

2.2 Laminations

Let Σ be a hyperbolic surface. We denote by S the set of all simple closed
geodesics on Σ. There is one such geodesic in each free homotopy class of
simple closed non-boundary parallel loops, and the set S is independent of
the hyperbolic structure on Σ.
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Geodesic laminations were introduced by Thurston [45] as a generalization
of simple closed geodesics. A geodesic lamination on Σ is a closed set that
is a union of pairwise disjoint simple geodesics called its leaves. We denote
by GL = GL(Σ) the set of of all geodesic laminations on Σ; GL(Σ) is also
independent of the hyperbolic structure, see e.g. [7] section 4.1.4 and [19]
section 3.7.

The Hausdorff topology on the set of closed subsets of Σ induces a topology
on GL. Two laminations are close in this topology if any long segment of a
leaf of either one is closely approximated by a long segment of a leaf of the
other. See [7,9,40] for a complete discussion.

A measured lamination µ on Σ is a geodesic lamination, called the support of
µ and denoted |µ|, together with a transverse measure, also denoted µ. We
denote the set of all measured laminations on Σ by ML(Σ). The space ML
is topologized by defining laminations to be close in ML if the measures they
assign to any finite set of transversals are close, for details see [7] or [19].
Notice that the support of any measured lamination always avoids a definite
neighborhood of each cusp. The relationship between the topologies on ML
and GL is discussed in section 2.3 below.

Any element γ ∈ S carries a natural transverse measure δγ which assigns unit
mass to each intersection with γ. We call a measured geodesic lamination on
Σ rational if its support is a union of curves in S. The maximum number of
disjoint loops in S on the punctured torus T1 is one, so that rational measured
laminations are of the form µ = kδγ, k > 0. We denote the set of all rational
measured laminations on Σ by MLQ(Σ); the set MLQ is dense in ML.

Two measured laminations µ, µ′ ∈ ML are projectively equivalent if |µ| = |µ′|
and if there exists k > 0 such that for any arc σ transverse to the leaves of
|µ|, µ′(σ) = kµ(σ). We write [µ] for the projective class of µ ∈ ML(Σ). We
denote the set of projective equivalence classes on Σ by PML(Σ). It is well
known that PML(T1) is homeomorphic to S1 ' R ∪ {∞} (see for example
[45]).

The length lγ of a geodesic γ ∈ S generalizes to arbitrary laminations. Let φ
represent a hyperbolic structure on Σ. For µ ∈ ML, the length lµ(φ) is the
total mass, on the surface with structure φ, of the measure that is the product
of hyperbolic distance along the leaves of µ with the transverse measure µ.
In particular, if µ ∈ MLQ(Σ) with µ = δγ, then lγ =

∫
Σ dδγds is just the

hyperbolic length of γ.

Clearly, if µ′ = kµ then lkµ = klµ. We define

[µ, lµ]
def
= {kµ, klµ ∈ ML×R+ : k > 0}

9



and call it the projective class of the pair (µ, lµ).

The geometric intersection number i(γ, γ′) of two geodesics γ, γ′ ∈ S extends
to a continuous function i(µ, ν) on ML(Σ) (see for example [21]). For Σ = T1,
i(µ, ν) > 0 is equivalent to [µ] 6= [ν]. We also recall the well known fact that
on T1, measured laminations are uniquely ergodic; that is, if µ, µ′ ∈ ML(T1)
with |µ| = |µ′|, then [µ] = [µ′].

2.3 The convergence lemma

In general, laminations which are close in ML may not be close in the Haus-
dorff topology on GL. For example, one can put a transverse measure ν ′ on
a long closed geodesic γ′ spiralling in to a closed geodesic γ with transverse
measure ν, such that ν, ν ′ are close in ML but γ′ has arcs far from γ. A se-
quence of laminations may converge in ML to a measured lamination ν0 with
support in one part of Σ, while simultaneously limiting on a closed curve with
support disjoint from |ν0|.

The following lemma gives conditions under which Hausdorff convergence is a
consequence of convergence in ML. We note that the lemma depends crucially
on the fact that on T1, any irrational measured lamination is maximal. As
stated, it is false for more general surfaces, and it is false if ν0 ∈ MLQ(T1).

Lemma 1 Suppose that ν0 ∈ ML(T1)−MLQ(T1), and that ν and ν0 are close
in ML(T1). Then |ν| and |ν0| are close in the Hausdorff topology on GL(T1).

This lemma is proved in appendix 12.1.

From now on, unless specifically stated, GL,ML, PML will always refer to
T1.

3 Fuchsian space

Kerckhoff and Thurston used earthquake deformations to study the set of
hyperbolic structures on a surface Σ. For T1 the description is especially simple.
For an unpunctured torus, the Teichmüller space is a disk. Thinking of this
disk as the hyperbolic plane D with boundary circle S1, for each boundary
point ξ there is a foliation of D by horocycles tangent to ∂D at ξ. Joining
each pair of distinct boundary points ξ, η is a unique geodesic γξ,η which, for
fixed ξ and varying η, give another foliation of D. It follows from Kerckhoff’s
results [21,23] and Thurston’s compactification of Teichmüller space [10] (see
also [12]), that there is an analogous picture for F , the Teichmüller space of
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T1. This picture is certainly well known and described for Teichmüller spaces
of compact surfaces in [23]. As it is of central importance for us we explain it
in detail here.

Since the torus is homogeneous, F is holomorphically the same as the Te-
ichmüller space of the unpunctured torus, namely D. The Thurston boundary
of F is naturally identified with the circle S1. The classical Fenchel-Nielsen co-
ordinates for F are the length lα of a generating curve α and a corresponding
twist parameter tα. In [21], [22], the Fenchel-Nielsen deformation defined by
varying the twist parameter tα is generalized to a map Eµ(t) : F → F defined
relative to a measured lamination µ ∈ ML. The map Eµ(t) is called the time
t earthquake along µ; when needed for clarity we write the parameter t as tµ.
The family Eµ(t), t ∈ R is a one parameter family of deformations of F ; in
particular Eµ(0) = id.

For p ∈ F , we define the earthquake path along µ through p by

Ep
µ = {Eµ(t)(p) ∈ F : t ∈ R}.

Clearly, Ep
µ is invariant under the earthquakes Eµ(t). In [22], Kerckhoff showed

that Ep
µ is a real analytic path in F . Along Ep

µ, the length lµ is constant. Thus
for every p ∈ F , Eµ(t)(p) tends to the same point [µ] ∈ ∂F as t → ±∞.

In [21], Kerckhoff showed that if ν ∈ ML with i(µ, ν) > 0, then along an
earthquake path Ep

µ, the length lν is a strictly convex real analytic function
of t and lν(t) → ∞ as t → ±∞. Thus lν has a unique minimum on Ep

µ;
at this point we say that lν is minimal with respect to Ep

µ. Wolpert showed
in addition, that at the minimum, d2lν/dt2µ > 0. (Actually Wolpert proved
this only when µ, ν are rational; this case follows by inspection of his second
derivative formula [46] Theorem 3.4, in which all terms are clearly positive.
The case µ general but ν rational follows by inspection of [9] Theorem 3.10.1.
For general ν, see Corollary 21 below.)

It follows from the anti-symmetry of the derivative formula

dlν/dtµ =
∫

T1

cos θdµdν,

(where θ is the angle, measured counterclockwise, from a leaf of |µ| to a leaf
of |ν| at each intersection point of the laminations |µ|, |ν|), that the minimum
points for lν along Eµ and lµ along Eν coincide, and that at this minimum
point p we have DEν(tν)(p) = −DEµ(tµ)(p).

The results which follow are simple consequences of Kerckhoff’s results applied
to T1.

Proposition 2 For any c ∈ R+ and µ ∈ ML, there is at most one earthquake
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path Ep
µ along which lµ = c.

Proof: Suppose that there are two such paths, E1, E2. They are clearly dis-
joint, moreover since F ∪ ∂F is a closed disk and both E1 and E2 meet ∂F at
the same point [µ], one path, E1 say, separates F ∪∂F so that one component
of the complement contains both E2 and ∂F − {[µ]}. Choose ν ∈ ML with
i(µ, ν) > 0 and let p be the minimum point for lν on E1. Then E2 separates E1

from ∂F and hence p from [ν], so that Ep
ν must also cut E2 at a point p′. Since

p is the unique minimum point for lµ on Ep
ν , and since lµ(p) = lµ(p′) we have

a contradiction. ¤

We denote the unique earthquake path on which lµ = c by Eµ,c. It follows
easily from proposition 3 below that Eµ,c 6= ∅. Since for s > 0, Esµ(t) = Eµ(st)
and lsµ = slµ, we have Esµ,sc = Eµ,c. For ν /∈ [µ], we denote the minimum
point for lν on Eµ,c by p(µ, ν, c). We define a function fµ,ν : R+ → R+ by
fµ,ν(c) = lν(p(µ, ν, c)). Notice that from the definition, fµ,ν = f−1

ν,µ.

For each pair µ, ν ∈ ML×ML, µ 6∈ [ν], set

Fµ,ν = {p ∈ F|dlν/dtµ(p) = 0}

Note that Fµ,ν depends only on [µ], [ν], and that by the antisymmetry of the
derivative, Fµ,ν = Fν,µ. We call Fµ,ν the µ, ν-critical line. This is justified by
the following proposition.

Proposition 3 For each pair µ, ν, i(µ, ν) > 0, the locus Fµ,ν is a real analytic
path in F with endpoints at [µ] and [ν] in ∂F . Both lµ and lν are strictly
monotonic on Fµ,ν and vary from 0 to ∞ in opposite directions.

Proof: By Wolpert’s result, d2lν/dt2µ > 0 at every point of Fµ,ν . Therefore
Fµ,ν is a disjoint union of real analytic arcs.

We claim the function lµ is strictly monotonic on each component of Fµ,ν . If
not, there is an earthquake path Eµ,c that meets Fµ,ν in two distinct points.
Both these points are critical for lν on Eµ,c which is impossible.

Since lµ is real analytic, its restriction to Fµ,ν is open and proper and hence its
range must be (0,∞). Clearly, as lµ(p) → 0 along Fµ,ν , we have p → [µ] ∈ ∂F .
Thus each component of Fµ,ν is an embedded arc with endpoints [µ] and [ν]
in ∂F .

If Fµ,ν had two components, then, for some c > 0, we could find a path Eµ,c

intersecting both components of Fµ,ν . Thus lν would be minimal at two points
on Eµ,c which is impossible.

12



By the anti-symmetry in the formulas, we see that lν also varies monotonically
from 0 to ∞ along Fµ,ν but in the opposite direction. ¤

Corollary 4 For any c ∈ R+ and µ ∈ ML there is a unique earthquake path
Ep

µ along which lµ = c.

Remark 5 In [23], Kerckhoff proves that given (µ, ν) ∈ ML with i(µ, ν) > 0
and such that µ, ν fill up the surface (that is, the complement of their union
consists of pieces which are either simply connected or a neighborhood of the
puncture), then for each t ∈ (0, 1) there is a unique p ∈ F at which the function
tlµ(p) + (1 − t)lν(p) attains minimum. As t varies keeping µ, ν fixed, the set
of these minima is a line. For the punctured torus, any pair (µ, ν) ∈ ML with
i(µ, ν) > 0 fills up the surface. While not strictly needed for our development,
the following lemma confirms that for the punctured torus, Kerckhoff’s line
of minima is identical with our critical line, see also [23] theorem 3.4.

Lemma 6 Suppose that i(µ, ν) > 0. Then p ∈ Fµ,ν if and only if p is the
global minimum for some function tlµ(p) + (1− t)lν(p) for some t ∈ (0, 1).

Proof: At a minimum of tlµ(p) + (1 − t)lν(p), since lµ is constant along
the earthquake path Eµ(p), we find dlν/dtµ(p) = dlµ/dtν(p) = 0 so that
p ∈ Fµ,ν . Conversely, if dlν/dtµ(p) = 0, the earthquake paths Eµ(p) and Eν(p)
must be tangent at p because p is the unique minimum of lν on Eµ(p). Thus
E ′µ(p) = −kE ′ν(p) for some k 6= 0, where ′ denotes the tangent vector to the cor-
responding earthquake path. From the derivative formula dlν/dtµ = −dlµ/dtν
it follows that k > 0. We get dlη/dtµ(p) = −kdlη/dtν(p) for any η ∈ ML,
which, using the derivative formula again, gives dlµ/dtη(p) = −kdlν/dtη(p).
Since the tangent vectors E ′η(p), η ∈ ML certainly span the tangent space to
F at p, we must be at a critical point of lµ + klν . ¤

Using the identification of the critical line Fµ,ν with the Kerckhoff line of
minima, the following proposition follows immediately from [23] theorem 2.1.
Here is another proof.

Proposition 7 Fix [µ] ∈ PML. Then the arcs Fµ,ν , [ν] ∈ PML − {[µ]} are
pairwise disjoint and foliate F .

Proof: Given p ∈ F , following Kerckhoff we define β = βp : ML → TpF to be
the map which takes µ ∈ ML to DEµ(tµ)(p)|tµ=0, the derivative with respect to
tµ of the earthquake path Eµ(tµ)(p) through p evaluated at p. By [23], Theorem
3.5 the map β is a homeomorphism. Clearly, β induces a homeomorphism
between PML and the set of rays through the origin in TpF .

Suppose [µ], [ν], [ν ′] ∈ PML are distinct, and suppose that p ∈ Fµ,ν ∩ Fµ,ν′ .
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Pick representatives µ, ν, ν ′ of [µ], [ν], [ν ′] and let c = lµ(p), d = fµ,ν(c), d
′ =

fµ,ν′(c). The earthquake paths Eν,d and Eν′,d′ both go through p and, because
lµ is minimal at p with respect to both Eν and Eν′ , from the derivative formula
we see that DEν(tν)(p)|tν=0 = DEν′(tν′)(p)|tν′=0. By the injectivity of βp on
PML, [ν] = [ν ′].

Now let p ∈ F . By the surjectivity of β, there is some ν ∈ ML such that
DEν(tν)(p)|tν=0 = −DEµ(tµ)(p)|tµ=0. Therefore the earthquake paths Eν,lν (p)
and Eµ,lµ(p) are tangent at p. Since earthquake paths can intersect in at most
two points it follows that lν is minimal at p with respect to Eµ, so that p ∈ Fµ,ν .

These two facts show that the sets Fµ,ν foliate F . ¤

We shall also need

Corollary 8 For fixed µ ∈ ML, c ∈ R+, the map ψ : PML − {[µ]} → Eµ,c,
ψ([ν]) = p(µ, ν, c), is a homeomorphism.

Proof: Proposition 7 shows that ψ is well defined and a bijection. It is also
clear, thinking of PML−{[µ]} and Eµ,c as intervals, that ψ is monotonic. The
result follows. ¤

Corollary 4 implies that for µ ∈ ML, the paths Eµ,c, c ∈ R+ are pairwise
disjoint and foliate F . This is the analogue of the foliation of the hyperbolic
disk D by horocycles tangent at to a point on the boundary. Likewise, the
critical lines Fµ,ν are the analogue of the geodesics in D joining a pair of
distinct points in S1. For fixed [µ] the foliation by leaves Fµ,ν , [ν] 6= [µ] is
clearly transverse to that by the earthquake paths Eµ,c.

This is the picture that we shall extend to QF below.

4 Hyperbolic 3-manifolds

4.1 The pleating locus

Let q ∈ QF and let G = G(q) be a group representing q with the standard
normalization of section 2.1. The group G acts as a discrete group of isometries
of hyperbolic space H3 and the quotient hyperbolic manifold M = H3 /G is
a product T1 × (−1, 1). If G is quasifuchsian, but not Fuchsian, the boundary
∂C of the hyperbolic convex hull C of Λ in H3 has two components ∂C± each
of which is also G-invariant. Each quotient ∂C±/G is homeomorphic to T1, see
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for example [19] proposition 3.1. The metric induced on the components ∂C±
from H3 makes them pleated surfaces. This means, see for example [9], that
there are surjective isometric maps ψ± : D → ∂C± such that for each point
z in D there is at least one geodesic segment through z that is mapped to a
geodesic segment in ∂C±. The group G acts as a discrete group of isometries
on each component ∂C±. Since ∂C±/G are both homeomorphic to T1, these
two groups of isometries are both isomorphic to π1(T1) and inherit a marking
in the obvious way. (The marking on ∂C−/G has its orientation reversed.)
The isometries ψ± induce isomorphisms to marked Fuchsian punctured torus
groups F± = F±(q) acting on D, which we may again take to have the stan-
dard normalization. We refer to both the marked groups F±(q) and the quo-
tients D/F±(q) as the flat structures of either the surfaces ∂C±/G(q) or of
their universal covers ∂C±(q).

The bending laminations of ∂C±/G carry natural transverse measures, the
bending measures pl(q)±, see [9,19]. The underlying laminations |pl(q)±| are
the pleating loci of G. If G ∈ QF is a Fuchsian group acting on the hyperbolic
disk D ⊂ H3, then C = D is degenerate and we regard ∂C and ∂C/G as
2-sided surfaces, each side of which is a pleated surface with empty pleating
locus (and zero measure).

The following proposition follows immediately from [20] proposition 3.3 and
corollary 3.4.

Proposition 9 Suppose that q ∈ QF − F . Then the projective class of the
bending measure cannot be the same on both sides of the convex core; that is,
[pl+(q)] 6= [pl−(q)].

Remark 10 The work in [20] depends heavily on the λ-lemma and the theory
of holomorphic motions which is usually stated in the context of one complex
variable. In the present case we shall be studying families of groups parameter-
ized by a two dimensional complex manifold; in fact the theory of holomorphic
motions extends to motions over any complex manifold, see [33].

In [19] we prove:

Theorem 11 The map QF → F which sends q 7→ F±(q), and the map
QF −F → ML which sends q 7→ pl±(q), are continuous.

4.2 Pleating Varieties

Given µ ∈ ML we set

Pµ
± = {q ∈ QF : [pl±(q)] = [µ]} and Pµ = Pµ

+ ∪Pµ
− .
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We call these sets the µ-pleating varieties.

Given the ordered pair (µ, ν) ∈ ML×ML, we set

Pµ,ν = {q ∈ QF : [pl+(q)] = [µ], [pl−(q)] = [ν]}.
We call this set the µ, ν-pleating plane. Note that two these definitions depend
only on the projective classes [µ], [ν].

Finally, given the ordered pair µ, ν ∈ ML×ML, and c > 0 we set

Pµ,ν,c = {q ∈ Pµ,ν : lµ(q) = c}.
We call this set a pleating ray. Note that for s ∈ R+, Pµ,ν,c = Psµ,ν,sc. Thus
Pµ,ν,c depends on the projective class of the pair (µ, c), (recall section 2.2),
and on the projective class [ν].

Theorems 2 and 6, to be proven in section 9 below, will justify the terminology
rays and planes.

Proposition 9 implies Pµ,µ = ∅. It is also clear that Pµ,ν ∩Pµ′,ν′ = ∅ unless
[µ] = [µ′], [ν] = [ν ′]. In particular Pµ,ν 6= Pν,µ whenever i(µ, ν) > 0.

Remark 12 Whether a group is in Pµ,ν or in Pν,µ depends on our conven-
tions in labelling the sides ∂C± of ∂C. This is based on the labelling of the
components of the regular set Ω±. The point here is that two groups which
differ only in the labelling of their + side and their − side are not the same
as marked groups in QF .

The main result of [20] is that the pleating varieties are non-empty. Precisely,
we prove

Theorem 13 Let µ, ν ∈ ML, [µ] 6= [ν]. Then Pµ,ν 6= ∅.

We shall need to study the ideas in the proof of this result in some detail;
see 7.2 below.

4.3 Lamination length in M = H3 /G.

For the proof of theorem 15 below, we need also to discuss briefly the length
lµ(M) of a measured lamination µ ∈ ML in the hyperbolic 3-manifold M =
H3 /G. First, suppose that µ = δγ where γ ∈ S is represented by an element
V ∈ G. The multiplier λV is related to its trace by the formula Tr V =
2 cosh λV /2. The translation length of V , <λV , is the minimum distance that V
moves a point in H3. Equivalently it is the length of the geodesic representative
of γ in M , so that lδγ (M) = <λV .
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In [45], p.9.21 and [3], p.117, it is shown that this definition can be extended by
linearity and continuity to define the lamination length lµ(M) for an arbitrary
µ ∈ ML. In the proof of theorem 15 below, we shall need to make crucial use
of the fact that one can extend this definition continuously to the algebraic
closure of QF .

Suppose G is a (discrete) punctured torus group associated to the faithful
representation ρ : π1(T1) → G ⊂ PSL(2,C). This representation marks the
associated hyperbolic 3-manifold M = H3/G. One says that a lamination |µ|
on T1 is realized in M relative to the marking ρ, if there is a Fuchsian group
Γ, a homeomorphism h : T1 → S = H2/Γ, and a pleated surface f : S → M
with pleating locus containing |µ|, such that fh induces ρ.

Let AH(T1) denote the set of Kleinian once punctured torus groups as defined
in section 2.1, modulo conjugation in PSL(2,C). By abuse of notation, we
also denote by AH(T1) the set of hyperbolic 3-manifolds {M = H3/H : [H] ∈
AH(T1)}, where [H] is the conjugacy class of H in PSL(2,C).

Clearly, whether or not a lamination is realized is a conjugacy invariant. Simple
closed curves are always realized in any hyperbolic 3-manifold M ∈ AH(T1)
unless they are represeneted by parabolics. The closed geodesics are dense in
the set of realizable laminations, [7] theorem 5.3.11. Since length is a conjugacy
invariant, the above definition of lamination length lµ(M) extends by continu-
ity to any M ∈ AH(T1) containing a realization of |µ|. If |µ| is connected and
not realized in M , set lµ(M) = 0. (If the closure |µ| of |µ| is not connected
one has to be more careful with this definition since some components of µ
may be realized and others not; for example on a general surface, |µ| might
consist of disjoint loops some but not all of whose components are accidentally
parabolic. In this case only the accidental parabolics are not realized and lµ
must be defined by summing over the connected components of |µ|. In the
case of a punctured torus |µ| is always connected (since µ is measured) and
this difficulty does not occur.)

In the next section, we shall make important use of the following result.

Proposition 14 The function L : AH(T1)×ML → R, L(H, µ) = lµ(H3/H)
is continuous.

Proof: This result was asserted by Thurston in [44]; detailed proofs appear
in [36] Lemma 4.2 and [2] Theorem 5.1. We remark that the proof in [36] seems
to have overlooked the above mentioned difficulties when |µ| is not connected.
See [2] section 7 for a discussion of the general case. ¤

Note that if a lamination µ ∈ ML is realized in M ∈ AH(T1), then the length
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of µ in M is equal to the hyperbolic length of µ on the surface Σ, where
ψ : Σ → M is the pleated surface map realizing |µ|, and so is strictly positive.

In general, the lamination lengths lµ(∂C) on ∂C and lµ(M) in M are not the
same, and we shall take care to indicate which length we mean. In the special
case in which q ∈ Pµ

+, however, the lengths lµ(∂C+) and lµ(M) coincide, and
may be safely denoted by lµ = lµ(q). This is the situation we are discussing in
theorem 15 below.

In section 6, we shall show how to extend the holomorphic multiplier λV to
a holomorphic function called the complex length λµ of µ on QF . Again by
linearity and continuity, we have lµ(M) = <λµ. We also prove in section 6 that
q ∈ Pµ

+ implies λµ ∈ R. Combining these observations gives that q ∈ Pµ
+

implies λµ = lµ(∂C+) = lµ(M).

5 The limit pleating theorem

Classically, the ending invariants of a quasifuchsian group are the marked
conformal structures ω±(q) of the tori Ω±(q)/G(q) and so are points in the
Teichmüller space Teich. Suppose we have a sequence qn ∈ QF with ω±(qn) →
ω± ∈ Teich. It then follows from Bers’ simultaneous uniformization theorem
that the groups G(qn) have an algebraic limit in QF . If both of the sequences
ω±(qn) converge to distinct points in the Thurston boundary of Teich, then
Thurston’s double limit theorem [44] again asserts the existence of an algebraic
limit G∞; the intermediate situation works in a similar way and is discussed
in [35].

We need an analogous result which asserts the existence of a limit group when
our pleating invariants converge. We also need to understand the behavior of
the pleating invariants when an algebraic limit exists. The results we need are
collected in the following limit pleating theorem, which will be a key factor in
the proof of our main results in section 9.

Theorem 15 Limit Pleating Theorem. Let µ, ν ∈ ML, [µ] 6= [ν] and
suppose that {qn} ∈ Pµ,ν. Then

(1) if lµ(qn) → c ≥ 0 and lν(qn) → d ≥ 0, then there is a subsequence of the
groups {G(qn)} with an algebraic limit G∞;

(2) if the sequence {G(qn)} has algebraic limit G∞, then the sequences {lµ(qn)}
and {lν(qn)} have finite limits c ≥ 0, d ≥ 0 respectively. The group G∞
represents a point in QF if and only if c > 0 and d > 0.

We remark that in the case of a more general surface, the second statement as
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it stands is false, as is seen by taking |µ| to be a multiple loop such that one,
but not all of its components, becomes accidentally parabolic. It works in our
case because any measured lamination on T1 is automatically connected. The
result is closely related to, but not the same as, the ‘Lemme de fermeture’
in [5], which concerns the existence of the limit groups under hypotheses on
the limits of bending measures as opposed to lengths.

The first statement, the existence of the algebraic limit, follows from a deep
estimate of Thurston’s about lengths of geodesics in hyperbolic 3-manifolds,
[44], theorem 3.3 (Efficiency of pleated surfaces). The same estimate is fun-
damental in Thurston’s proof of the double limit theorem in [44]. A detailed
discussion and proof of Thurston’s estimate is to be found in [6], where a limit
theorem similar to our first statement in the context of Schottky groups is
proved.

To prove the second statement we use continuity of lamination length de-
scribed in section 4.3 above. This allows us to deduce that the laminations
µ, ν must be realized in the algebraic limit. We complete the proof by showing
that the pleated surfaces which realize µ and ν are in fact components of the
convex hull boundary of the algebraic limit. This idea is in essence the same
as that used in [5], and we would like to thank F. Bonahon for suggesting this
approach.

The statement, and the theorem on continuity of lamination length, conceals
much subtlety. The hypothesis that Gn ∈ Pµ,ν is crucial; examples like the
one described in [24] show that it is not enough just to require that some fixed
curve on ∂C+ have bounded length. Again, if one takes a varying sequence
µn → µ as in [5], then it is essential to add the hypothesis that the laminations
converge in the Hausdorff topology as well as in measure, otherwise examples
similar to the one in [24] again show that the convergence may not be strong.

Proof: First we suppose that lµ(qn) → c ≥ 0 and lν(qn) → d ≥ 0, and show
that there is some subsequence of {qn}, along which an algebraic limit exists.
Choose and fix an ideal triangulation λ on T1; specifically, take λ as the lines
from the cusp to itself in the homotopy classes of the curves α, β and αβ,
where < π1(T1); α, β > corresponds to < G; A,B >.

Let Mn = H3/Gn and realize λ as the pleating locus of a pleated surface Sn

in Mn. The lamination λ has no closed leaves and its complement is a pair
of ideal triangles. Pick ξ ∈ ML. When an oriented arc on a leaf |ξ| cuts two
consecutive sides of one of these complementary triangles T , the two sides
meet in an ideal vertex which is either to its left or its right. The arc of leaf
containing an intersection point P of |ξ| and λ goes from one triangle T1 to
another T2. Following Thurston, [44], we call P a boundary intersection if the
right-left location of the ideal vertex switches as we cross from T1 to T2, and
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we define the alternation number a(ξ, λ) as the total ξ-measure of the set of
boundary intersection points. Recall from section 4.3 that lξ(Sn) denotes the
length of the lamination ξ measured in the flat structure of Sn and lξ(Mn)
denotes the length of the lamination ξ in Mn. Then by [44] theorem 3.3, there
exists a constant C > 0, depending only on a fixed choice of structure for T1,
such that

lξ(Sn) ≤ lξ(Mn) + Ca(ξ, λ).

(We remark that since a(ξ, λ) ≤ i(ξ, λ) the usual intersection number would
be just as good a bound in the present case.) Applying this inequality in our
case to the pleating laminations |µ| and |ν| we find,

lµ(Sn) ≤ lµ(qn) + Ca(µ, λ), lν(Sn) ≤ lν(qn) + Ca(ν, λ).

It follows that the sequences {lµ(Sn)} and {lν(Sn)} are bounded.

Since [µ] 6= [ν], the laminations |µ|, |ν| fill up T1 and we conclude from
[44] proposition 2.4 that the hyperbolic structures of the surfaces Sn lie in
a bounded subset of F and thus that the lengths lα(Sn) and lβ(Sn) of the
geodesic representatives of the marking curves α and β on Sn are bounded.
From the discussion in section 4.3, we conclude that, since lα(Mn) ≤ lα(Sn)
and lβ(Mn) ≤ lβ(Sn), the sequences {|Tr An|}, {|Tr Bn|} are also bounded.
Therefore we can find a convergent subsequence along which Tr An and Tr Bn

converge and thus, (because from the Markov identity Tr A and Tr B deter-
mine at most two normalized punctured torus groups up to conjugation) we
conclude that a subsequence of {Gn} has an algebraic limit G∞. This proves
statement 1.

Now suppose that G∞ is the algebraic limit of a sequence Gn = G(qn) ∈ Pµ,ν .
By the continuity of lamination length on AH(T1), the sequences {lµ(qn)},
{lν(qn)} converge to {lµ(G∞)}, {lν(G∞)}, in particular the limits exist. We
have to prove that G∞ ∈ QF if and only if both limits are non-zero. We note
immediately that if G∞ ∈ QF , then, using our assumption that qn ∈ Pµ,ν , we
have {lµ(qn)} → c > 0 and {lν(qn)} → d > 0 by the continuity theorem 11.
This can also be seen from the fact that all laminations, in particular µ and
ν, are realized in G∞, see [45], [7] theorem 5.3.11.

Suppose that one of the laminations µ or ν, for definiteness say µ, is not
realized in G∞. Since |µ| is connected, lµ(G∞) = 0 and by the continuity of
lamination length on AH(T1) we deduce that c = 0. Thus we need only prove
that if µ, ν are both realized in G∞, and if c > 0, d > 0, then G∞ ∈ QF .

Our strategy is to show that the lifts of the pleated surfaces which realize
|µ| and |ν| are in fact invariant components of ∂C(G∞) which face simply
connected invariant components of the regular set Ω(G∞). The key point is
to show that if |µ| is realized in the algebraic limit M∞ = H3/G∞, then the
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lift of any leaf of |µ| to H3 is the limit of corresponding lifts of leaves of |µ| in
their realizations in Mn.

To prove this involves comparing geodesics in the universal covers of M∞ and
Mn. We need to use the fact that geometric structures vary continuously with
the holonomy. The clearest statement of what we need is in [15], Lemma 14.28.
Our normalizations have been fixed in such a way that ρn(g) → ρ∞(g) for each
g ∈ π1(T1). Let M1

∞ be the manifold with boundary obtained by removing from
M∞ a horoball neighborhood of the cusp corresponding to ρ∞(K), where K
corresponds to a loop around the cusp of T1. A relative compact core Mc

for M1
∞ is a compact submanifold Mc ⊂ M1

∞ such that the induced map on
fundamental groups is an isomorphism, and such that Mc∩∂M1

∞ is a compact
subsurface of ∂M1

∞. The assertion of Kapovich’s lemma is that under the
hypothesis that ρn(g) → ρ∞(g), if Mc is any relative compact core for M1

∞,
then there exists a sequence of smooth maps j̃n : M̃c → H3 which intertwine
the actions of ρ∞ and ρn and which converge C1 to the identity, uniformly
on compact subsets of M̃c. Here M̃c ⊂ H3 is the universal cover of Mc. For
the proof see [15] theorem 7.2 or [7] theorem 1.7.1. Following [7], one can
actually make j̃n be Cr close to the identity for any r. It follows that the
map jn : Mc → Mn induced by j̃n is close to a local isometry, see the similar
assertion in [32] section 3.1.

Now we have to be careful about our set-up of pleated surfaces. Let Γ0 be
a fixed Fuchsian group acting on D. Identify T1 with D/Γ0, choosing a fixed
isomorphism of π1(T1) with Γ0. The action of Gn = ρn(Γ0) on ∂C+

n pulls back
to the action of a Fuchsian group Γn on D. This induces a pleated surface map
fn : D → H3 with image ∂C+

n , intertwining the action of Γn on D and Gn on
∂C+

n . Let hn : D → D denote a homeomorphism which intertwines the actions
of Γ0 and Γn, so that fnhn : D → H3 induces the representation ρn : Γ0 → Gn.
Since |µ| is realized in M∞, there is also a Fuchsian group Γ∞, and a pleated
surface f : D → H3 intertwining the actions of Γ∞ and G∞ with pleating
locus containing |µ|, together with a homeomorphism h : D → D intertwining
the actions of Γ0 and Γ∞ such that fh induces ρ∞ : Γ0 → G∞. Thus all the
maps fnhn and fh have the same domain D and range H3 and intertwine the
groups Γ0 and Gn, and Γ0 and G∞, respectively.

Now let l be a lift to D of some leaf of µ in T1 = D/Γ0, that is, in the
structure induced by Γ0. The corresponding leaves for the structures induced
by Γn, Γ∞ are the geodesics ln, l∞ which have the same endpoints on ∂D as
hn(l), h(l) respectively. From the definition of pleated surfaces, under fn and
f these leaves are mapped to geodesics in H3. To make precise the statement
that leaves of |µ| in M∞ = H3/G∞ are close to leaves of the corresponding
realizations in Mn, we shall prove that fn(ln) → f(l∞).

Let S1
0 be the surface with boundary obtained by removing from D/Γ0 a
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horocycle neighborhood of the cusp. The pleating locus of the convex hull
boundary cannot contain any leaf going out to the cusp (because otherwise
the developing image of the boundary in a horoball neighborhood of the cusp
would not be embedded), so we may suppose that the support of µ on D/Γ0 is
contained in S1

0 . Now M∞ is geometrically tame and homeomorphic to S×R,
see [3], or [15] theorem 14.17. It follows that M∞ may be exhausted by relative
compact cores; in particular we may assume that Mc contains the image under
the map induced by fh of S1

0 . Choose a map j̃n as in Kapovich’s lemma above.
As already remarked, since j̃n is C∞ close to the identity on compact subsets
of M̃c, the induced map jn : Mc → Mn is close to a local isometry. The same
is therefore true of j̃n on the whole of M̃c. Now the image of a geodesic under
a map which is close to a local isometry is clearly a quasi-geodesic with small
constants, and hence close to its geodesic representative. Hence j̃nf(l∞) has
definite endpoints on ∂H3 and is arbitrarily close (depending on n) to the
geodesic An with the same endpoints.

Since j̃n → id uniformly on compact sets in M̃c and since f(l∞) ⊂ M̃c, we see
that j̃nf(l∞) converges to f(l∞). (Here we use the fact that both curves are
quasigeodesic, so it suffices to prove convergence on compact subsets of H3.)
Thus to complete the proof, it will suffice to show that fn(ln) = An. We shall
do this by showing that the curves fn(ln) and j̃nf(l∞) are a bounded distance
apart.

First let us show that fnhn(l) and j̃nfh(l) are a bounded distance apart.
Pick a fundamental domain for the action of Γ0 on D, and let R be the clo-
sure of the intersection of this region with the lift S̃1

0 of S1
0 to D. Since R

is compact, there exists K > 0 such that dH3(j̃nfh(x), fnhn(x)) ≤ K for all
x ∈ R. Now by construction, both maps j̃nfh, fnhn are equivariant, mean-
ing that j̃nfh(γx) = ρn(γ)j̃nfh(x) for all x ∈ D and γ ∈ Γ0, and simi-
larly for fnhn. Thus dH3(j̃nfh(x), fnhn(x)) ≤ K for all x ∈ S̃1

0 . Parameter-
ize the leaf l as t 7→ l(t) for t ∈ R. Since l projects to S1

0 , it follows that
dH3(j̃nfh(l(t)), fnhn(l(t))) ≤ K for all t ∈ R, in other words the two curves
are a bounded distance apart over the whole of their lengths.

Since S1
0 is compact, by equivariance the restriction of hn to S̃1

0 is Lipschitz
with constant depending on n. Hence hn(l) is a quasigeodesic, and thus lies
at a bounded distance from its geodesic representative ln. Now the restriction
of fn to the compact set hn(S̃1

0) is also Lipschitz, so that fn(ln) and fn(hn(l))
are also a bounded distance apart (again with constant depending on n).
Similarly, so are j̃nf(l∞) and j̃nfh(l). We conclude that fn(ln) is a bounded
distance from An (with bound depending on n). However fn(ln) is a geodesic,
and geodesics which are a bounded distance apart over the whole of their
lengths coincide. Thus fn(ln) = An as claimed.

We now use this fact to prove that the image of the pleated surface f : D → H3
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is a component of the convex hull boundary of G∞. The projection of the
pleating locus of f to D/Γ∞ is a geodesic lamination which contains |µ|. If
this pleating locus is not maximal, then by area considerations we can make
it maximal by adding at most three extra leaves. (If µ is irrational, there may
be extra leaves running from the cusp and spiralling into the two boundary
leaves; if µ is rational there may be a further leaf running from the cusp to
itself, or a leaf spiralling around µ at both ends.) Call this maximal lamination
µ̂ and for simplicity, use the same symbols µ, µ̂ to denote the lifts to D. Notice
that since the pleating locus of fn actually equals |µ| (since the pleating locus
of the convex hull boundary cannot contain any leaf going out to the cusp or
spiralling onto a closed geodesic) the additional leaves of µ̂−|µ| are necessarily
mapped to geodesics by fn. Moreover any additional endpoints of these leaves
are cusps and hence their lifts move continuously as n →∞.

We call any ideal triangle in H3 formed by the lifts of the images of the bound-
ary leaves of a complementary region of µ̂ under a pleated map a plaque. The
vertices of such a triangle are either the endpoints of leaves of the lamination
or parabolic fixed points. For clarity, denote the images in H3 of µ̂ under the
pleated surface maps fn, f by µ̂n, µ̂∞ respectively. We have just shown that
any plaque of µ̂∞ is arbitrarily closely approximated in H3 by a plaque of µ̂n

for all sufficiently large n. Notice also that any plaque of µ̂n is contained in a
support plane for ∂C+

n .

Denote the image of f by Π+. We want to show that Π+ is a component
of ∂C(G∞). Let X be a plane containing a plaque of |µ∞| and let Xn be a
sequence of planes containing approximating plaques for ∂C+(Gn). We claim
that all of Π+ lies on the same side of X so that X is a support plane for Π+. If
not, we can find points y, y′ ∈ Π+ on opposite sides of X so that the geodesic
joining y to y′ crosses X transversally. By choosing n sufficiently large, we can
find yn, y′n near to y, y′ in ∂C+

n , and a support plane Xn to ∂C+
n close to X,

such that the geodesic from yn to y′n crosses Xn, which is impossible.

Denote by HX the closed half space bounded by X containing Π+ and set
K = ∩XHX where X runs through all planes containing plaques of Π+. By
the above, Π+ ⊂ K so K 6= ∅. By its construction, K is convex and closed.
Moreover K is G∞ invariant since the same is true of Π+. Since C(G∞) is the
smallest closed convex G∞ invariant set in H3, we conclude C(G∞) ⊂ K.

We claim Π+ ⊂ ∂C(G∞). Let P be a plaque of Π+. Clearly P ⊂ C(G∞) and
so P ⊂ K. Since P is by definition contained in a support plane for K, we
conclude P ⊂ ∂C(G∞). Since Π+ is the closure in H3 of the union of its
plaques, the claim follows.

We prove in lemma 16 below that Π+ is embedded in H3. (This rules out
the possibility that, for example, |µ| is rational and the bending angle is π.)

23



Thus Π+ is isometric to a complete hyperbolic surface and hence is both open
and closed in ∂C(G∞). Since Π+ is connected, it must be a component of
∂C(G∞). As such, it faces a component Ω+ of Ω(G∞). Moreover since Π+ is
simply connected, so is Ω+. (This also follows from the fact that the limit
representation ρ : π(T1) → G∞ is faithful.) Also G∞ invariance of Ω+ follows
from that of Π+.

Now there is a similar image Π− for the pleated surface map which realizes
|ν|, from which we deduce the existence of another simply connected invariant
component Ω− of Ω(G∞). We conclude, see for example [28] lemma 3.2, that
G∞ ∈ QF . ¤

Lemma 16 With the notation and conditions above, the image Π+ of the
pleated surface map f is embedded in H3.

Proof: If Π+ is not embedded then f(x) = f(y) for some distinct points
x, y ∈ D; these cannot be in the same plaque since f is an isometry on plaques.
We begin by reducing to the case in which x and y are both contained in leaves
of µ̂. If not, suppose that x is in a complementary region of µ̂, and let Px be
the image plaque containing f(x). Now y is either in a distinct complementary
region with image plaque Py, or on a leaf with image a geodesic L. If Py or L
cuts Px transversally, then the same is true for all nearby pleated surfaces fn,
since the endpoints which determine plaques and leaves move continuously.
This is impossible since fn(D) = ∂C+

n is embedded. Thus Py (or L) and Px are
in a common plane. In the first case there is some point on boundary leaves
of both Py and Px, and in the second L meets some boundary point of Px.

Now let lx, ly be leaves of the lift of µ̂ to D through x, y respectively. We
claim that the image leaves f(lx) and f(ly) meet at a non-zero angle in H3.
This follows from [43] Theorem 5.6. A pleated surface map k from a surface
S into a 3-manifold M induces an obvious map K from its pleating locus to
the projective unit tangent bundle PM of M . Thurston’s result states that if
k is weakly doubly incompressible, then K is an embedding. In our situation,
the pleated surface map f̄ induced on the quotient D/Γ∞ is weakly doubly
incompressible since the induced map Γ∞ → G∞ is an isomorphism. Thus
the conclusion of the theorem implies immediately that the image geodesics
f(lx) and f(ly) are distinct. (Actually Thurston’s proof simplifies slightly in
our situation, see remark 17 below.)

Consider the plane P containing these two leaves. It meets Ĉ in a circle C.
Notice that any circle through the endpoints of f(lx) other than C sepa-
rates the endpoints of f(ly). Now for any nearby group Gn, there are leaves
fn(lx), fn(ly) near f(lx), f(ly). Any support plane to ∂C+

n through either of

these leaves meets Ĉ in a circle which cannot separate the other pair of end-
points. One deduces easily that any pair of support planes for ∂C+

n must meet
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Ĉ in circles both of which are close to C, and that Λ(Gn) is contained in the
thin ring or crescent between them. Now every support plane of ∂C−n is disjoint
from every support plane of ∂C+

n ; moreover one of the two disks defined by
the circle it bounds on Ĉ contains no limit points.

It follows that every support plane of ∂C−n must have very small diameter, and
hence that the distance of any such support plane to f(x) tends to ∞ with n.
On the other hand, any support plane for ∂C−n contains points close to some
plaque of the pleated surface which realizes |ν| in M∞. Pick a point z ∈ H3

on a lift of a leaf of |ν|, at distance D say from f(x). Since z is on a plaque
of |ν| it is close to a support plane of ∂C−n . This shows there are points in
∂C−n which stay at bounded distance, with bound close to D, from f(x). This
contradiction completes the proof. ¤

Remark 17 We explain the simplification of Thurston’s result alluded to
above. Notice that µ (the lamination on the quotient D/Γ∞) is recurrent.
Thus following the first part of the proof of [43] Theorem 5.5, one can use a
shadowing argument to show that the canonical lift F̄ of f̄ induces a local
embedding of |µ| into the projective unit tangent bundle PM∞. The observa-
tion that the injectivity radius of M∞ is bounded below in a neighborhood of
f̄(|µ|) follows since |µ| is compact. Since Margulis tubes in M∞ are separated
by a definite distance, only a finite number can intersect the image f̄(|µ|).

Still following Thurston, one then argues that F̄ extends to a covering map on
a neighborhood of |µ|. (Notice that the inequality in [43] concerning the degree
of the covering should be reversed.) We now need to see that the covering has
degree 1. If µ is a closed geodesic, this follows immediately since f induces
an isomorphism of fundamental groups. Otherwise, the complement of |µ| is a
punctured bigon B with two boundary leaves. Thus any non-trivial covering
must have degree two and identify the two boundary leaves. Choose a loop
β in B which is very close to the boundary leaves but homotopic to a loop
round the puncture. Since the covering is degree 2, f(β) is the square of the
generator of the maximal parabolic subgroup in G∞. This is impossible since
f induces an isomorphism.

6 Complex length

In this section we introduce the complex length of a measured lamination.
Just as lamination length as defined in section 2.2 is a real analytic function
on F , the complex lamination length is a holomorphic function on QF . The
relationship of this holomorphic function to pleating varieties, in particular
theorem 23, is a central tool in everything which follows. Complex lamina-
tion length has also been introduced using somewhat different techniques by
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Bonahon [4].

6.1 Complex length of a loxodromic

Let M ∈ PSL(2,C). Its complex translation length λM ∈ C/2πiZ is given by
the equation

±Tr M = 2 cosh λM/2 (1)

where Tr M is the trace of M and we choose the sign so that <λM ≥ 0.

Complex length is invariant under conjugation by Möbius transformations
and has the following geometric interpretation, provided M is not parabolic.
Let x ∈ AxM and let v̄ be a vector normal to AxM at x. Then <λM is
the hyperbolic distance between x and M(x) and =λM is the angle mod 2π
between M(v̄) and the parallel transport of v̄ to M(x), measured facing the
attracting fixed point M+ of M . In particular, if M is loxodromic then <λM >
0 and if M is purely hyperbolic then in addition =λM ∈ 2πZ; equivalently
Tr M ∈ R, |Tr M | > 2. (We refer to [39] for a detailed discussion of the
sign ambiguity in equation 1; note that in our notation here λM is twice the
multiplier denoted by λM in [39].)

Let q ∈ QF , let γ ∈ S and denote the element representing γ in the group G(q)
by W (q). Because the trace is a conjugation invariant, the complex translation
length λW (q) depends only on q and is independent of the normalization of
G(q). We want to define the complex length λγ(q) = λW (q) as a holomorphic
function on QF with values in C, not C/2πiZ. To do this, we choose the
branch that is real valued on F . Since λγ 6= 0 on QF this choice uniquely
determines a holomorphic function λγ : QF → C. From now on, the term
“complex length” will always refer to this branch.

We define the complex length of the rational lamination µ = cδγ ∈ MLQ,
c > 0, as λµ(q) = cλγ(q).

To define the complex length λµ(q) for arbitrary µ ∈ ML and q ∈ QF , we
would like to choose µn ∈ MLQ, µn → µ and set

λµ(q) = lim
n→∞λµn(q).

To justify this, we need to show these limits exist and are independent of the
sequence {µn}.

We do this using the following theorem which summarizes the results of [22],
lemma 2.4 and [21], theorem 1. In the statement, lµ denotes lamination length
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defined in section 2.2.

Theorem 18 The function (cδγ, p) 7→ clδγ (p) from MLQ × F to R+ extends
to a continuous function (µ, p) 7→ lµ(p) from ML × F to R+. If µn ∈ MLQ,
µn → µ then lµn(p) → lµ(p) uniformly on compact subsets of F , and the limit
function lµ(p) is non-constant.

We also need an elementary lemma about holomorphic functions.

Lemma 19 If f : QF → C is holomorphic and if f ≡ c on F for some
constant c, then f ≡ c on QF .

Proof: Because F is the R2-locus of the complex Fenchel-Nielsen coordinates
(λ, τ) in QF , see [27], and section 7 below, the conclusion follows directly from
the Cauchy-Riemann equations applied to each variable separately. ¤

Theorem 20 The function (µ, q) 7→ λµ(q) from MLQ ×QF to C extends to
a continuous function from ML×QF to C, also denoted λµ(q). The function
q 7→ λµ(q) is holomorphic and non-constant for all µ and the family {λµ} is
bounded and equicontinuous on compact subsets of QF .

Proof: By construction, the functions {λµ}, µ ∈ MLQ, omit the half plane
<z < 0 and thus form a normal family on compact subsets of QF . It follows
that if µn → µ, µn ∈ MLQ, then suitable subsequences of {λµn} converge to
limit functions that are holomorphic.

We note that on F , if µ ∈ MLQ, then λµ is real and coincides with lµ. By
theorem 18, if µn → µ, µn ∈ MLQ, then {lµn} is uniformly convergent on
compact subsets of F ; further, the limit function lµ is finite, non-constant and
independent of the choice of the sequence {µn}. The result now follows from
lemma 19. ¤

Corollary 21 Let µ, ν ∈ ML. Then the zero of dlν/dlµ at the minimum of lν
along the earthquake path Ep

µ is simple.

Proof: From the discussion preceding Proposition 2, we have only to consider
the case in which ν is not rational. By Theorem 20, lν extends to a holomorphic
function λν on QF which is locally uniformly approximated by the complex
lengths λνn of a sequence of rational laminations νn which converge to ν. Now
apply Hurwitz’ theorem. ¤

For µ ∈ ML, we call λµ the complex length of µ. Throughout this paper, the
complex length functions are a fundamental tool. We remark that
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(1) Suppose q ∈ QF and let F±(q) ∈ F denote the flat structures (see
section 4.1) on the convex core boundary ∂C±(q)/G(q). If µ ∈ [pl±(q)],
then lµ(F±(q)) = <λµ(q), see Proposition 22 below.

(2) For q ∈ QF , µ ∈ ML, <λµ coincides with the lamination length lµ(M(q))
in the 3-manifold M(q) = H3 /G(q) as discussed in section 4.3 above.

For µ ∈ MLQ, <λµ(q) = lµ(M(q)), so by continuity, both statements hold for
all µ ∈ ML.

6.2 Complex length and Pleating varieties

The first step in proving our main theorems is to show that for any µ ∈ ML,
the complex length λµ is real valued on Pµ.

First consider the case µ ∈ MLQ. We have

Proposition 22 Suppose µ ∈ MLQ. Let q ∈ QF and suppose pl+(q) = µ.
Then λµ(q) ∈ R.

Proof: This is just a reformulation of the easy observation, proved in [18],
lemma 4.6, that if a geodesic γ is contained in |pl±(G)|, then any representative
in G is purely hyperbolic. ¤

We now extend proposition 22 to arbitrary laminations.

Theorem 23 Suppose µ ∈ ML. Let q ∈ QF and suppose pl+(q) = µ. Then
λµ(q) ∈ R.

Proof: For [µ] ∈ MLQ this is proposition 22, so suppose [µ] /∈ MLQ.

The map QF−F → ML×F that takes q ∈ QF−F to (pl+(q), F+(q)) where
F+(q) is the flat structure of ∂C+/G(q) is continuous by theorem 11. The map
is also injective because the hyperbolic structure F+ together with the bending
data pl+ determine the group G = G(q), see [9] Chapter 3 especially Lemma
3.7.1. Let U ⊂ QF−F be an open ball containing q; if [pl+(q′)] were constant
on U , a four dimensional neighborhood would have a three dimensional image,
violating the invariance of domain for a continuous injective map.

By the continuity theorem 11, since PML is one dimensional, we may find a
sequence qn → q in U such that pl+(qn) = µn with µn ∈ MLQ. By proposi-
tion 22, λµn(qn) ∈ R. By the continuity theorem again, µn → µ and hence
λµn → λµ uniformly on compact subsets of QF . Thus taking a diagonal limit
we have λµn(qn) → λµ(q) and λµ(q) ∈ R. ¤
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7 Twists and Quakebends

In this section we briefly discuss complex Fenchel-Nielsen coordinates and
quakebends, and the connection with the convex hull boundary ∂C. This circle
of ideas is at the heart of the proof of the local pleating theorem 26 in section 8;
some of the ideas are also needed in section 9, where we work in quakebend
planes as defined in section 7.3 below.

7.1 Complex Fenchel Nielsen coordinates

Complex Fenchel Nielsen parameters were introduced in [27,42] (see also [20])
as a generalization to QF of the classical Fenchel Nielsen coordinates for
Fuchsian groups. Here we briefly summarize the main points as applied to T1.

Let 〈G; A,B〉 be a marked quasifuchsian punctured torus group constructed
from a pair of marked generators α, β of π1(T1) as described in 2.1. Complex
Fenchel Nielsen coordinates (λA, τA,B) for 〈G; A,B〉 are obtained as follows.
The parameter λA ∈ C/2πiZ is the complex translation length of the generator
A = ρ(α), or equivalently the complex length λα. The twist parameter τA,B ∈
C/2πiZ measures the complex shear when the axis AxB−1AB is identified
with the axis AxA by B. More precisely, if the common perpendicular δ to
AxB−1AB and AxA meets these axes in points Y,X respectively, then <τA,B

is the signed distance from X to B(Y ) and =τA,B is the angle between δ and
the parallel translate of B(δ) along AxA to X, measured facing towards the
attracting fixed point of A. On the critical line Fα,β, τA,B ≡ 0 mod 2πi and
AxA, AxB intersect orthogonally. Thus a point on this line corresponds to a
rectangular torus with generators (A,B). The conventions for measuring the
signed distance and the angle are explained in more detail in [20] but are not
important here.

As shown in [11,20,27], given the parameters λA, τA,B, and a fixed a normal-
ization, one can explicitly write down the matrix generators for a marked two
generator group G(λA, τA,B) ⊂ PSL(2,C) in which the commutator [A,B] is
parabolic. This group may or may not be discrete. The matrix coefficients of
G depend holomorphically on the parameters. The construction thus defines
a holomorphic embedding of QF into a subset of C/2πiZ×C/2πiZ, in which
Fuchsian space F is identified with the image of R2.

We want to lift this to an embedding into C2. In section 6 we discussed how
to lift the length function λA on QF to a holomorphic function on C. We can
similarly lift the twist parameter τA,B by specifying that it be real valued on
F .
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On F , the real valued parameters λA, τA,B reduce to the classical Fenchel
Nielsen parameters lA, tA,B defined by the above construction with λA the
hyperbolic translation length lA of A and τA,B the twist parameter tA,B.

Clearly, the complex Fenchel Nielsen construction can be made relative to
any marking V, W of G. As described in detail in section 5 of [20], for fixed
λ ∈ R+ and τ ∈ C, the complex Fenchel Nielsen construction relative to V, W
determines a map D → H3. This map is the composition of the earthquake
Eγ(<τ) along the geodesic γ represented by V with a map ψ : D → H3

which is an isometry restricted to each conjugate of AxA and also to each
component of the complement of these axes in D. The earthquake Eγ(<τ) :
D → D intertwines the action of the rectangular torus group G(λ, 0) with
the group G(λ,<τ). The map ψ is a pleated surface map with with pleating
locus γ and angle =τ between the outward normals to adjacent flat planes. It
conjugates the actions of G(λ,<τ) on D and G(λ, τ) on its image in H3. We
set Dγ(λ, τ) = ψ(D). We note for future use that the bending measure of a
transversal σ is i(γ, σ)=τ .

7.2 Quakebends

Quakebends are a complex version of earthquakes. The construction was in-
troduced by Thurston and is explained in detail in [9] and also summarized
in [20]. An alternative discussion can be found in [31].

Let p ∈ F and let G0 = G(p) act on the disk D ⊂ H3. For µ ∈ ML and
τ ∈ C, the quakebend construction defines an isomorphism Qµ(τ) from G0 to
its imageQµ(τ)(G0) = Gp

µ(τ), together with a pleated surface ψp
µ(τ) : D → H3

conjugating the actions of Eµ(<τ)(G0) = Gp
µ(<τ) on D and Gp

µ(τ) on the image
Dp

µ(τ) = ψp
µ(τ)(D). If =τ 6= 0, then Dp

µ(τ) has pleating locus |µ|. When τ = 0,
ψp

µ(τ) = id and Gp
µ(τ) = G0. When =τ = 0 and <τ = t, Qµ(τ) coincides with

the earthquake Eµ(t), Dp
µ(τ) = D and Gp

µ(t) is discrete and Fuchsian for all
t ∈ R. If <τ = 0, we call the quakebend a pure bend.

If the lamination µ is rational, µ = kδγ, an earthquake along µ reduces to
a Fenchel Nielsen twist. In terms of Fenchel Nielsen coordinates (lV , tV,W )
relative to a marking (V, W ), where V ∈ G represents the geodesic γ, this is
given by the formula (λV , τV,W ) 7→ G(λV , τV,W + kt). Likewise a quakebend
along kδγ is the complex Fenchel Nielsen twist given by the formula Qµ(τ) :
G(λV , τV,W ) 7→ G(λV , τV,W + kτ). In particular, if the base point p ∈ F is the
rectangular group G(λ, 0) relative to its marking (V,W ), the image pleated
surface Dp

µ(τ) is exactly Dγ(λ, τ) as described in 7.1 above. We shall make
frequent use of this observation below. Note that the bending measure of a
transversal σ to Dp

µ(τ) is always i(σ, µ)=τ .
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So far, we have only discussed quakebends when the basepoint p is in F .
Examining [9], however, it is clear that one can make the same construction
starting from a basepoint q ∈ Pµ

+. More precisely, let pl+(q) be the bending
measure on ∂C+(q), so that (by the unique ergodicity of measured laminations
on a punctured torus) pl+(q) = kµ for some k > 0. Let the flat structure of
∂C+(q) be represented by the Fuchsian group F+(q) acting in D. One can
define the quakebendQq

µ(τ) as the group obtained by the quakebendQq
µ(τ+ik)

acting on F+(q); in other words compose an earthquake along µ by <τ with
a pure bend by =τ + k. In this case, we should consider the time zero pleated
surface Dq

µ(0) to be the surface ∂C+. (See also [26], [31] for other versions of
this construction.)

We shall not need to discuss here the problems associated with defining a
quakebend from an arbitrary basepoint in QF .

7.3 Quakebend planes

In what follows, we shall often want to regard the quakebend parameter τ as a
holomophic function on the space of representations ρ : π1(T1) → PSL(2,C),
modulo conjugation in PSL(2,C). When the basepoint is Fuchsian, this is
justified by the following proposition, which is [9], Lemma 3.8.1.

Proposition 24 Let p ∈ F , τ ∈ C, µ ∈ ML, and let Gp
µ(τ) = Qµ(τ)(G(p)).

Then the matrix coefficients of the elements of Gp
µ(τ) are holomorphic func-

tions of τ .

It is clear that the Epstein-Marden proof still works when the basepoint q is
in Pµ

+.

This result enables us to introduce quakebend planes, which are the device
used in section 9 to reduce the investigation of pleating varieties to a tractable
problem in one complex dimension.

For q ∈ Pµ
+ ∪F , we set Qq

µ = {Gq
µ(τ) : τ ∈ C}; we call Qq

µ the µ-quakebend
plane based at q and sometimes write Qq

µ(τ) for Gq
µ(τ). By proposition 25

below, a neighborhood of q in Qq
µ is contained in Pµ — but we emphasize

once again that that in general the whole of Qq
µ is not contained in QF (see

proposition 35 below and [31]).

In the rational case µ ∈ MLQ, Qq
µ has a very easy description in terms of

complex Fenchel Nielsen coordinates. Suppose that µ = δγ, γ ∈ S and that
(γ, γ′) are a pair of marked generators for π1(T1). Let (λV , τV,W ) ⊂ C2 be com-
plex Fenchel Nielsen coordinates relative to corresponding marked generators
(V, W ) of G. Let c = λµ(q). Then it is clear from the discussion above that
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Qq
µ is just the slice {(c, τ)} ⊂ C2. We denote this slice by Qγ,c. Clearly, Qγ,c

meets F along the earthquake path Eγ,c.

More generally, if µ ∈ ML and p, p′ ∈ Eµ,c, it is clear that Qp
µ = Qp′

µ ; we denote
this plane by Qµ,c. Clearly, Qµ,c meets F along the earthquake path Eµ,c. In
general, however, if q, q′ ∈ Pµ and λµ(q) = λµ(q′), then it is not immediately
clear whether or not Qq

µ = Qq′
µ . It is a consequence of our main results that

λµ(q) = λµ(q′) always implies Qq
µ = Qq′

µ ; this is proved in corollary 45 below.

As explained above, for a basepoint q ∈ Pµ ∪F , the quakebend plane Qq
µ

is not, in general, contained in QF . We note that in the special case p ∈
F , since QF is an open neighborhood of F (in the space of representations
into PSL(2,C) modulo conjugation), it follows that for small τ , Gp

µ(τ) is
quasifuchsian. The following stronger result shows that, as one would naively
expect, as one quakebends along µ away from a basepoint q ∈ Pµ

+ ∪F (for
which ∂C+ = Dq

µ(0)), the pleated surface Dq
µ(τ) remains equal to ∂C+ for all

small τ .

Proposition 25 Given µ ∈ ML and q ∈ Pµ
+ ∪F , there exists ε > 0, de-

pending on µ and q, such that if |τ | < ε, then Gq
µ(τ) ∈ QF and Dq

µ(τ) is a
component of ∂C(Gq

µ(τ)).

Proof: This is proved in [20], prop 8.10 for the case in which the basepoint
q is in F . It is clear that the same proof works in our more general case. ¤

We note that if Gq
µ(τ) ∈ QF and Dq

µ(τ) = ∂C+(Gq
µ(τ)), then the flat structure

of ∂C+(Gq
µ(τ)) is represented by the Fuchsian group E(<τ)µ(F+(q)) obtained

by earthquaking a distance <τ along the pull-back of µ to D. This observation
will be important in section 8 below.

8 The local pleating theorem

In this section we prove the local pleating theorem 26. We derive various con-
sequences including the density theorem 4 of the introduction and a detailed
description of how pleating varieties meet F . The statement of the theorem is
as follows.

Theorem 26 Local Pleating Theorem Suppose that ν ∈ ML and q0 ∈
Pν ∪F . Then there exists a neighborhood U of q0 in QF such that if q ∈ U
and λν(q) ∈ R+, then q ∈ Pν ∪F .
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Our starting point for proving this theorem is proposition 7.6 of [20], part
of whose content can be stated in the following way. We write Gq0

γ (τ) for
Gq0

δγ
(τ) = Qδγ (τ)(G(q0)).

Proposition 27 Suppose that γ ∈ S and q0 ∈ F . Then there exists η > 0
such that if |τ | < η, then Gq0

γ (τ) ∈ Pγ ∪F .

This proposition can be regarded as the special case of 26 in which ν =
kδγ ∈ MLQ, the basepoint q0 is Fuchsian and we restrict the discussion to the
quakebend plane Qq0

γ through q0. Notice that in this plane, λγ(G
q0
γ (τ)) is fixed

and hence automatically real.

We begin by reviewing the argument in [20]. Suppose γ ∈ S, let V ∈ G rep-
resent γ and choose W ∈ G such that (V, W ) is a marking. Let (λV , τV,W ) be
complex Fenchel Nielsen coordinates for QF relative to (V, W ); thus we regard
(λV , τV,W ) as holomorphic functions on QF . As described in section 7.1, when-
ever λV = λV (q) ∈ R+, the complex Fenchel Nielsen construction determines
a pleated surface map D → H3 with pleating locus γ. To indicate more clearly
the relevant variables, we shall write Pγ(q) for the image Dγ(λV , τV,W ) ⊂ H3.

If q0 ∈ F , then =τV,W (q0) = 0, hence for q near q0, =τV,W (q) is small. In [20],
we argued that for =τ sufficiently small, Pγ(q) = Dγ(λV , τV,W ) is embedded
and bounds a convex half space in H3. It follows by proposition 7.2 of [20],
that Pγ(q) is a component of ∂C(q).

There are two problems in applying this argument in the present circum-
stances. First, we wish to include the case q0 /∈ F , and thus can no longer
assume that =τV,W is small. Second, we want to prove theorem 26 for an irra-
tional lamination ν by taking a limit of rational laminations. Since the constant
ε of proposition 25 depends on γ and is not uniform, (in fact ε ∼ 2 exp (−lγ/2)),
the limiting process fails, indicating that we need to scale the approximating
laminations properly. To resolve these problems, we digress to study the ge-
ometry of the pleated surfaces Pγ(q) more carefully.

Fix q0 ∈ QF , γ ∈ S and a marking (V, W ) as above. Suppose that q ∈ QF
and that λV (q) ∈ R+. Let φγ(q) be the normalized Fuchsian group with (real)
Fenchel Nielsen coordinates (λV (q),<τV,W (q)). The surface Pγ(q) is the image
of the pleated surface map D → H3 defined by a pure bend along δγ by
i=τV,W (q). We refer to φγ(q) as the flat structure of Pγ(q).

We can associate a transverse measure bν(q) to Pγ(q) in an obvious way:
for any arc σ on Pγ(q) transverse to its pleating locus γ, set bγ(q)(σ) =
i(σ, γ)=τV,W (q). Thus we can also write Pγ(q) = Qp

bγ(q)(i), where p is the

image of φγ(q) in F .
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We remark that we are not making the assumptions that Pγ(q) is a component
of ∂C(q), or that φγ(q) is one of the flat structures F±(q) of ∂C(q) (see sec-
tion 4.1); in fact, this is exactly what we must prove. In particular, we cannot
assume that bγ(q) is the bending measure pl±(q). The following result, how-
ever, gives information about φγ(q) and bγ(q) for q near q0 ∈ Pν0 for irrational
ν0.

Proposition 28 Given ν0 ∈ ML−MLQ, and q0 ∈ Pν0

+ ∪F , let F+(q0) ∈ F
and pl+(q0) be the flat structure and bending measure of ∂C+(q0) respectively.
(If q0 ∈ F , then pl+(q0) = 0 and F+(q0) is the Fuchsian group representing
q0.) Then, given neighborhoods V of F+(q0) in F and W of pl+(q0) in ML,
there exist neighborhoods U of q0 in QF and X of [ν0] in PML such that if
q ∈ U , [δγ] ∈ X ∩ PMLQ and λγ(q) ∈ R+, then the flat structure φγ(q) of
Pγ(q) is in V and the transverse measure bγ(q) is in W .

The idea of the proof of this proposition is that by the convergence lemma 1,
for ν0 ∈ ML −MLQ, nearby rational laminations are close in the Hausdorff
topology, so that the bending loci and hence the structures of the associated
pleated surfaces are also close. The details are a technical modification of the
arguments in [19] and are given in appendix 12.2. (We remark that the result
is still true for ν0 ∈ MLQ, however the details of the proof differ since the
convergence lemma does not apply. We omit this case since it is not needed
here.)

The plan of the proof of theorem 26 is the following. The hard case to handle
is ν /∈ MLQ. We shall show in theorem 31 below, that if q0 ∈ Pν , then for q in
a neighborhood of q0, if [δγ] is sufficiently close to [ν] in PML, the condition
λγ(q) ∈ R+ implies that Pγ(q) is a also a component of ∂C. Theorem 26 then
follows by an easy limiting argument using the continuity theorem 11.

We prove theorem 31 using an extension of proposition 25, which we state as
proposition 29. Stated roughly it says that if p ∈ F and the pleated surface
Dp

µ(τ) associated to the quakebend Qp
µ(τ) is a component of ∂C, then the same

is true of any surface Dp′
µ′(τ

′) obtained by quakebending a nearby amount τ ′

from a nearby point p′ ∈ F along a nearby lamination µ′. Now, a component
of ∂C can be obtained from the Fuchsian group representing its flat structure
by a pure bend along the pleating lamination |µ|. Proposition 28 allows us
to apply proposition 29 to Pγ(q) for [δγ] close to [ν] and q close to q0, thus
proving theorem 31.

Proposition 29 Let p0 ∈ F be represented by G0 = G(p0) and suppose that
τ0 ∈ C is such that q0 = Qp0

µ0
(τ0) ∈ Pµ0

+. Then there exist neighborhoods X, Y
and Z of µ0, p0 and τ0 in ML, F and C respectively, such that if µ ∈ X,
p ∈ Y and τ ∈ Z, then q = Qp

µ(τ) ∈ QF and Dp
µ(τ) is a component of ∂C(q).
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The proof of this result is identical with the version in [20] once we note that
the constants involved depend continuously on G and µ. This follows from the
following variant of lemma 8.2 of [20].

Lemma 30 Let X and Y be compact sets in ML and F respectively. Then
there exist constants d > 0 and K > 0 such that if µ ∈ X and G ∈ Y , and if
σ is any geodesic segment on D/G of length less than d, then µ(σ) < K.

We can now prove theorem 31, which is important in its own right.

Theorem 31 Suppose ν0 ∈ ML −MLQ and q0 ∈ Pν0

+ ∪F . Then there are
neighborhoods U of q0 in QF and X of [ν0] in PML such that if [δγ] ∈
PMLQ ∩X, q ∈ U and if λγ(q) ∈ R+, then Pγ(q) is a component of ∂C(q).

Proof: By proposition 28, there are neighborhoods X of [ν0] in PML and U
of q0 in QF such that for q ∈ U and [δγ] ∈ X, the flat structures F+(q0) of
∂C+(q0) and φ(q) of Pγ(q) are close in F , and the transverse measures pl+(q0)
and bγ(q) are close in ML.

As remarked earlier, ∂C+(q0) is just the pleated surface obtained from F+(q0)
under a pure bend by i along the measured lamination pl+(q0) while Pγ(q) is
obtained from φγ(q) by a pure bend by i along bγ(q). The result now follows
from proposition 29. ¤

We now prove theorem 26.

Proof: Suppose first that ν ∈ MLQ. In this case the result follows as in the
discussion following proposition 27 above, using proposition 29 as a substitute
for the condition =τ near 0 when the base point q0 is not Fuchsian.

Suppose therefore that ν /∈ MLQ, and pick νn ∈ MLQ, νn → ν. Find neigh-
borhoods U of q0 in QF and X of [ν] in PML satisfying the conclusion of
theorem 31.

Assume q ∈ U and λν(q) ∈ R+. Since λνn → λν uniformly on U , and since
λν is non-constant on U , by Hurwitz’s theorem we can find qn ∈ U , qn →
q, such that λνn(qn) = λν(q), and in particular such that λνn(qn) ∈ R+.
Applying theorem 31, we see that for sufficiently large n, P|νn|(qn) is one
of the components of ∂C+(qn) so that qn ∈ Pνn

+. Hence, by the continuity
theorem 11, we get q ∈ Pν

+. This completes the proof of theorem 26. ¤

Corollary 32 Suppose µ, ν ∈ ML, [µ] 6= [ν]. Let q0 ∈ Pµ,ν
+ ∪F and let Qq0

µ

be the µ-quakebend plane based at q0. There exists a neighborhood U of q0 in
Qq0

µ such that if q ∈ U and λν(q) ∈ R+, then q ∈ Pµ,ν ∪Pν,µ ∪F .
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Proof: This is just theorem 26 applied in the quakebend plane Qq0
µ . We can

prove it either by applying proposition 25 to see that for q ∈ Qq0
µ near q0, we

have q ∈ Pµ ∪F , and then applying theorem 26 to ν; or by noting that since
λµ is constant on Qq0

µ and real valued at q0, we can apply theorem 26 first to
µ and then to ν. ¤

Remark 33 The condition λγ(q) ∈ R+ is key in proposition 28 and in theo-
rem 31. We can always find a pleated surface Π whose pleating locus σ contains
the geodesic γ. In general, however, σ properly contains γ and has leaves spi-
ralling into γ, and thus carries no transverse measure. Then, even though [δγ]
is near [pl±] in PML, the pleated surface Pγ realizing γ (see [7],[45]) is not nec-
essarily embedded; moreover, even if it is, neither of the half spaces it bounds
in H3 will be convex. The point is that the condition σ = γ is equivalent to
λγ(q) ∈ R+.

8.1 Consequences of theorem 26

From theorem 26 we obtain the following local extension of the picture of
Fuchsian space described in section 3.

Theorem 34 Let µ, ν ∈ ML, i(µ, ν) > 0, p ∈ F . Then there is a neighbor-
hood U of p in QF such that

(1) if p /∈ Fµ,ν then Pµ,ν ∩U = ∅, while
(2) if p ∈ Fµ,ν then the intersection of the R-loci λ−1

µ (R)∩λ−1
ν (R) with U is

exactly

(Pµ,ν ∪Pν,µ ∪F) ∩ U.

In the second case, let p = p(µ, ν, c) ∈ Fµ,ν, let Qp
µ be the quakebend plane

along µ based at p and let V = U ∩Qp
µ . Then λν |V has a simple critical point

at p and λ−1
ν (R+) ∩ (V − F) has exactly two components, one lying in Pµ,ν

and the other in Pν,µ.

Proof: Part 1 follows since for p /∈ Fµ,ν , there exists a neighborhood U of p
in the quakebend plane Qp

µ based at p such that λ−1
ν (R+) ∩ U ⊂ F . The first

statement in part 2 is immediate from Theorem 26.

By Corollary 21, λν |Eµ,c has exactly one critical point at p and it is simple.
Thus the second statement in part 2 is a restatement of corollary 32 with
q0 = p. ¤

We note that this theorem provides an alternative proof of theorem 13.
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We can also now prove the density theorem 4 of the introduction. First, we
need a bound on the bending angle in a quakebend plane.

Proposition 35 Suppose µ ∈ ML, q ∈ Pµ ∪F and let Qq
µ be the quakebend

plane along µ based at q with parameter τ = τµ. Given K > 0, there exist
B2 > B1 > 0 such that if |<τ | < K and B2 > =τ > B1, then Qq

µ(τ) /∈ Pµ.

We need the restriction B1 < =τ < B2 rather than simply =τ > B1 because of
the periodicity of the twist parameter τµ for rational laminations. The period
is 2πi when µ = δγ, γ ∈ S. The statement Qq

µ(τ) /∈ Pµ means that either
Qq

µ(τ) /∈ QF or that Qq
µ(τ) ∈ QF but [pl+(Qq

µ(τ))] 6= [µ]. We show that,
under the hypotheses of the proposition, Qq

µ(τ) fails to be in Pµ because the
surface obtained by bending along µ is not embedded. In this situation, it may
or may not be true that Qq

µ(τ) ∈ QF . The proof is given in appendix 12.3,
see also [31] theorem 6.2.

As an immediate corollary we have

Proposition 36 Suppose q ∈ QF , q ∈ Pµ,ν ∪F . Then the holomorphic func-
tion λν(q) is non-constant on Qq

µ ∩QF .

Proof: Since q ∈ Pν we know λν(q) ∈ R+. By construction λµ(q) = c > 0 for
all q ∈ Qq

µ. Suppose that λν(q) = d > 0 for all q ∈ Qq
µ ∩ QF . By theorem 26,

Pµ,ν is open in Qq
µ.

Now suppose that qn = Qq
µ(τn) ∈ Pµ,ν and that τn → τ∞. Since lµ(qn) = c

and lν(qn) = d for all n, it follows from theorem 15 that qn → q∞ ∈ QF .
By theorem 11, q∞ ∈ Pµ,ν ∪F . Clearly, q∞ = Qq

µ(τ∞) and so Pµ,ν is closed in
Qq

µ−F . Therefore Pµ,ν is a connected component of Qq
µ−F and must be one

of the half planes =τµ > 0 or =τµ < 0, contradicting proposition 35. ¤

Finally we can prove theorem 4.

Theorem 4 The rational pleating varieties Pµ,ν , µ, ν ∈ MLQ are dense in
QF .

Proof: Let q ∈ QF and let µ ∈ [pl+(q)], ν ∈ [pl−(q)]. By theorem 23,
λµ(q), λν(q) ∈ R+. Clearly, we may as well assume µ /∈ MLQ. Find a sequence
{µn} ∈ MLQ, µn → µ. By Hurwitz’s theorem inQF , we can find points qn → q
with λµn(qn) ∈ R+ and so by theorem 31, qn ∈ Pµn for large enough n. If
ν ∈ MLQ we are done, otherwise find {νn} ∈ MLQ, νn → ν. By proposition 36,
λνn is non-constant on Qqn

µn
∩QF and we can apply Hurwitz’s theorem again

in Qqn
µn
∩QF to find q′n near qn, such that q′n → q and such that λνn(q′n) ∈ R+.

By theorem 31 again, q′n ∈ Pµn,νn for large enough n. ¤
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9 Pleating rays and planes

In this section, we apply the local and limit pleating theorems to prove our
main results theorems 6 and 2 of the introduction.

Recall from section 4.2 the definition of the pleating ray

Pµ,ν,c = {q ∈ Pµ,ν : lµ(q) = c},

where (µ, ν) ∈ ML × ML, and c > 0. Pleating rays are the basic building
blocks out of which we construct pleating planes and the BM -slices mentioned
in the introduction. Notice that, because of theorem 23, we can equally well
define

Pµ,ν,c = {q ∈ Pµ,ν : λµ(q) = c}.

Our results will justify the names “rays” and “planes”.

The main work is in the study of the pleating rays. Our strategy is as follows.
We begin by applying the limit pleating theorem and the local pleating the-
orem to obtain some general results about Pµ,ν for arbitrary µ, ν ∈ ML. We
then prove theorem 6 in the case where [µ] = [δγ], [ν] = [δγ′ ] and (γ, γ′) is a
marking for T1. We show that in this case Pδγ ,δγ′ ,c, which we call an integral
pleating ray, is a straight line segment in the quakebend plane Qγ,c. Using the
integral rays we derive constraints on the rays Pδγ ,ν,c ⊂ Q|µ|,c for arbitrary ν;
using our general results we are then able to deduce theorem 6 in the general
case. Finally, we apply theorem 6 to deduce theorem 2.

9.1 Pleating rays

In the four lemmas which follow, µ, ν are arbitrary laminations in ML and,
as usual, Qq

µ denotes the µ-quakebend plane through q ∈ Pµ ∪F .

Lemma 37 Let q ∈ Pµ,ν. The set Pµ,ν ∩Qq
µ is a union of connected compo-

nents of the R-locus of λν in (QF −F) ∩Qq
µ.

Proof: We have to show that Pµ,ν ∩Qq
µ is open and closed in the R-locus

of λν in (QF − F) ∩ Qq
µ. The openness is the local pleating theorem 26 and

closure follows by the continuity theorem 11. ¤

If ν = kδγ, γ ∈ S, we obtain a stronger result. Let V ∈ G represent γ. In
this case, by proposition 24, trace Tr V is defined and holomorphic on all of
Qq

µ (including the part outside QF), and we obtain a version of lemma 37 for
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the R-locus of λγ in Qq
µ. Define the hyperbolic locus of γ in Qq

µ as {q ∈ Qq
µ :

Tr V ∈ R, |Tr V | > 2}.

Lemma 38 Let ν = kδγ ∈ MLQ and let q ∈ Pµ,ν. Let V ∈ G represent γ.
Then the set Pµ,ν ∩Qq

µ is a union of connected components of the hyperbolic
locus of Tr V in Qq

µ −F .

Proof: The openness follows as above, using the local pleating theorem 26.
The closure follows from theorem 15. The point is first, that length and trace
are related by the trace formula Tr V = 2 cosh(lγ/2), and second, that if we
reach a limit point at which |Tr V | > 2, then lγ > 0 so that by the second
part of theorem 15 we must still be in QF . (See [18] proposition 5.4 for a more
elementary proof without using theorem 15.) ¤

This is a strong result. The point is, that starting from a point we know is
in QF , the lemma asserts that if we move along branches of the hyperbolic
locus, then we stay in QF until we reach a boundary point of ∂QF at which
|Tr V | = 2. This observation is what makes it possible to use the pleating
invariants for computations of ∂QF , see theorem 3 of the introduction.

With the notation of lemma 37, set c = λµ(q). Clearly, Pµ,ν ∩Qq
µ = Pµ,ν,c.

As usual, we let pµ,ν,c ∈ Fµ,ν be the minimal point for the length function
lν on the earthquake path Eµ,c. The following lemma makes essential use of
theorem 15.

Lemma 39 Let q ∈ Pµ,ν and let c = λµ(q). The image of each component of
Pµ,ν ∩Qq

µ under the map λν is an interval of the form (0,∞), (0, d) and (d,∞)
where d = fµ,ν(c) = lν(pµ,ν,c). Moreover, there is at most one component of
Pµ,ν ∩Qq

µ whose image is (0, d); the closure of such a component meets F
exactly in p(µ, ν, c).

Remark 40 As we shall see in theorem 6, in fact Pµ,ν ∩Qq
µ has a unique

component, and the image of this component is (0, d).

Proof: Let K be a connected component of Pµ,ν,c. By theorem 23, λν |K
is real valued and, by proposition 36, it is non-constant on Qq

µ. Since it is
holomorphic, it is not locally constant and thus not constant on K. Therefore
by lemma 37 the image IK of λν |K is an open interval in R+.

Suppose that r ∈ R+ and that there is a sequence {qn} ∈ K such that
λν(qn) → r. Since λµ(qn) = c, by theorem 15 a subsequence of {G(qn)} has
an algebraic limit G∞. Furthermore, since λν(qn) → r > 0, the group G∞ is
represented by a point q ∈ QF such that λν(q) = r. If q ∈ QF − F then
by theorem 11, q ∈ K so that r ∈ IK . On the other hand, if q ∈ F then by
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theorem 34, q = p(µ, ν, c) and r = λν(q) = fµ,ν(c) = d. Thus λν(K) is open
and closed in (0, d) ∪ (d,∞). The result follows from theorem 34. ¤

Lemma 41 Let q ∈ Pµ,ν and let c = λµ(q). Let τ denote the quakebend
parameter in the quakebend plane Qq

µ. Suppose that the points qn ∈ Pµ,ν,c

are represented by the quakebend parameter τn and that λν(qn) → ∞. Then
|<(τn)| → ∞.

Proof: Since qn ∈ Pµ,ν,c we know λν(q) is real. Moreover, λν(q) ≤ lν(F
+(qn));

that is, λν(q) is bounded above by the length of ν on the flat structure of
∂C+/G(qn). This flat structure is determined by the length of µ, which is
fixed, and the earthquake parameter <(τn). Thus if |<(τn)| is bounded, so is
λν(qn). ¤

We can now start investigating the integral pleating rays. Suppose that [µ] =
[δγ], [ν] = [δγ′ ] and (γ, γ′) is a marking for T1. For simplicity, we write Pγ for
Pδγ and so on. Let (λV , τV,W ) ∈ C2 be complex Fenchel Nielsen coordinates
relative to a marked pair of generators (V,W ) corresponding to (γ, γ′). As in
section 7.3, we denote by Qγ,c the slice {(c, τ)} ⊂ C2; Qγ,c is the quakebend
plane along γ that meets F along the earthquake path Eγ,c. We denote points
in this slice simply by the parameter τ = τδγ . As usual, τ = 0 corresponds to
the point p(γ, γ′, c) ∈ F , while =τ = 0 is the earthquake path Eγ,c.

For m ∈ Z, the pair (γ, γmγ′) is a pair of marked generators for π1(T1) cor-
responding to the pair of generators V, V mW for G. Clearly Pγ,γmγ′,c ⊂ Qγ,c.
The generators V, V W are obtained from the pair V, W by the map induced
by a Dehn twist about γ. The basepoint relative to which we measure the
twist parameter changes and we find τV,V W = τV,W + λV ; similarly, τV,V mW =
τV,W + mλV .

The following formula is derived in [39] for any pair (V,W) of marked gener-
ators for G:

cosh
τV,W

2
= ± cosh

λW

2
tanh

λV

2
(2)

By our conventions, <λV , <λW > 0, so that we should choose the + sign on
F and hence everywhere in QF .

Applying this formula to the generators (V, V −mW ) we find

cosh
τ −mλV

2
= cosh

λV −mW

2
tanh

λV

2
. (3)
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In particular, at τ = mc we have

1 = cosh
λγ−mγ′

2
tanh λγ

2
. (4)

or equivalently

sinh c
2
sinh

λγ−mγ′
2

= 1. (5)

Proposition 42 Let (γ, γ′) be a marked pair of generators for π1(T1) and
let c > 0. Then for m ∈ Z, Pγ,γ−mγ′,c and Pγ−mγ′,γ,c are the two line seg-
ments <τ = mc, |=τ | < 2 arccos tanh c

2
in Qγ,c. The two line segments <τ =

mc, |=τ | ≥ 2 arccos tanh c
2

in Qγ,c have empty intersection with QF .

Remark 43 Which of the two segments corresponds to Pγ,γ−mγ′,c and which
to Pγ−mγ′,γ,c depends on our convention for measuring τ and is not important
here.

Proof: Because τV,V −mW = τV,W − mc, we may restrict ourselves to the
case m = 0. From lemma 38, Pγ,γ′ is a union of connected components of
the hyperbolic locus of γ′ in Qγ,c − F , and by theorem 34 there is a unique
component K whose closure meets the critical line Fγ,γ′ in p(γ, γ′, c).

From equation (2) ,

cosh
τ

2
= cosh

λγ′

2
tanh

λγ

2
.

Thus the R-locus of λγ′ inQγ,c is the set defined by cosh τ
2
∈ R, or equivalently,

{<τ = 0} ∪ {=τ = 0}. The real axis =τ = 0 corresponds to Eγ,c = Qγ,c ∩ F
and we see easily (see lemma 38 ) that the connected components of the
hyperbolic locus of γ′ inQγ,c−F which meet the real axis are the two segments
0 < |=τ | < 2 arccos tanh c

2
. One of these segments must be the component K

and the other is the corresponding component for Pγ′,γ. Each of these segments
is mapped bijectively by λγ′ to [0, 2 arccos tanh c

2
).

Now on the imaginary axis, we have cosh
λγ′
2
≤ (tanh c

2
)−1, and hence by

lemma 39, Pγ,γ′,c and Pγ′,γ,c have no other components.

Finally we have to show that no other points on the imaginary axis lie in QF .
Equation (3) holds for groups in Qγ,c even when they are outside QF . On this
axis, therefore, we always have

−1 ≤ cosh
λγ′

2
tanh

c

2
≤ 1.

In [39] proposition 6.2, it is shown by a direct argument that if λγ′ ∈ R and the
above inequality is strict, then the group generated by V,W is quasifuchsian
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and contained in Pγ,γ′ . Moreover, in this situation, this group is determined by
λγ and λγ′ up to conjugacy. If equality holds, the group represents the unique
point p(γ, γ′, c) ∈ F . These are the therefore the groups we have already
discussed.

Since cosh
λγ′
2
∈ R, the only other possibility is that λγ′ is purely imaginary.

In this case the corresponding group element would have to be elliptic which
is impossible in QF . ¤

We can now obtain a bound on the pleating rays Pγ,ν,c for arbitrary ν ∈ ML.

Corollary 44 Let ν ∈ ML, i(ν, γ) > 0. Then |<τ | is bounded on each com-
ponent of Pγ,ν,c, where τ denotes the quakebend parameter τδγ in Qγ,c.

Proof: If along some component of Pγ,ν,c in Qγ,c, |<τ | → ∞, the component
would have to intersect infinitely many of the lines τ = mc + iθ, θ ∈ R.
According to proposition 42, however, each such line is the union of the integral
pleating rays Pγ,γ−mγ′,c, Pγ−mγ′,γ,c, the point p(γ, γ−mγ′, c) ∈ F , and points not
in QF . This is impossible. ¤

We can now prove theorem 6 on the structure of the pleating rays. Recall from
section 7.3 that Qµ,c is the quakebend plane along µ which meets F along the
earthquake path Eµ,c.

Theorem 6 Let µ, ν be measured laminations on T1 with i(µ, ν) > 0 and
let c > 0. Then the set Pµ,ν,c ⊂ QF on which [pl+] = [µ], [pl−] = [ν] and
lµ = c, is a non-empty connected non-singular component of the R+-locus of
the restriction of λν to Qµ,c. The restriction of λν to Pµ,ν,c is a diffeomorphism
onto its image (0, fµ,ν(c)) ⊂ R+.

Proof: We assume first that µ ∈ MLQ; without loss of generality we may take
µ = δγ, γ ∈ S. Let c > 0 and let K be a component of Pγ,ν,c. By corollary 44,
|<τ | is bounded on K. By lemma 41, λν |K is bounded and hence by lemma 39
the image is the interval (0, d) where d = fγ,ν(c). Moreover, there exist points
τn ∈ K , τn → p(γ, ν, c) ∈ Fγ,ν .

Now by theorem 34, there is only one branch of λ−1
ν (R+) near p(γ, ν, c); thus

if the degree of λν |K were greater than one, there would be points τ ′n ∈ K
with λν(τ

′
n) → d, but with τ ′n → q∞ ∈ QF −F . Then, by lemma 39, λν(K) ⊃

(0,∞), which is impossible.

Now we remove the restriction that µ ∈ MLQ. Suppose that q ∈ Pµ,ν,c. We
have to replace the plane Qγ,c by the plane Qq

µ, in which we denote the quake-
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bend parameter τµ by τ . Because there are no integral pleating rays if µ is
irrational, we need another argument to bound <τ .

Choose a sequence νn ∈ MLQ such that νn → ν. By theorem 20 the holomor-
phic function λν(q) is continuous in ν and by proposition 36 it is nonconstant.
Thus we can apply Hurwitz’s theorem in Qq

µ to find qn ∈ Qq
µ such that qn → q

and λνn(qn) ∈ R+. By theorem 31, for large enough n, qn ∈ Pµ,νn,c. Now be-
cause νn ∈ MLQ, we can apply the argument above with the roles of µ and νn

reversed to deduce that λµ(qn) < fνn,µ(λνn(qn)). Thus, since fνn,µ is monotonic
decreasing, we have that λνn(qn) < f−1

νn,µ(λµ(qn)). Since f−1
νn,µ = fµ,νn (from the

definition of fνn,µ) we conclude that λνn(qn) < fµ,νn(c).

Because νn → ν, by corollary 8 and theorem 20 we have fµ,νn(c) → fµ,ν(c) so
that {λνn(qn)} is bounded by a constant depending only on µ, ν and c. The
remainder of the argument is as before. ¤

As an immediate corollary we have

Corollary 45 If q ∈ Pµ, then G(q) is obtained from a group G(p), p ∈ F by a
quakebend Qp

µ(τ ∗) along µ. Moreover, there is a quakebend path σ : [0, 1] → C
in QF from p to q, or, in the coordinate of Qp

µ(τ), σ(0) = 0, σ(1) = τ ∗ and
Qp

µ(σ(t)) ∈ QF , 0 ≤ t ≤ 1.

This settles the question about uniqueness of quakebend planes raised at the
end of section 7.2.

Remark 46 In [18], we studied the Maskit slice for punctured tori in terms
of pleating rays with a similar definition to the above. In particular, theorem
7.2 of [18], asserts a non-singularity result similar to that in theorem 6. It has
been pointed out to us by Y. Komori that our proof in [18] in the case of rays
ν /∈ MLQ is incorrect. In fact, we need an openness result like theorem 26
above. The methods above also prove the important result, omitted in [18],
that the range of the length function on an irrational ray in the Maskit slice
is (0,∞). We refer to [25] for a corrected version of the argument in [18].

9.2 Pleating planes

We are finally able to prove theorem 2 on the structure of the pleating va-
rieties Pµ,ν . As in the introduction, let Lµ,ν : QF → C2 be the map q 7→
(λµ(q), λν(q)).

Theorem 2 Let (µ, ν) be measured laminations on T1 with i(µ, ν) > 0. Then
the set Pµ,ν ⊂ QF on which [pl+] = [µ], [pl−] = [ν] is a non-empty connected
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non-singular component of the R2-locus in QF −F of the function Lµ,ν. The
restriction of Lµ,ν to Pµ,ν is a diffeomorphism to the open region under the
graph of the function fµ,ν in R+ ×R+.

Proof: By theorem 23, the map Lµ,ν|Pµ,ν
takes values in R+×R+. That Lµ,ν

restricted to Pµ,ν is injective follows immediately from the injectivity of λν on
each pleating ray Pµ,ν,c. Hence, Pµ,ν is a non-singular R2-locus in QF − F .
The statement about the image of Lµ,ν follows from theorem 6. ¤

We remark that a similar proof shows that Pµ,ν and Pν,µ are the unique con-
nected components of the R-locus of Lµ,ν in QF − F whose closure in QF
meets F in Fµ,ν .

We also remark that if in theorem 2 we replace µ, ν by µ′ = sµ, ν ′ = tν, s, t,∈
R+, then Pµ,ν is unchanged and the length function Lµ′,ν′ is simply a rescaling
of Lµ,ν :

Lµ′,ν′(q) = (sλµ(q), tλν(q)).

Our main result, theorem 1, that a group inQF is characterized by its pleating
invariants, uniquely up to conjugation in PSL(2,C), is an immediate conse-
quence of theorem 2.

9.3 Relation to Otal’s theorem

In [37] and later [5], Bonahon and Otal study spaces of various topological
types of 3-manifolds with a hyperbolic structure H3 /G such that ∂C(G) is a
pleated surface with (in our terminology) a fixed rational pleating lamination.
Translated to our situation, this means the study of a rational pleating plane
Pγ,γ′ for fixed γ, γ′ ∈ S. Write pl+ = θδγ, pl− = θ′δγ′ , θ, θ′ ∈ R. A special case
of their results shows that the map Θ(q) = (θ(q), θ′(q)) is a homeomorphism
from Pγ,γ′ to an open neighborhood of (0, 0) in (0, π)× (0, π).

Our methods prove that the map Θ is open and proper; we have thus far
however, been unable to derive injectivity by our methods. (For the special
case i(γ, γ′) = 1, see [39], theorem 3.6.)

Note however that if qn ∈ Pγ,γ′ , qn → p ∈ F , then Θ(qn) → (0, 0) so the whole
critical line Fγ,γ′ appears on the boundary of this Bonahon-Otal embedding
as a single point.
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10 BM-slices

In this section we study what happens when we fix the pleating invariants on
one side of ∂C. The slices thus defined turn out to be the complex extensions
of the earthquake paths into QF .

The space of marked conformal structures on T1 can be identified with the
space F . For q ∈ QF , let w±(q) denote the marked conformal structures of
Ω±/G(q). Bers used the embedding q 7→ (w+, w−) of QF into F × F to find
holomorphic coordinates for F by fixing the second factor w− and proving
that w+ varies over F ; this is called the Bers embedding of F . (Recall that the
orientation and hence the marking on Ω−/G(q) is reversed; this is why in the
second factor we write F .) Maskit, on the other hand, fixed a curve γ on T1 and
studied the family of groups on ∂QF for which λγ = 0 and the corresponding
element V ∈ G is an accidental parabolic. These groups are known as cusps.
The conformal structure w− is then fixed and represents a family of thrice
punctured spheres; Maskit proved that the first coordinate w+ varies so as to
define an embedding of F into C. We studied the pleating invariants for this
Maskit embedding of F in detail in [18]. McMullen [31], defines coordinates
for Bers embeddings of QF that extend to Maskit and generalized Maskit
embeddings on ∂QF . On the Maskit embeddings his coordinates agree with
the pleating invariants of [18].

In terms of Thurston’s ending invariants [45], [35], both constructions corre-
spond to holding the ending invariant of one side fixed and allowing the other
to vary. It is thus natural to ask what happens when, instead of fixing an
ending invariant, we fix the pleating invariants of one side.

Let µ ∈ ML, c ∈ R+ and set

BM+
µ,c = {q ∈ Pµ

+ : λµ(q) = c}.

On BM+
µ,c, neither the conformal structure on Ω+/G nor the flat structure on

∂C+/G are fixed. They are, however, constrained by the condition λµ(q) = c.
We define

J : BM+
µ,c → (PML− {[µ]})×R+,

by

J(q) =
(
[pl−(q)],

lpl−(q)

i(µ, pl−(q))

)
.

Since [pl−(q)] 6= [pl+(q)], i(µ, pl−(q)) > 0. The map J is continuous by the-
orem 11. Since for fixed µ ∈ ML, the functions lν and i(µ, ν) scale in the
same way as we vary ν in its projective class in PML, the entry in the second
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coordinate of J depends only on [pl−]; it can therefore be written in terms of
our pleating invariants as λν(q)/i(µ, ν) for any choice of ν ∈ [pl−].

Set

X (µ, c) =
{
([ν], s) ∈ (PML− {[µ]})×R+ : 0 < s <

fµ,ν(c)

i(µ, ν)

}
.

Identifying PML− {[µ]} with R as in section 2.2, we can think of X (µ, c) as

the region in R×R+ under the graph of the function [ν] 7→ fµ,ν(c)
i(µ,ν)

. As discussed
above, this function is well defined and by corollary 8, it is continuous.

As before, we let Qµ,c denote the quakebend plane along µ that meets F along
Eµ,c. Clearly Qµ,c = Qp

µ for all p ∈ Eµ,c.

Theorem 5 Let µ ∈ ML and let c > 0. Then the closures in QF of precisely
two of the connected components of Qµ,c∩(QF−F) meet F . These components
are the slices BM±

µ,c. The intersection of the closure of each slice with F is the
earthquake path Eµ,c; furthermore each slice is simply connected and retracts
onto Eµ,c and the map J : BM±

µ,c → X (µ, c) is a homeomorphism.

Proof: Noting that for ν ∈ ML, the pleating ray Pµ,ν,c depends only on the
projective class [ν] of ν, it is clear from the definitions that

BM+
µ,c =

⋃

[ν]∈PML−{[µ]}
Pµ,ν,c.

Since for [ν] ∈ PML − {[µ]}, the closure of the pleating ray Pµ,ν,c in QF
contains the point p(µ, ν, c), the closure of BM+

µ,c in QF contains Eµ,c. It
follows easily from theorems 15 and 26 that BM+

µ,c is open and closed in
Qµ,c∩ (QF −F). By theorem 34 there are no other components of Qµ,c whose
closure meets F .

For [ν] ∈ PML − {[µ]}, by lemma 39, λν |Pµ,ν,c is a homeomorphism to the
interval (0, fµ,ν(c)). This proves J is a homeomorphism onto B+

µ,c. Clearly
therefore, BM+

µ,c is simply connected and retracts to Eµ,c along rays. ¤

In analogy with theorem 4 we have

Theorem 47 The rational pleating rays Pµ,ν,c are dense in BM+
µ,c.

Remark 48 As discussed above, holding the ending invariant of one side
fixed and letting the ending invariant of the other side vary over the full
Teichmüller space F , we obtain the Bers and Maskit slices. By contrast, the
set of flat structures F−(q) for points q ∈ BM+

µ,c cannot be the full image of
F . In fact, on each ray Pµ,ν,c, the length λν is bounded above by fµ,ν(c). Since
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by a theorem of Sullivan, [9], lengths on ∂C− and Ω− are in bounded ratio,
those points on the earthquake path Eµ,c in F at which λν is very large will
not occur as F−(q) for points q ∈ BM+

µ,c. See also [31] for related phenomena.

11 Rational pleating planes and computation

We can now easily prove theorem 3 of the introduction.

Theorem 3 Let δγ, δγ′ be rational laminations represented by non-conjugate
elements V, V ′ ∈ G. Then Pγ,γ′ and Pγ′,γ are the unique components of the R2-
locus of the function Tr V ×Tr V ′ in QF −F whose closures meet F in Fγ,γ′.
On Pγ,γ′ ∪Pγ′,γ the function Tr V ×Tr V ′ is non-singular and the boundary of
Pγ,γ′ ∪Pγ′,γ can be computed by solving Tr V = ±2 and Tr V ′ = ±2 on this
component.

Proof: If V, V ′ ∈ G represent γ, γ′ in S, then the R+-loci in QF of Tr V, Tr V ′

and λγ, λγ′ agree. As a consequence of theorem 2, Pγ,γ′ can be uniquely iden-
tified as the component of the R+×R+-locus of Tr V ×Tr V ′ which meets F
in the critical line Fγ,γ′ . ¤

As a consequence of this theorem, given any embedding QF → C2, we can
compute the position of Pγ,γ′ and its boundary exactly, provided we can ex-
press Tr V and Tr W as holomorphic functions of the parameters and identify
the critical line.

For the complex Fenchel Nielsen embedding this works as follows. We first
note:

Proposition 49 Let (λV , τV,W ) be complex Fenchel Nielsen coordinates for
QF relative to a marked pair of generators (V, W ). Suppose γ′ ∈ S with
corresponding element V ′ ∈ G. Then for fixed λV , the trace Tr V ′ = ±2 cosh λγ′

is a polynomial in cosh τV,W /2 and sinh τV,W /2.

Proof: From equation (3) we have

cosh
λW

2
= cosh

τV,W

2
/tanh

λV

2

and

cosh
λV W±1

2
= cosh

τV,W ± λV

2
/tanh

λV

2
.

Expanding cosh
τV,W±λV

2
, the result follows in the special cases V ′ = W and
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V ′ = V W±1. The results for general V ′ follow from the recursive scheme in
[47], see also [18], which allows us to express Tr V ′ as a polynomial (with
integer coefficients) in Tr V, Tr W and either Tr V W or Tr V W−1. ¤

To find the critical line Fγ,γ′ we proceed as follows. Fix c > 0 and consider the
function Tr V ′ = Tr V ′(λV , τV,W ). Along the earthquake path Eγ,c, t = τV,W is
real and varies over all of R; λV is fixed and equal to c. By Kerckhoff’s theorem,
the function λγ′ has a unique critical point p = p(γ, γ′, c) ∈ Fγ,γ′ along Eγ,c;
clearly the same is true of the trace function Tr V ′. Using proposition 49, the
position of this point can be computed as a function of t. Moreover there are
exactly two branches σ± of the R-locus of Tr V ′ in QF − F whose closures
meet F at p.

By theorem 2, the pleating plane Pγ,γ′ is the union of the pleating rays
Pγ,γ′,c, c ∈ R+. By theorem 6, the pleating ray Pγ,γ′,c is one of the two branches
σ±, each of which maps homeomorphically to (0, 2 cosh fγ,γ′(c)/2) under Tr V ′.
Analytically continue Tr V ′ along σ±. Again by theorem 6, these branches are
non-singular R-loci and remain in QF until they reach points τ ∗ such that
Tr V ′(τ ∗) = ±2. The groups corresponding to such τ ∗ are cusp groups on ∂QF
for which γ′ is pinched and V ′ is an accidental parabolic.

Drawing these rays for various c’s, we get a picture of the pleating planes
Pγ,γ′ and Pγ′,γ. Allowing γ′ to vary with c fixed gives us the slices BM±

γ,c. By
theorems 4 and 47, we can build up an arbitrarily accurate picture of QF .
Pictures of various slices drawn this way have been obtained in [47] and [38].

In [25], similar ideas are used to draw a picture of the Earle slice of QF .
This slice is an embedding of the Teichmüller space of T1 into QF consisting
of groups for which the structures on Ω+ and Ω− are related by a conformal
involution which induces the rhombus symmetry on π1(T1).

11.1 Examples

We give two examples in which it is especially easy to compute the pleating
plane.

Example 1. Take γ, γ′ to be generators of π1(T1), represented by the marked
pair V, W ∈ G. By equation (2), cosh(λW

2
) = cosh(

τV,W

2
)/ tanh(λV

2
), so that on

the earthquake path Eγ,c, cosh(λW

2
) = cosh( t

2
)/ tanh(c), t ∈ R. This function

clearly has a unique critical point at the rectangular torus t = 0. Therefore
the critical line Fγ,γ′ is defined by the equation sinh(λV

2
) sinh(λW

2
) = 1 and the
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range of λV × λW is the region

{(c, t) ∈ R+ ×R+ : 0 < c < 2 sinh−1
( 1

sinh( c
2
)

)
}.

Notice that under the rectangular symmetry (V,W ) → (V, W−1) the group
is fixed but the marking is changed; clearly Ω+(G(V, W )) = Ω−(G(V, W−1)).
Thus Pγ,γ′ maps bijectively to Pγ′,γ while Fγ, γ′ = Fγ′, γ is fixed. This implies

cosh λV W

2
= cosh

λV W−1

2
on Fγ, γ′. Solving this equation in F gives another

way of finding the equation of the critical line.

Example 2. Let (V, W ) be a marked pair of generators for G and let γ, γ′

be the curves represented by V W and V W−1. Since G is a punctured torus
group, the condition that the commutator [V,W ] be parabolic is expressed by
the well known Markov equation

Tr2 V + Tr2 W + Tr2 V W = Tr V Tr W Tr V W. (6)

Writing x = Tr V, y = Tr W , we can solve for z = Tr V W and z′ = Tr V W−1.
On the pleating plane Pγ,γ′ , both z and z′ are real so that xy and x2 + y2 are
real. It follows that x = ȳ. Further, on Pγ,γ′ , x, y ∈ R if and only if G ∈ F .
Thus in the real (z, z′) plane, the critical line

Fγ,γ′ has equation zz′ = 2(z+z′); in other words the hyperbola (z−2)(z′−2) =
4. Rewriting in terms of the lengths 2 cosh−1 z

2
, 2 cosh−1 z′

2
we find the region

Tγ,γ′ is of the shape claimed.

We note that in this case, the critical line Fγ,γ′ is the fixed line of the rhombic
symmetry (A, B) → (B,A) in F , giving an alternative proof that on this line,
λA = λB. It is also interesting to note in this example that the Earle slice
studied in [25] is the holomorphic extension of the critical line Fγ,γ′ into QF .

12 Appendix

12.1 The convergence lemma

For the proof of the convergence lemma 1, we need to recall some general
facts about laminations. Let Σ be a hyperbolic surface and let α be a geodesic
lamination on Σ. We call a set R ⊂ Σ a flow box for α if:
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(1) R is a closed hyperbolic rectangle embedded in Σ, with one pair of op-
posite sides called “horizontal” and the other pair “ vertical”.

(2) The horizontal sides T, T ′ of R are either disjoint from α or transversal
to α. If a leaf γ of α intersects R then it intersects both T and T ′ .

(3) The vertical sides of R are disjoint from α.

Label the sides of R in counterclockwise order 1, 2, 3, 4 so that 1, 3 are the
horizontal sides and 2, 4 are the vertical ones. Suppose that β ∈ ML is any
measured lamination on Σ. The underlying lamination |β| intersects R in a
family of pairwise disjoint arcs. If such an arc joins a vertical to a horizontal
side, we call it a corner arc; if it joins the two horizontal sides we call it
a vertical arc and otherwise it is a horizontal arc. For i, j ∈ {1, . . . , 4}, let
β(i, j) = β(j, i) denote the total transverse measure of the arcs joining side i
to side j. Clearly, α(1, 3) = α(3, 1) = α(T ) = α(T ′), the transverse measure
of the transversal T , while α(i, j) = 0 otherwise.

The following simple lemma applies to any hyperbolic surface Σ.

Lemma 11.1 Let ν0 ∈ ML and let R be a flow box for |ν0|. Suppose ν0(T ) 6= 0.
Then for ν ∈ ML sufficiently near ν0, the lamination |ν| has a vertical arc.

Proof: Note that because |ν| consists of pairwise disjoint simple geodesics,
it does not have both horizontal and vertical arcs. Let V, V ′ denote the ver-
tical sides. Since ν0(V ) = ν0(V

′) = 0, both ν(V ) and ν(V ′) can be assumed
arbitrarily small by taking ν sufficiently close to ν0 in ML. We can write
ν(V ) = ν(4, 1) + ν(4, 2) + ν(4, 3) and ν(V ′) = ν(2, 1) + ν(2, 4) + ν(2, 3). All
the terms on the right in these relations are non-negative so each is arbitrarily
small.

If we assume |ν| has no vertical arc we have ν(T ) = ν(4, 1) + ν(2, 1), ν(T ′) =
ν(3, 2) + ν(3, 4) and by the above we deduce that both are arbitrarily small.
But this is a contradiction because ν(T ) and ν(T ′) are both near ν0(T ) which
is a definite positive value. ¤

Now we need some facts specific to laminations on a punctured torus (see
[45], 9.5.2). Let α ∈ S and cut T1 along α to obtain a punctured annulus A
with boundary curves α1 and α2. The leaves of any measured lamination ν,
|ν| 6= α intersect A in a union of arcs that either join α1 to α2 or join one
of the boundary components to itself. It is easy to show, (see [45]), that the
set of arcs joining a component αi to itself has zero transverse measure. In
particular, by minimality any transversal to any leaf of |ν| carries non-zero
measure, so that all arcs of |ν| in A join α1 to α2.
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We also recall that on T1, if ν 6∈ MLQ, the complement of |ν| is a punctured
bigon B, and also that there is a horocyclic neighborhood of definite size about
the cusp disjoint from the support of any measured lamination.

Now we can prove the convergence lemma 1.

Lemma 1 Suppose that ν0 ∈ ML−MLQ, and that ν and ν0 are close in ML.
Then |ν| and |ν0| are close in the Hausdorff topology on GL.

Proof: First we show that given a long arc in |ν0| there exists a long nearby
arc in |ν|. Let L, ε > 0 be given. Since ν0 ∈ ML − MLQ, all leaves have
infinite length. Thus, given x ∈ |ν0|, by choosing sufficiently short transversals
we can find a flow box for which the leaf of |ν0| through x is a vertical arc, the
segments of length L on either side of x are contained in R, and the horizontal
sides of R have length less than ε. We call a flow box of this kind, a good
ε, L-flow box for x. Now standard hyperbolic geometry estimates show, that
if two geodesics are a bounded distance apart over a long distance t, then in
fact they are close to order e−t along a large fraction of their length. Thus
any vertical arc in a good ε, L-flow box is certainly close to leaves of |ν0| over
distance at least 2L. Clearly, |ν0| can be covered by a finite number of flow
boxes of this kind.

Now suppose we are given a long arc λ of a leaf of |ν0|. Let x be the midpoint
of λ and let R be a good ε, L-flow box for x. By lemma 12.1, we deduce that
if ν ∈ ML is near ν0, then ν has a vertical arc in R so that by the above, |ν|
has long arc of a leaf near λ as required.

Next we claim conversely, that given a long arc in |ν| there exists a long
nearby arc in |ν0|. For a lamination λ, let T1(λ) denote the the set of unit
tangent vectors to leaves pointing along leaves of λ. Since there is a horocyclic
neighborhood of definite size about the cusp disjoint from the support of any
measured lamination on T1, the set ∪λ∈GLT1(λ) is a compact subset of the unit
tangent bundle T1(T1). Clearly, laminations λ and λ′ are close in the Hausdorff
topology on closed subsets of GL if and only if T1(λ) and T1(λ

′) are close in
the Hausdorff topology on closed subsets of T1(T1).

If our claim is false, then there is a sequence of points v̄n ∈ T1(|νn|), νn ∈ MLQ

with νn → ν0 in ML, for which there are no nearby points of T1(|ν0|). A
geodesic β through a limit point of the vectors v̄n will be a limit of leaves of
|νn|, but will not be a leaf of |ν0|.

If β ∩ |ν0| 6= ∅, we obtain a contradiction. For if x ∈ β ∩ |ν0|, the tangent
directions to β and |ν0| at x are distinct. Therefore we can find a good |ν0|
flow box R for x, such that the arc of β through x is only close to the leaf of ν0

through x for a short distance and thus cannot be either a vertical or a corner
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arc in R. But then all laminations |ν| with leaves close to β also contain arcs
which must intersect R in horizontal arcs, contradicting lemma 12.1.

To complete the proof we must show β ∩ |ν0| 6= ∅. If not, then β is contained
in the complement of |ν0| in T1. Since ν0 6∈ MLQ, the complement of |ν0| is a
punctured bigon B. If β enters B through one vertex and leaves through the
other it is homotopic to, and therefore coincides with, a leaf of |ν0|; thus β
must come in from one vertex of the bigon, go around the puncture and return
back to the same vertex. Let α be a simple closed curve that intersects β and
as above, cut T1 along α to obtain a punctured annulus A with two boundary
curves α1, α2. Since β goes around the puncture, it crosses one of the αi and
returns through the same side of αi (see the figure in [45], 9.5.2). It follows
that any closed simple geodesic sufficiently close in the Hausdorff topology to
β would also have an arc entering and leaving A across the same αi. But any
arc of a simple closed geodesic carries a non-zero transverse measure, and by
the fact stated above, must join α1 to α2. Hence β ∩ |ν0| 6= ∅. ¤

12.2 Proof of proposition 28.

Before beginning the proof, we need to review the definitions of the bending
measure and intrinsic metric for paths on ∂C as given in [19]. We suppose
that q ∈ QF , and that as usual ∂C = ∂C(q) is the convex hull boundary
of H3/G(q). We shall only indicate the dependence on q when needed in the
proof. In fact, we shall only need to apply what follows to the component ∂C+.

A support plane for ∂C at a point x ∈ ∂C is a hyperbolic plane P containing
x such that C is contained entirely in one of the two half spaces cut out by P .
The bending angle between two intersecting support planes P1, P2 at points
x1, x2 ∈ ∂C is the absolute value of the angle θ(P1, P2) between their outward
normals from ∂C.

Let Π(x) denote the set of oriented support planes at x ∈ ∂C and let

Z = {(x, P (x)) : x ∈ ∂C, P (x) ∈ Π(x)},

with topology induced from G = H3×G2(H
3), where G2(H

3) is the Grassma-
nian of 2-planes in H3. Let Z+ be the obvious restriction of Z to ∂C+ and call
the it approximating set for ∂C+.

To define the bending measure and intrinsic metric, it suffices to define the
measure and length of any path ω̄ on ∂C. Any such path lifts to a path
ω: [0, 1] → Z as follows. Suppose x ∈ ω̄. Either Π(x) consists of a unique
point, in which case there is nothing to do, or we add to the path an arc in
which the first coordinate x is fixed but the second moves continuously on the
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line in G from the left to the right extreme support planes at x.

A polygonal approximation to ω is a sequence

P = {ω(ti) = (xi, Pi) ∈ Z}; 0 = t0 < t1 < . . . < tn = 1,

such that Pi ∩ Pi+1 6= ∅, i = 0, . . . , n− 1.

Let θi = θ(Pi−1, Pi) be the bending angle between Pi−1 and Pi, i = 1, . . . , n
and let di be the hyperbolic length of the shortest path from xi−1 to xi in the
planes Pi−1 ∪ Pi.

The intrinsic metric on ∂C is given by

l(ω) = inf
P

n∑

i=1

di (7)

and the bending measure β on ∂C by

β(ω) = inf
P

n∑

i=1

θi (8)

where P runs over all polygonal approximations to ω.

In order to prove proposition 28, we shall also make similar polygonal ap-
proximations to the pleated surface Pγ(q). We shall prove the proposition by
showing that polygonal approximations in Z+ = Z+(q) to the convex hull
boundary ∂C+ can be replaced by polygonal approximations to the pleated
surface Pγ(q), and that the above approximating sums are simultaneously
good approximations to the intrinsic metric of the flat structure φ+

γ (q) and
the transverse measure bγ(q). Thus we also need to discuss polygonal approx-
imations for Pγ(q).

The surface Pγ(q) is made up of planar pieces, precisely two of which meet
along each bending line α (which projects to γ on T1. Call a plane P a pseudo-
support plane to Pγ(q) if either it is one of these planar pieces, or if it meets
Pγ(q) along α and lies in the half space cut out by the planar pieces of Pγ(q)
through α. The pseudo-support planes of Pγ(q) inherit natural orientations
from the pleated surface map under which Pγ(q) is an immersed image of the
hyperbolic disk D in H3.

Let Π̃(x) denote the set of oriented pseudo-support planes at x ∈ Pγ(q) and
let

W = W (q) = {(x, P (x))|x ∈ Pγ(q), P (x) ∈ Π̃(x)},
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with topology induced from G as before. We define polygonal approximations
in W (q) in the obvious way, and call W (q) the approximating set for Pγ(q).

We claim that the flat metric φγ(q) and the measure bγ on Pγ(q) are defined
by sums similar to those in (7) and (8), where the infimum is taken now over
polygonal approximations in W (q).

Let ω be a path in W and let {(xi, Qi)} be such a W -polygonal approximation.
As in the proof of Proposition 4.8 of [19], we consider the segment of path ωi in
W (q) between xi−1 and xi, and we work in a hyperbolic plane H through xi−1

and xi, such that the shortest path σ from xi−1 to xi in the planes Qi−1 ∪Qi

is contained in the intersections of these planes with H. Let the segments of σ
in Qi−1 and Qi have lengths a1 and a2 respectively, so that a1 +a2 is an upper
bound for the contribution to the sum giving the length of ωi. Notice that even
though we do not know that Pγ(q) bounds a convex half space, it follows easily
from Gauss-Bonnet that ωi does not intersect σ. Thus it is easy to check that
inserting an extra pair (x,Q) ∈ W between xi−1 and xi, the approximating
sum for the length of ωi decreases. Since by assumption [γ] ∈ MLQ, there
are in fact sufficiently fine polygonal approximations for which the sum in (7)
actually equals the intrinsic metric on Pγ(q). A similar argument, on the lines
of that in Proposition 4.8 of [19], shows that the sums (8) decrease on inserting
extra support planes and that there are sufficiently fine sums which actually
equal the measure bγ.

We are now ready to prove proposition 28.

Proposition 28 Given ν0 ∈ ML−MLQ, and q0 ∈ Pν0

+ ∪F , let F+(q0) ∈ F
and pl+(q0) be the flat structure and bending measure of ∂C+(q0) respectively.
(If q0 ∈ F , then pl+(q0) = 0 and F+(q0) is the Fuchsian group representing
q0.) Then, given neighborhoods V of F+(q0) in F and W of pl+(q0) in ML,
there exist neighborhoods U of q0 in QF and X of [ν0] in PML such that if
q ∈ U , [δγ] ∈ X ∩ PMLQ and λγ(q) ∈ R+, then the flat structure φγ(q) of
Pγ(q) is in V and the transverse measure bγ(q) is in W .

Proof: Let ν0, q0 be as in the statement of the proposition. Suppose that
for some q near q0 and [δγ] near [ν0], we have λγ(q) ∈ R+. Let Pγ(q) be the
associated pleated surface with approximating set W (q) ⊂ G as above. Let
Z+(q0) and Z+(q) be the approximating sets for ∂C+(q0), ∂C+(q) respectively.

We claim that for every (x, P (x)) ∈ Z+(q0) and q ∈ QF near q0, there is a
nearby pair (y, P (y)) ∈ W (q), and conversely. This will follow immediately
if we can show that, for every geodesic in |pl+(q)|, there is a geodesic in the
bending locus of Pγ(q) with nearby endpoints in H3, and vice versa. Now,
the crucial condition λγ(q) ∈ R+ implies that the bending locus of Pγ(q) is
exactly γ = γ(q). Thus, applying lemma 1 to the laminations ν0 and kδγ for
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a suitable choice of k > 0 on the surface ∂C+(q0), we see that |ν0(q0)| and
γ(q0) are close in the Hausdorff topology on closed subsets of ∂C+(q0). Lifting
to H3, this means that the endpoints x0, x

′
0 of any lift of a leaf of |ν0(q0)| are

close to the endpoints x, x′ of a lift of γ(q0) and vice versa since the geodesic
representative of γ on ∂C+ has the same endpoints as the geodesic γ in H3. It
follows that the H3 geodesics with x0, x

′
0 and x, x′ also have long close arcs.

Finally, moving to a nearby point q in QF , the endpoints of geodesics which
project to the leaves of |ν0(q)| are close to the endpoints of geodesics which
project to |ν0(q0)|, and similarly for endpoints of geodesics which project to
γ(q) and γ(q0). The claim follows.

We now consider the key estimates which were the basis of the continuity
results proved in [19]. Call a polygonal approximation an (α, s)-approximation
if

max
1≤i≤n

θ(Pi−1, Pi) < α

and
max dω(xi−1, xi) < s

where dω is distance along ω measured in the intrinsic metric on ∂C. We have

Proposition [19], Prop. 4.8 There is a universal constant K, and a function
s(α) with values in (0, 1), such that if P is an (α, s(α))-approximation to a
path ω in Z, where α < π/2, then

|∑
P

di − l(ω)| < Kαl(ω)

and
|∑
P

θi − β(ω)| < Kαl(ω).

To complete the present proof, it suffices to check that similar estimates hold if
polygonal approximations in Z+(q0) are replaced by approximations in W (q).
The estimates work in exactly the same way; the only point to note is that we
need the same local convexity property implied by Gauss Bonnet as above. ¤

12.3 Proof of proposition 35

Proposition 35 Suppose µ ∈ ML, q ∈ Pµ ∪F and consider the quakebend
plane Qq

µ along µ based at q with parameter τµ. Given K > 0, there exist
B2 > B1 > 0 such that if |<τ | < K and B2 > |=τ | > B1, then Qq

µ(τ) /∈ Pµ.

Proof: Our proof will show that if τµ is inside the range described the propo-
sition, then the pleated surface obtained by bending by τ along µ cannot be
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embedded and thus that Qq
µ(τµ) /∈ Pµ. The group Qq

µ(τµ) may or may not be
in QF .

We use the definitions of support planes and bending angles from the proof
of proposition 12.2. From the definition, the bending angle between two inter-
secting support planes P1, P2 to ∂C at points x1, x2 is an upper bound for the
bending measure of a transversal to |µ| joining x1, x2 which lies between the
“roof” formed by P1 and P2 and the H3 geodesic from x1 to x2.

We make the following claims.

(1) There exists ε > 0 such that if x1, x2, x3 ∈ ∂C lie in a ball of radius ε in
B3, and if P1, P2, P3 are support planes to ∂C at x1, x2, x3 respectively,
then either P1 ∩ P3 6= ∅, or both P1 ∩ P2 6= ∅ and P2 ∩ P3 6= ∅.

(2) Given ε > 0, µ ∈ ML, µ 6= 0, and a compact subset V ⊂ F , there is a
constant a > 0 such that if φ ∈ V , then there is a transversal κ to |µ|
with hyperbolic length l(κ) < ε in the structure φ and transverse measure
µ(κ) > a.

Proof of claim 1. A support plane P to ∂C meets Ĉ in a circle which contains
points of the limit set Λ and which bounds a disk D(P ) containing no points
of Λ. Therefore if P1 ∩ P3 = ∅, the discs D(P1) and D(P3) are disjoint. To
prove the claim amounts to showing that in this case, both D(P1)∩D(P2) and
D(P3)∩D(P2) are non-empty. Without loss of generality, we may suppose that
x1, x2, x3 are within hyperbolic distance ε of the origin O in B3 so that the
planes Pi are close to equatorial planes through O. The result is then obvious.

Proof of claim 2. Choose γ ∈ S with i(γ, µ) > 0. There are constants c1, c2, d1, d2

such that c1 < µ(γ) < c2 and d1 < l(γ) < d2 for φ ∈ V . Subdividing γ into N
segments with d2/N < ε, the result is clear with a = c1/N .

Now, working in the quakebend plane Qq
µ, with parameter τ = τµ, consider the

set of groups for which |<τ | < K. The corresponding flat structures F+(τ) are
independent of =τ and thus lie in a compact set V ⊂ F . Choose a transversal
κ as in claim (2). Let x1, x3 be its initial and final points and x2 its midpoint,
and let Pi be a support plane at xi. Using claim 1, either P1, P3, or both
pairs P1, P2 and P2, P3, intersect. Thus at least one of the segments (x1, x3),
(x1, x2) or (x2, x3) of κ, for definiteness say the segment κ1 joining (x1, x2),
has µ(κ1) > a/2.

Consider the point in Qq
µ with parameter τ . The bending measure pl+(τ)(κ1)

of κ1 is k + =τµ(κ1), where k = pl+(q)(κ1) is the bending measure of κ1 at
the base point q. The bending angle between P1, P2 is not in the range (π, 2π).
From the above, a/2 < µ(κ1) < c2. Putting this together gives an upper bound
for pl+(τ)(κ1), and we obtain the required bound on |=τ |. ¤
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dimension 3. Unpublished preprint.

[38] J.R. Parker and J. Parkkonen. Horocyclic and pleating coordinates
for punctured tori. In I. Rivin, C. Rourke, C. Series, eds, Analytical
and Geometric Aspects of Hyperbolic Space, Geometry and Topology
Monographs vol.1, 451-478. Int. Press, 1999.

[39] J. R. Parker and C. Series. Bending formulae for convex hull
boundaries. J. Anal. Math., 67, (1995) 165–198.

[40] R. C. Penner with J. Harer. Combinatorics of Train Tracks. Annals
of Math. Studies 125. Princeton University Press, 1992.

[41] R. M. Porter. Computation of a boundary point of Teichmüller
space. Bol. Soc. Math. Mexicana, 24(1), (1979) 15–26.

[42] S. P. Tan. Complex Fenchel-Nielsen coordinates for quasifuchsian
structures. Int’l. J. Math, 5(2), (1994) 239–251.

[43] W. Thurston. Hyperbolic structures on 3-manifolds I: deformation
of acylindrical manifolds. Ann. of Math., 124, (1986) 203–246.

[44] W. Thurston. Hyperbolic structures on 3-manifolds II. eprint at
front.math.ucdavis.edu/search/author:Thurston+category:GT.

[45] W. Thurston. Geometry and Topology of Three-Manifolds. Princeton
lecture notes, 1979.

[46] S. Wolpert. The Fenchel-Nielsen deformation. Ann. Math., 115(3),
(1982) 501–528.

[47] D. J. Wright. The shape of the boundary of Maskit’s embedding of
the Teichmüller space of once punctured tori. Unpublished preprint.

59


