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On period doubling phenomena and Sharkovskii type
ordering for the family λ tan(z)

Linda Keen and Janina Kotus

Abstract. In this paper we prove that all the hyperbolic components of the
family λ tan z except the punctured unit disk are simply connected. Then,
restricting λ to the imaginary axis, We show that there is a “Sharkovskii-like”
ordering of the periods of the hyperbolic components. Finally, again for λ in
the imaginary axis, we show that period doubling phenomena occur.

1. Introduction

The tangent family λ tan z is the simplest one parameter family of meromorphic
functions. In [5, 6, 7, 8] we studied the dynamics generated by functions in this
family. In particular, we saw that in many respects this behavior was similar to
what we find for the quadratic family z2 + c: the only possible stable behavior
is eventually periodic and every stable component falls onto a cycle of attracting,
parabolic or simply connected rotation domains. There are also similarities with
the parameter plane of the quadratic map: the interior of the unit disk is like
the outside of the Mandelbrot set and other components are deployed with a well
defined combinatorial structure. The essential singularity of the tangent however,
creates some differences; for example, the infinite to one properties are reflected in
the parameter plane. The analogue of a hyperbolic component for the quadratic
family is a pair of hyperbolic components (Ωp, Ω′p) with a common boundary point
cp. For λ ∈ Ωp there are two symmetric attracting cycles of period p and for λ ∈ Ω′p
there is a single attracting cycle of period 2p. The point cp has properties analogous
to the center of a component for the quadratic family and is called a virtual center.
We prove the following theorem which was asserted in [7] and [8].

Theorem 1. Let Ω be any hyperbolic component except ∆∗. Then there is a
conformal homeomorphism M̃ : Ω → H between Ω and the upper half plane H.
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Moreover, M̃ extends continuously to the boundary ∂Ω such that the point i∞ is
the unique boundary point of H corresponding to virtual center c of Ω. Thus the
virtual center is unique.

The real axis of the parameter plane plays a special role for the quadratic family.
It is here that we see period doubling and the limiting Feigenbaum point as well as
the Sharkovskii ordering of the periods of the hyperbolic components. In this paper
we see that the imaginary axis plays an analogous role for the tangent family: each
of the points ±pki = ±(k+ 1

2 )πi, k = 0, 1, . . . in the λ plane is analogous to the origin
for the real axis. We obtain a “Sharkovskii-like” theorem: we get a combinatorial
description of the ordering of the periods of the hyperbolic components on the
imaginary axis.

Theorem 2. For each k = 0, 1, 2, . . ., the intervals ±Ik = ±(pki, pk+1i) of the
imaginary axis contain hyperbolic component pairs of every even period. Further-
more, there is a lower bound on the number of such pairs in Ik that depends on k
and the deployment of these components for all n can be described.

The computer pictures created by Jiang (see [8]) indicate that the bifurcations
that occur for real quadratics have an analog for the tangent family. Standard
period doubling occurs at a parabolic point when an attracting cycle bifurcates to
a cycle of double the period. Non-standard period doubling occurs at a parabolic
point when an attracting cycle bifurcates to a pair of cycles of the same period. We
show

Theorem 3. Both standard and non-standard period doubling occur in the
tangent family.

The organization of the paper is as follows. In section 2 we recall the basic
theory of iteration for meromorphic functions and in section 3 the basic theory of
the tangent family. In section 4 we describe the general properties of hyperbolic
component pairs and prove Theorem 1. In section 5 we discuss the special properties
of the hyperbolic components on the imaginary axis. In section 6 we prove the main
lemma needed for Theorem 2 and in section 7 we prove Theorem 2. In section 8
we describe bifurcations on the imaginary axis and prove theorem 3.

2. Dynamics of meromorphic functions

The orbits of points under iteration by a meromorphic function fall into three
categories: they may be infinite, they may become periodic and hence consist of
a finite number of distinct points or they may terminate at a pole of the func-
tion. Points in last category are called prepoles. For transcendental meromorphic
functions with more than one pole, it follows from Picard’s theorem that there are
infinitely many prepoles.

The stable set or Fatou set Ff for a function f is defined just as for rational
functions: Ff is the set of z ∈ C such that the iterates are defined and form a normal
family in a neighborhood of z. The unstable set or Julia set Jf is the complement
of Ff in C̄. Thus, Ff is open, Jf is closed and contains the prepoles P and both
sets are completely invariant. As for rational functions, Jf is the accumulation set
of the backward orbit of almost any point so that Jf = P.

The singular set Sf of a meromorphic function of f consists of those values
at which f is not a regular covering. These are either critical values (algebraic
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singularities) or asymptotic values (transcendental singularities). The postsingular
set PSf is the union of the forward orbits of the singular values; its accumulation
set is the omega-limit set ωf .

A holomorphic family of meromorphic maps with finite singular set over a
complex manifold Λ is a map f : Λ × C → Ĉ holomorphic in Λ and meromorphic
in C given by (λ, z) 7→ fλ(z).

3. The family F
The tangent family

F = {fλ(z) = λ tan z}
is a holomorphic family over the punctured complex plane C∗ = C−{0}. In [6] we
proved that the family is topologically closed in the sense that if g is topologically
conjugate to fλ ∈ F and is meromorphic, then if the conjugacy fixes {0,∞, π/2}
and if the two asymptotic values of g are symmetric with respect to the origin, it
follows that g = fλ′ for some λ′ ∈ C∗.

The singular sets Sfλ
contain exactly two asymptotic values, the omitted values

±λi. The preimage of a punctured neighborhood of λi (resp. −λi) is an upper (resp.
lower) half plane. It follows from the symmetry of the tangent function that the
forward orbits of these asymptotic values are symmetric with respect to origin. It
is these orbits that control the dynamics.

To simplify notation we write Fλ, Jλ, ωλ for objects associated to functions in
F . All functions in the family have the same poles; we use the notation pk = π

2 +kπ,
k ≥ 0 for the poles on the positive axis and −pk for the poles on the negative axis.

The symmetry of the maps with respect to 0 implies that the stable and un-
stable sets are symmetric with respect to the origin. Precisely

fλ(−z) = −fλ(z)

so for all k ∈ N
fk

λ (−z) = −fk
λ (z) and [fk

λ (z)]′ = [fk
λ (−z)]′.

It follows that if fp
λ(z) = z, then fp

λ(−z) = −z. Moreover if z0 is a periodic point
of period p then either −z0 belongs to the same cycle and p must an even number
(i.e. f

p/2
λ (z0) = −z0 ) or −z0 belongs to the other cycle of period p and p may be

odd or even. Thus there is the following symmetry:
Either there is a single cycle z0, . . . z2p−1 with period 2p and

zp = −z0, zp+1 = −z1, zp+2 = −z2, . . . , z2p−1 = −zp−1

or there are two cycles of period p

z0, z1, . . . , zp−1, and − z0,−z1, . . . ,−zp−1

In [5] it is proved that any stable behavior of functions in F is necessarily eventually
periodic. In [8], the stable behavior of functions in F is completely characterized:
if Fλ 6= ∅ then exactly one of the following occurs:

[-] fλ has an attracting cycle
[-] fλ has a parabolic cycle
[-] fλ has a neutral periodic cycle contained in Siegel disks.
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In all other cases, Jλ = Ĉ. When Fλ 6= ∅, ωλ contains each attracting or parabolic
cycle or contains the boundary of the Siegel disks. As above, each cycle is either
symmetric with respect to the origin or there is a second cycle containing the
symmetric points. For each such pair symmetric cycles, the multipliers M(λ, zi) =
dfp

λ

dz (zi) (which are independent of i by the chain rule) are equal by symmetry.

4. The parameter space: Virtual centers

The hyperbolic maps form a natural and important subset of F . In this family
these maps can be characterized as

H = {λ ∈ C∗ : fλ has an attracting periodic cycle}.
We give an analytic description of the parameter space in terms of the connected
components of H.

We denote a connected component of H by Ω. The attracting periodic points
zi(λ) and their multipliers M(λ) = M(λ, zi(λ)) are holomorphic functions of λ in
Ω.

We remark that the function h(z) = z̄ topologically conjugates the function
fλ to the function fλ̄ and conjugates the periodic points z(λ) to periodic points
z(λ) = z(λ̄) of the same order. Therefore if Ω is a hyperbolic component so is
Ω̄ = {λ|λ̄ ∈ Ω}.

The punctured unit disk ∆∗ is a hyperbolic component. For all λ ∈ ∆∗ the
origin is the single attracting fixed point and the multiplier is λ itself. Other special
properties of ∆∗ are that for λ ∈ ∆∗ the stable set is a single connected, infinitely
connected invariant component and the Julia set is a Cantor set. These properties
are discussed in detail in [6].

Although some of the discussion below holds for ∆∗, we will really be interested
in components of H\∆∗. For readability we will use the term hyperbolic component
to mean these components and we will denote them by Ω.

In [8] section 8, we enumerate the hyperbolic components in terms of the fol-
lowing set:

C0 = {∞}, Cp = {λ : fp
λ(λi) = ∞}, p > 0, C =

∞⋃
0

Cp.

Points in Cp are called virtual centers of order p. We prove the following ([8],
proposition 8.11, theorem 8.12)

Theorem 4.1. The virtual centers cp ∈ Cp−1 are in one to one correspondence
with pairs of hyperbolic components (Ωp, Ω′p). In Ωp each function has a pair of
periodic cycles of period p and each attracts the orbit of an asymptotic value whereas
in Ω′p each function has a single attracting cycle of period 2p which attracts both
asymptotic values. The virtual center cp ∈ Cp−1 is a common boundary point of
(Ωp,Ω′p). The virtual center c0 is the point at infinity and it corresponds to the
unique pair of components (Ω1, Ω′1); these are the only unbounded components and
they are linked by hyperbolic components of period 2.

Remark 1. We note that the periodic cycles are holomorphic functions of λ.
They have algebraic singularities at parameters λ where the multiplier of the periodic
cycle takes the value 1 and transcendental singularities at the virtual center of the
hyperbolic component in which they are attracting. In fact, the hyperbolic component
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is an asymptotic tract for the multiplier function of the cycle: as λ → cp inside Ω,
M(λ) → 0. If λ tends to any other boundary point of Ω, |M(λ)| → 1.

The computer pictures of the λ-plane drawn by W. Jiang, [7] show the com-
ponent pairs bud off the unit circle at the endpoints of rational internal rays (see
Figure 1 of [8]). That is, these endpoints are roots for a standard bifurcation.

The virtual center λ∗ of any pair (Ω2,Ω′2) satisfies λ∗ tan(λ∗i) = ∞ so that
λ∗i = pk, for some k ∈ Z. It follows that λ∗ is on the imaginary axis and by
theorem 4.1 every point pki is the virtual center of such a pair. Below, we will have
occasion to enumerate these pairs and will denote them (Ω2,k, Ω′2,k) (see Figure 1).

We finish this section with the following theorem which was asserted in [7] and
[8].

Theorem 4.2. Let Ω be any hyperbolic component except ∆∗. Then there is
a conformal homeomorphism M̃ : Ω → H between Ω and the upper half plane H.
Moreover, M̃ extends continuously to the boundary ∂Ω such that the point i∞ is
the unique boundary point of H corresponding to virtual center c of Ω. Thus the
virtual center is unique.

Proof. Assume for argument’s sake that Ω has 2 cycles of period p. Let λ0 be
an arbitrary point of Ω. Let z0 = z0(λ0) be the periodic point that contains λ0i in
its immediate basin of attraction D0 and let M(λ0) be the multiplier of the cycle.
Let N be a neighborhood of z0 and h : N → ∆ a holomorphic homeomorphism such
that h(z0) = 0 and h(fp

λ0
(z)) = m(λ0)h(z) for z ∈ N . Choose circles Cr and CMr

centered at 0 in ∆ where r < 1 and M = |M(λ0)| and let A be the annulus bounded
by them. Identify the boundary points of A to obtain a torus T as follows: join the
points reiθ and M(λ0)reiθ by a spirals σθ parameterized by their polar coordinate
ψ and choose σθ so that ψ doesn’t change by more than π. Set A0 = h−1(A).

Choose a branch τ0 = 1
2πi log M(λ0) so that |<τ0| ≤ 1/2 and so that the

covering group Γ0 of the holomorphic projection of C onto T is generated by ζ →
ζ + 1, ζ → ζ + τ0.

Set M̃(λ0) = τ0; define M̃(λ) in a neighborhood V of λ0 contained in Ω such
that M̃(λ) = 1

2πi log M(λ) where the branch of the logarithm agrees with the branch
chosen above so that M̃ is a conformal homeomorphism of V onto its image in H.
Note that if V ∩ = 6= ∅, by symmetry we can infer <M̃ = 0 on the imaginary axis.

Let τ ∈ H and consider the group Γτ generated by ζ → ζ+1, ζ → ζ+τ acting on
the plane C. Let φ̃τ : C→ C be the affine plane map such that φ̃τ (0) = 0, φ̃τ (1) =
1, φ̃τ (τ0) = τ ; then φ̃τ ◦ Γ0 = Γτ ◦ φ̃τ . An affine map is quasiconformal and its
Beltrami differential µ̃τ is constant; in particular, we have µ̃τ (ζ +n+mτ0) = µ̃τ (ζ)
for any integers m, n.

The map π1 = exp 2πiζ is a holomorphic universal cover of a round annulus
Aτ by the strip {ζ : 0 ≤ =ζ ≤ =τ}. Using h and π1 we obtain a quasiconformal
map φτ : A0 → Aτ with φτ = π1φ̃τπ−1

1 h. There is an induced Beltrami differential
µτ defined on A0 independent of the choice of π−1

1 . We can extend µτ to the full
grand orbit of A0 so that it respects the dynamics as follows: For any n > 0 and
z∗ ∈ fn

λ0
(A0) there is a well defined branch of the inverse, gn(z∗) = f−n

λ0
(z∗) = z ∈

A0; set

µτ (z∗) = µτ (z)
(gn)′(z∗)
(gn)′(z∗)

.
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Figure 1. Hyperbolic components on the imaginary axis
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Now suppose that fn
λ0

(z∗) = z ∈ A0; in this case we set

µτ (z∗) = µτ (z)
(fn

λ0
)′(z∗)

(fn
λ0

)′(z∗)
.

Define µτ on the other cycle in the Fatou set by symmetry: set µτ (−z) = µτ (z).
Set µτ ≡ 0 on the complement of the Fatou set.

By the theorem of Ahlfors-Bers et al [1, 3] there is a quasiconformal home-
omorphism Φτ of Ĉ, depending holomorphically on τ , with µΦτ

= µτ , such that
Φτ (0) = 0, Φτ (π/2) = π/2 and Φτ (∞) = ∞. By construction we conclude that
Gτ = Φτfλ0Φ

−1
τ is holomorphic in both z and τ and that Gτ (−z) = −Gτ (z). It now

follows from [5] that there is some λτ such that G = fλτ . Moreover, λτ depends
holomorphically on τ since G does. Set M̃(λτ ) = τ .

For t ∈ [0, 1], set µtτ = tµτ and apply the above. We obtain a path λt ∈ Ω
with λ1 = λτ and a corresponding path τt ∈ H such that τt = M̃(λt) is the analytic
continuation of M̃(λτ ).

Choose any point λ ∈ Ω and draw a curve α from λ0 to λ. We can lift the
curve α by the above construction to see that there is some τ corresponding to λ.

Suppose now that M̃(λ1) = M̃(λ2) = τ . By the construction of φτ

φτfλ0φ
−1
τ = fλ1 = fλ2

so that λ1 = λ2. We thus conclude Ω is conformally isomorphic to H.
If there is one cycle of period 2p take the annulus A defined by Cr and Cmr

where m = |m(λ0)|, the modulus of the half multiplier. Let N be a neighborhood
of z0 and let −N be the symmetric neighborhood of −z0. There are holomorphic
homeomorphisms h : N → ∆ with h(z0) = 0 and h̄ : −N → ∆ with h̄(z) = h(−z)
so that for z ∈ −N h(fp

λ0
(z)) = m(λ0)h̄(z). Let A0 = h−1(A) and Ā0 = h̄−1(A).

We proceed in the same manner as above. We obtain a torus T by identifying the
boundary arcs of A. Next we choose a branch of the log so that τ0 = 1

πi log m(λ0) =
1

2πi log M(λ0) and |<τ0| ≤ 1
2 . Now, given τ define the maps φ̃τ and φτas above.

The induced Beltrami differential is symmetric: for z ∈ A0, µτ (−z) = µτ (z). Now
every point in the whole Fatou set is in the grand orbit of a point in either A0 or
Ā0 so we may use the above equations to extend µτ to this set so that it respects
the dynamics. Again we set µτ to be identically 0 off the Fatou set and proceed as
above to obtain the map M̃ .

We extend M̃ to ∂Ω in the obvious way so that it preserves prime ends. There
is thus a unique point c on ∂Ω corresponding to the point at infinity of the upper
half plane H. By construction of M̃ , for it ∈ H, limt→∞M(λ(it)) = 0 so c is the
unique virtual center of Ω. ¤

5. The Parameter Space: Imaginary axis

For the family F the imaginary axis = in the parameter plane plays the same
role as the real axis does for the quadratic family. To justify this statement we will
prove several basic facts.

Proposition 5.1. If λ ∈ = and z ∈ R then for all n ∈ N we have f2n
λ (z) ∈ R

and f2n+1
λ (z) ∈ = or for some n, f2n+1

λ (z) = ∞.

Proof. Suppose λ ∈ =. Then fλ maps the imaginary axis univalently onto the
subinterval (−|λ|, |λ|) of the real axis. It also maps any period interval (pk, pk + π)
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in the real axis univalently onto the full imaginary axis. Thus for z ∈ R, f2n
λ (z) ∈ R

and either f2n
λ (z) is a pole or f2n+1

λ (z) ∈ =. ¤

Proposition 5.2. If λ ∈ = belongs to a hyperbolic component, then the period
of the attracting cycle (or cycles) is even.

Proof. For λ in any hyperbolic component, the orbits of the asymptotic values
accumulate on the attracting periodic cycles. Under our hypothesis the asymptotic
values are real and 0 is a repelling fixed point, and so by the above proposition, their
orbits alternate between the real and imaginary axes. It follows that the periodic
points of the attracting cycles alternate between the real and imaginary axes and
the period must be even. ¤

Remark 2. If Ω intersects the imaginary axis, then Ω = −Ω̄. This follows
directly from the topological conjugation by complex conjugation and the symmetry
of the tangent family.

Proposition 5.3. Suppose Ω intersects the imaginary axis =. Then it has a
unique virtual center on the imaginary axis and J = Ω ∩ = is an interval whose
endpoints are the virtual center λ0 and a parameter λ1 such that limλ→λ1 M̃(λ) =
±1, where the limit is taken inside Ω.

Proof. By theorem 4.2, Ω is simply connected so that J is a union of intervals.
Moreover, there is a unique point c of ∂Ω corresponding to the virtual center. By
the remark above, −c̄ = c are both in ∂Ω and so would both have to be centers.
Thus, c ∈ =.

Suppose I0, I1 are distinct intervals contained in J . Let λ0, λ1 belong to I0, I1

respectively. Let λ 6∈ = belong to Ω. Then we can draw a closed curve γ, entirely
in Ω joining, in order, λ0, λ, λ1,−λ̄, λ0. There are points not in Ω on = between
I0 and I1 so γ is homotopically non-trivial. This, however, contradicts the simple
connectivity of Ω so J is an interval.

Suppose λ = iy ∈ J, y ∈ R. Whether there are one or two attractive cycles
(of period 2n), the periodic points satisfy z2j(λ) = x2j , z2j+1(λ) = x2j+1i, j =
0, . . . , n− 1 where xj ∈ R. Then

(1) M(λ) = (iy)2nΠn−1
0 sec2(x2j)Πn−1

0 sech2(x2j+1)

is real on J and at its endpoints. Thus J is a component of the pullback of a lift
to H of either the positive or the negative real axis in ∆∗ and M(λ) either takes
values in (0, 1) or in (−1, 0) on J . The endpoint of λ0 where the limit value (taken
inside Ω) is 0 is thus equal to c, the unique virtual center of Ω and the value at the
other endpoint λ1 is either 1 or −1. ¤

It follows from this proposition and the construction in the proof of theorem 4.1
in [8] (see also the proof of proposition 5.4 below) that if a hyperbolic component
intersects the imaginary axis, so does its paired component. This pair must have
the form (Ω2n, Ω′2n) where for λ ∈ Ω2n the function fλ has two attractive cycles of
period 2n, and for λ ∈ Ω′2n there is only one attractive periodic cycle of period 4n.

We complete the characterization of these components with

Proposition 5.4. If ix, x ∈ R is a virtual center of a component pair (Ω, Ω′),
then both Ω and Ω′ intersect the imaginary axis non-trivially.
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Proof. By theorem 4.1 we know that a pair of hyperbolic components exists
at each virtual center. We must show these components intersect the imaginary
axis.

By symmetry, if ix, x ∈ R is a virtual center of a component pair (Ω, Ω′) then
so is −ix. Assume for argument’s sake that x > 0. Then we know that for some
p, fp

−ix(x) = ∞ so that for some pole pk, fp−1
−ix (x) = pk ∈ R. By proposition 5.1

therefore, p− 1 = 2n for some n.
Suppose y ∈ R is close to x. Then fp−1

−iy (y) ∈ R and belongs to a preasymptotic
tract of the asymptotic value y. Following the proofs of [8], proposition 8.11,
theorem 8.12, we can show that as y → x from above or below, y belongs to a
hyperbolic component Ω2n or Ω′2n. It follows that the components attached to ix
intersect the imaginary axis. ¤

The intersection of a hyperbolic component with the imaginary axis is either
completely contained in the positive or negative imaginary axis. There is therefore
a natural order imposed by the order of their intersections with this axis that is
symmetric with respect to reflection in the real axis. We will use the following
notation which takes this symmetry into account.

In the discussion below of the ordering of component pairs we will also care
about the order of the components in the pair. We will write (Ωp, Ω′p) if

supλ∈Ωp∩=|λ| ≤ infλ∈Ω′p∩=|λ|
and (Ω′p, Ωp) if

supλ∈Ω′p∩=|λ| ≤ infλ∈Ωp∩=|λ|.
We order the component pairs intersecting the imaginary axis in terms of their

distance from the origin. We say

(Ωp, Ω′p) C (Ωq,Ω′q)

- if both pairs intersect =+ and

supλ∈(Ωp∪Ω′p)∩=+ |λ| ≤ infλ∈(Ωq∪Ω′q)∩=+ |λ|
- or both pairs intersect =− and

supλ∈(Ωp∪Ω′p)∩=− |λ| ≤ infλ∈(Ωq∪Ω′q)∩=− |λ|

6. The parameter space: Combinatorial structure

We now turn our attention to the orbits {fn
λ (±λi)} and define another family of

real functions. By the symmetry of the tangent function, these orbits are symmetric.
For the sake of readability in the rest of the paper, we assume that =λ < 0. Let
x = λi and set gn(x) = {fn

λ (λi)}. Set g0(x) = x and write recursively,

g2n(λi) = g2n(x) = −ix tan(−ix tan g2n−2(x)) = −x tanh(x tan g2n−2(x)).

Thus g2n(x) is a map from the real axis to itself.
We note that g1 = −ix tan(x) has poles at x = λi = pk and g2 has essential

singularities at these poles. We can compute the asymptotic values:

lim
x→p+

k

g2(x) = pk, lim
x→p−k

g2(x) = −pk.

In general the iterate gn(λ) = fn
λ (λi) is a holomorphic function of λ on the

complement of the virtual centers of order strictly less than n. It has essential
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singularities at these virtual centers and it has poles at the virtual centers of order
n.

We note that there are no poles of g2 on the real axis. The singularities of
g2n(x) are singularities of g2n−2(x) and poles and singularities of g2n−1(x). Thus
the singularities of g2n(x) are all the points s±k,j such that g2j(s±k,j) = ±pk for
all integers k > 0 and j < n.

6.1. Branches of g2n. In figure 2 we show graphs of g2(x) and g4(x) in the
interval (3π/2, 5π/2). We see how g4 has singularities at the points where the value
of g2(x) is a pole of g3(x). We also see that the shapes of each of the g4 curves is
similar to that of the g2 curves but is inverted.

The figure leads us to define a branch of g2n as g2n restricted to an interval
I = (p, q) between singularities. We define a full branch for g2n to be a branch
defined between consecutive poles of g2n−1 on an interval I = (p, q) such that for
n odd g2n(p) > g2n(q) and for even n, g2n(p) < g2n(q). Notice that the virtual
centers corresponding to the endpoints of a full branch are of the same order.

Computer experiments, shown in figure 2 for k = 2 and n = 1, 2 but carried out
for other k and for n up to 8, indicate that each full branch has a unique turning
point and that all the full branches of the next generation are to the right of the
turning point. There are always exactly 2k full branches in these experiments.
What we can prove is that there exist at least 2k full branches and at most finitely
many. First we gather some facts:

Lemma 6.1. Let Ik = (pk−1, pk) and let

g2(x) = −x tanh(x tan x), x ∈ Ik.

Then
i) limx→p+

k−1
g2(x) = pk−1, limx→p−k

g2(x) = −pk

ii) limx→p+
k−1

dg2
dx (x) = 1, limx→p−k

dg2
dx (x) = −1

iii) there are an odd number of points in xj ∈ I, j = 1, . . . , 2m + 1 such
that dg2

dx (xj) = 0. Moreover xj < x̂k where x̂k is the unique solution in
(pk−1, π) to x tan x = −1.

Proof. Let y1 = x tan x and write g2(x) = −x tanh y1. Since =λ < 0,
x = λi > 0. We may assume that k ≥ 1. Then y1 ≤ 0 for x ∈ (pk−1, kπ]
and limx→p+

k−1
y1(x) = −∞. Thus limx→p+

k−1
g2(x) = pk−1. Analogously y1 ≥ 0

for x ∈ [kπ, pk) and limx→p−k
y1(x) = +∞. Thus limx→p−k

g2(x) = −pk. We
note that y′1 = tan x + x sec2 x > π/2 − 1 on Ik because for any integer j and
x ∈ (2jπ − π/2, 2jπ + π/2),

tan x + x sec2 x =
1

cos x
(sinx +

x

cosx
) > (−1 + x) > π/2− 1

and for any j and x ∈ (2jπ + π/2, 2jπ + 3π/2),

tan x + x sec2 x =
1

cosx
(sinx +

x

cos x
) > (−1)(1− x) > −1 + π/2

Next compute
y′′1 = 2 sec2(x)(1 + x tanx)

and note that there is a unique solution x̂k to x tan x = −1 in (pk−1, π) and so a
single inflection point.
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Figure 2. The curves g2(x) and g4(x)

Now compute dg2
dx = − tanh y1−x sech2 y1y

′
1. Because limx→pk−1,pk

sech2 y1y
′
1 =

0,

lim
x→p+

k−1

dg2

dx
= 1 and lim

x→p−k

dg2

dx
= −1

Moreover limx→kπ
dg2
dx = −(kπ)2.
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Thus for x ∈ [kπ, pk) both summands in dg2
dx are negative and dg2

dx < 0. We
also we check that dg2

dx (x̂k) < 0 and since y′1 increases for x > x̂k, dg2
dx < 0 remains

negative in the interval [x̂k, pk).
For x ∈ (pk−1, x̂k), by the above, limx→p+

k−1

dg2
dx = 1 and limx→x̂k

dg2
dx < 0

so that dg2
dx = 0 at least once and in general an odd number of times in this

subinterval. There cannot be infinitely many solutions because dg2
dx is the restriction

of a holomorphic function of a complex variable and its zeroes can only accumulate
at a singularity. At the singularity pk−1 however, we have shown dg2

dx = 1. ¤

We have similar but weaker results for full branches of g2n for all n.

Lemma 6.2. Assume that I = (p, q) is an open interval on which a full branch
of g2n+2 is defined, such that if n is odd g2n(p) = pk, g2n(q) = pk−1 while if n
is even, g2n(p) = pk−1, g2n(q) = pk. Moreover, assume that neither p nor q is a
turning point for g2n. Then

i) In the odd case

lim
x→p+

g2n+2(x) = −p lim
x→q−

g2n+2(x) = q

and

lim
x→p+

dg2n+2

dx
(x) = −1 lim

x→q−

dg2n+2

dx
(x) = 1

ii) In the even case

lim
x→p+

g2n+2(x) = p lim
x→q−

g2n+2(x) = −q

and

lim
x→p+

dg2n+2

dx
(x) = 1 lim

x→q−

dg2n+2

dx
(x) = −1

iii) There are an odd number of points in xj ∈ I, such that dg2n+2
dx (xj) = 0 and

if t is the rightmost solution to g2n(t) = kπ, then xj < t,j = 1, . . . , 2m+1.

Proof. Lemma 6.1 contains this lemma for n = 1. We proceed by induction.
Let y2n+1(x) = x tan g2n(x) and set I0 = (p, t], I1 = [t, q), where t is the right-
most solution to g2n(t) = kπ. Assume first that n is odd. By hypothesis, for x
close to p in I0, tan g2n(x) > 0 so that y2n+1(x) ≥ 0 and limx→p+ y2n+1 = ∞.
Then limx→p+ g2n+2(x) = −p. Analogously for x ∈ I1, y2n+1(x) ≤ 0 so that
limx→q− y2n+1 = −∞. Thus limx→q− g2n+2(x) = q. Moreover g2n(t) = kπ so
y2n+1(t) = 0. Compute

dy2n+1

dx
= tan g2n + x sec2 g2n

dg2n

dx
.

Now apply the induction hypothesis that the lemma is true for n: neither p nor q is
a turning point for g2n so that close to p in I0 and close to q in I1, dg2n

dx < 0. Then

lim
x→p+

dy2n+1

dx
= lim

x→p+
x sec2 g2n

dg2n

dx
= −∞.

lim
x→q−

dy2n+1

dx
= lim

x→q−
x sec2 g2n

dg2n

dx
= −∞.
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Because on I1 tan g2n ≤ 0 by definition and dg2n

dx < 0 by the induction hypothe-
sis, it follows from the formula that dy2n+1

dx < 0 on I1. By definition g2n+2(x) =
−x tanh y2n+1(x) and so

dg2n+2

dx
= − tanh y2n+1 − x sech 2y2n+1

dy2n+1

dx
> 0

Again, because dg2n+2
dx is the restriction of a holomorphic function whose only sin-

gularity in a neighborhood of I0 is at the left endpoint, the number of zeroes is
finite and by the sign considerations above, the number is odd.

Now assume n is even so that by definition g2n is increasing on I1. Changing
signs where appropriate above we deduce that there again must be an odd number
of zeros of the derivative. ¤

Corollary 6.3. Let I = (p, q) be an interval for a full branch of g2n contained
in the interval Ik = (pk−1, pk). Then g2n+2 has at least 2k full branches in I.

Proof. Because |g2n(x)| < |x|, the range of g2n on I is contained in (−pk, pk).
Assume for argument’s sake that n is even so that the asymptotic value of g2n

at p is −p. Then g2n(x) decreases, but not below −pk, makes an odd number of
turns, then increases and again takes the value −p at x1 ∈ (p, q). Since it turns
finitely often and finally continues increasing monotonically and has an asymptotic
value q at q, the interval (−p, q) covers 2k + 1 poles; thus there are at least 2k full
branches. ¤

Corollary 6.4. Let Ik = (pk−1, pk). Then g2n has at least (2k)n−1 full
branches in Ik.

The proof follows directly from corollary 6.3.

6.2. Branches of hq,2n. We also define another family of maps hq,2n(x), n ∈
N. As before we assume that =λ < 0. Set λ = −iq, q ∈ R+, then

hq,2(x) = −iq tan(−iq tan(x)) = −q tanh(q tan(x)).

Let hq,0(x) = x and write recursively,

hq,2n(x) = −iq tan(−iq tanhq,2n−2(x)) = −q tanh(q tan hq,2n−2(x)).

Thus hq,2n(x) is a map from the real axis to itself. We note that hq,1(x) =
−iq tan(x) has poles at x = pk and hq,2 has essential singularities at these poles.
We can compute the asymptotic values:

lim
x→p+

k

hq,2(x) = q, lim
x→p−k

hq,2(x) = −q.

We note that there are no poles of hq,2 on the real axis. The singularities of hq,2n(x)
are singularities of hq,2n−2(x) and poles and singularities of hq,2n−1(x). Thus the
singularities of hq,2n(x) are all the points s±k,j such that hq,2j(s±k,j) = ±pk for all
integers k > 0 and j < n. First we gather some facts:

Lemma 6.5. Let Ik = (pk−1, pk) and let

hq,2(x) = −q tanh(q tan x), x ∈ Ik.

Then
i) limx→p+

k−1
hq,2(x) = q, limx→p−k

hq,2(x) = −q

ii) dhq,2
dx (x) < 0, x ∈ Ik,
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iii) limx→p+
k−1

dhq,2
dx (x) = 0, limx→p−k

dhq,2
dx (x) = 0

Proof. Let y1 = q tan x and write hq,2(x) = −q tanh y1. Since q > 0. We
may assume that k ≥ 1. Then y1 ≤ 0 for x ∈ (pk−1, kπ] and limx→p+

k−1
y1(x) =

−∞. Thus limx→p+
k−1

hq,2(x) = q. Analogously y1 ≥ 0 for x ∈ [kπ, pk) and

limx→p−k
y1(x) = +∞. Thus limx→p−k

hq,2(x) = −q. We note that y′1 = q sec2 x > 0

on Ik, while h′q,2(x) = −q2 sech2(q tan(x)) sec2 x < 0. ¤

The graphs of hq,2(x) and g2(x) have similar branching and similar shapes; but
the graph of hq,2(x) is asymptotic to the horizontal at pk−1 and pk. Also the shapes
of the hq,4 curves is similar to that of the hq,2(x) curves but is inverted. We define
a branch of hq,2n as hq,2n restricted to an interval I = (p, p′) between singularities.
We define a full branch for hq,2n to be a branch defined between consecutive poles
of hq,2n−1 on an interval I = (p, p′) such that for n odd hq,2n(p) > hq,2n(p′) and
for even n, hq,2n(p) < g2n(p′).

Lemma 6.6. Assume that I = (p, p′) is an open interval on which a full branch
of hq,2n+2 is defined, such that if n is odd hq,2n(p) = pk, hq,2n(p′) = pk−1 while if
n is even, hq,2n(p) = pk−1, hq,2n(p′) = pk. Then

i) In the odd case

lim
x→p+

hq,2n+2(x) = −q lim
x→p′−

hq,2n+2(x) = q

dhq,2n+2

dx
(x) > 0, x ∈ (p, p′)

and
lim

x→p+

dhq,2n+2

dx
(x) = 0 lim

x→p′−

dhq,2n+2

dx
(x) = 0

ii) In the even case

lim
x→p+

hq,2n+2(x) = q lim
x→p′−

hq,2n+2(x) = −q

and
dhq,2n+2

dx
(x) < 0, x ∈ (p, p′)

lim
x→p+

dhq,2n+2

dx
(x) = 0 lim

x→p′−

dhq,2n+2

dx
(x) = 0

Proof. Lemma 6.5 contains this lemma for n = 1. We proceed by induc-
tion. Let y2n+1(x) = q tanhq,2n(x) and set I0 = (p, t], I1 = [t, p′), where t is the
unique solution to hq,2n(t) = kπ. Assume first that n is odd. By hypothesis, for
x close to p in I0, tan hq,2n(x) > 0 so that y2n+1(x) ≥ 0 and limx→p+ y2n+1 = ∞.
Then limx→p+ hq,2n+2(x) = −q. Analogously for x ∈ I1, y2n+1(x) ≤ 0 so that
limx→p′− y2n+1 = −∞. Compute

dhq,2n+2

dx
= −q2 sech 2(q tan hq,2n) sec2(hq,2n)

dhq,2n

dx
.

Since −q2 sech2(q tanhq,2n) sec2(hq,2n) < 0 we deduce from the induction hypoth-
esis dhq,2n

dx < 0, that dhq,2n+2
dx > 0. Since hq,2n(p) = pk and hq,2n(p′) = pk−1 then

limx→p
dhq,2n

dx (x) and limx→p′
dhq,2n

dx (x) are finite. But

lim
x→p+

−q2 sech 2(q tan hq,2n) sec2(hq,2n)(x) =
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lim
x→p′

−q2 sech 2(q tan hq,2n) sec2(hq,2n)(x) = 0

Thus limx→p+
dhq,2n+2

dx (x) = 0 and limx→p′−
dhq,2n+2

dx (x) = 0. For n even the proof
is analogous. ¤

7. Sharkovskii type ordering

We restrict our discussion to the negative imaginary axis. To get the analogous
results for the positive imaginary axis we need only reflect in the real axis.

By theorem 4.1 we see that there is an ordered pair (Ω′2,k, Ω2,k) centered at each
point −pki. We want to see what other periods occur for hyperbolic components
between such pairs. To this end we have the following almost immediate corollary
of proposition 5.4 and corollary 6.3. We use the notation Ω2n,q (resp. Ω′2n,q) to
denote a hyperbolic component with virtual center at −iq.

Proposition 7.1. Assume that k ≥ 1. Let I = (p, q) be an interval for a full
branch of g2n contained in the interval Ik = (pk−1, pk).

- For even n there exist hyperbolic components Ω′2n,p and Ω2n,q with virtual
centers respectively at −pi and −qi such that Ω′2n,p ∩ = = (−pi,−ai) and
Ω2n,q ∩ = = (−bi,−qi) where p < a < b < q.

- For odd n there exist hyperbolic components Ω2n,p and Ω′2n,q with virtual
centers respectively at −pi and −qi such that Ω2n,p ∩ = = (−pi,−ai) and
Ω′2n,q ∩ = = (−bi,−qi) where p < a < b < q.

Proof. Since the endpoints p and q of I are prepoles of order 2n− 1 they are
virtual centers of hyperbolic components Ω2n and Ω′2n. We want to see what order
these components occur in.

Let x1 be just to the right of p inside the hyperbolic component at p and
consider the graph of hx1,2n(x) = f2n

−x1i(x) as a map of the real axis to itself. We
first suppose n is even. Then limx→p+ hx1,2n(x) = −x1 and the graph of hx1,2n(x)
intersects the line y = −x at a point x2 close to, but to the right of x1. It follows
that x2 is part of a periodic cycle of period 4n of f−x1i(x) and that the hyperbolic
component containing −x1i is of the type Ω′2n. A similar discussion shows that at
a point x1 in the hyperbolic component just to the left of q, the graphs of hx1,2n(x)
and y = x intersect at a point x2 near but left of q so that x2 is a periodic point of
period 2n and thus the component is of type Ω2n.

Now suppose n is odd. We argue as above to see that for x1 in the component
to the right of p, the graph of hx1,2n(x) intersects the line y = x at a point x2 close
to, but to the right of p. It follows that the hyperbolic component is of type Ω2n.
Similarly, the component to the left of q is of type Ω2n. ¤

Theorem 7.2. There are hyperbolic component pairs of every even period on
the imaginary axis. Precisely, fix k > 1 and the interval Ik = (pk−1, pk). Choose
n > 0. Then in Λk = −iIk there are at least 2k(2k − 1)n−2 pairs (Ω2n,Ω′2n) (or
(Ω′2n,Ω2n)) whose virtual centers correspond to endpoints of full branches on g2n in
Ik. These are ordered inductively: to each of the perhaps more than 2k− 1 pairs of
component pairs (Ω2n,Ω′2n) ( or (Ω′2n, Ω2n)) there are at least 2k component pairs
(Ω′2n+2, Ω2n+2) ( or (Ω2n+2,Ω′2n+2)).

Before we give the proof we assume k = 2 and look at the pairs in the interval
Λ−2 = [− 3πi

2 ,− 5πi
2 ]. It follows from proposition 7.1 and corollary 6.3 that for

n = 1, 2 and 3 we get (where there may be more components in-between):
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(Ω′2,−2,Ω2,−2) C
(Ω4,Ω′4) C

(Ω′6, Ω6) C (Ω′6,Ω6) C (Ω′6, Ω6) C (Ω′6, Ω6) C
(Ω4,Ω′4) C

(Ω′6, Ω6) C (Ω′6,Ω6) C (Ω′6, Ω6) C (Ω′6, Ω6) C
(Ω4,Ω′4) C

(Ω′6, Ω6) C (Ω′6,Ω6) C (Ω′6, Ω6) C (Ω′6, Ω6) C
(Ω4, Ω′4)

(2) C (Ω′2,−3, Ω2,−3)

Note that the components Ω′2,−2 and Ω2,−3 are outside of Λ−2. To get the order of
hyperbolic components for the next integers n = 4, 5 we have to replace each piece
of the form

C (Ω′6,Ω6) C (Ω′6, Ω6) C (Ω′6, Ω6) C (Ω′6,Ω6) C
in (2) by

C (Ω′6, Ω6) C
(Ω8,Ω′8) C

(Ω′10, Ω10) C (Ω′10,Ω10) C (Ω′10, Ω10) C (Ω′10, Ω10) C
(Ω8,Ω′8) C

(Ω′10, Ω10) C (Ω′10,Ω10) C (Ω′10, Ω10) C (Ω′10, Ω10) C
(Ω8,Ω′8) C

(Ω′10, Ω10) C (Ω′10,Ω10) C (Ω′10, Ω10) C (Ω′10, Ω10) C
(Ω8,Ω′8) C

(Ω′6,Ω6) C
(Ω8,Ω′8) C

(Ω′10, Ω10) C (Ω′10,Ω10) C (Ω′10, Ω10) C (Ω′10, Ω10) C
(Ω8,Ω′8) C

(Ω′10, Ω10) C (Ω′10,Ω10) C (Ω′10, Ω10) C (Ω′10, Ω10) C
(Ω8,Ω′8) C

(Ω′10, Ω10) C (Ω′10,Ω10) C (Ω′10, Ω10) C (Ω′10, Ω10) C
(Ω8,Ω′8) C

(Ω′6,Ω6) C
(Ω8,Ω′8) C

(Ω′10, Ω10) C (Ω′10,Ω10) C (Ω′10, Ω10) C (Ω′10, Ω10) C
(Ω8,Ω′8) C

(Ω′10, Ω10) C (Ω′10,Ω10) C (Ω′10, Ω10) C (Ω′10, Ω10) C
(Ω8,Ω′8) C

(Ω′10, Ω10) C (Ω′10,Ω10) C (Ω′10, Ω10) C (Ω′10, Ω10) C
(Ω8,Ω′8) C

(Ω′6,Ω6) C



PERIOD DOUBLING 17

Proof. Fix k > 1 and the interval Ik = (pk−1, pk). Let (p, q) ⊂ Ik be a full
branch of g2n. Then any component Ω2n or Ω′2n intersecting (p, q) has virtual center
at either −pi or −qi. The theorem follows by applying proposition 7.1 inductively
and using corollary 6.3 to see that for every n and every full branch of g2n defined on
(p, q), there is a component pair with virtual center −ip and another with virtual
center −iq and that these pairs are interleaved as asserted. Since the pairs are
interleaved between pairs of pairs and there are at least 2k − 1 pairs of pairs, we
have at least 2k(2k − 1)n−2 pairs (Ω2n, Ω′2n) (or Ω′2n, Ω2n)). ¤

8. Bifurcations

8.1. Periodic points: Sign of the multiplier. In propositions 5.1 and 5.2
we saw that if λ ∈ = then any attractive or parabolic periodic cycle has even period
2n and the periodic points belong either to R or =. In the proof of proposition 5.3
we saw from equation (1) that the multiplier M(λ) of such a cycle is always real.
Using equation (1) again we have immediately

Proposition 8.1. If λ ∈ = ∩ Ω, where Ω is a hyperbolic component and Ω its
closure, and if M(λ) is the multiplier of the attractive or parabolic periodic cycle of
period 2n, then

(3) sgn(M(λ)) = sgn(λ2n) = (−1)n.

A direct corollary of equation (3) is

Proposition 8.2. Let λ ∈ = belong to a hyperbolic component. If there is a
single cycle of period 4n then 0 < M(λ) < 1, while if there are two cycles of period
2n then either n is odd and −1 < M(λ) < 0 or n is even and 0 < M(λ) < 1.

In the components Ω′2n with a single cycle of period 4n note that we can choose
a particular square root of the multiplier as follows. We set

m(λ) =
df2n

λ

dz
(zi(λ)).

Another immediate corollary of equation (3) is

Remark 3. If λ ∈ Ω′2n ∩ = then sgnm(λ) = (−1)n.

We call m(λ) the half multiplier; note that it is well defined independent of i.

8.2. Orbits of the asymptotic values: Petals. In order to understand the
bifurcation process we need to understand how the orbits of the asymptotic values
approach the periodic points. For λ ∈ = a periodic point is either real or imaginary
and we can determine whether the orbit of a given asymptotic value approaches
each periodic point from one or both sides.

Proposition 8.3. Assume λ ∈ = and for readability omit the subscript λ.
i) Suppose λ ∈ Ω2n and let z0, . . . , z2n−1 be the attractive periodic cycle

labelled such that f2nk(λi) → z0. If M(λ) > 0, then f2nk(λi)− z0 always
has the same sign while if M(λ) < 0 then f2nk(λi)−z0 and f2n(k+1)(λi)−
z0 have opposite signs. The same is true for −z0 and −λi.

ii) Suppose λ ∈ Ω′2n and let z0, . . . , z2n−1,−z0, . . . ,−z2n−1 be the attractive
periodic cycle labelled such that f4nk(λi) → z0 (and f4nk+2n(−λi) → z0).
If m(λ) > 0 then f4nk+2n(−λi)−z0 and f4nk(λi)−z0 have opposite signs



18 LINDA KEEN AND JANINA KOTUS

while if m(λ) < 0, then f4nk+2n(−λi) − z0 and f4nk(λi) − z0 have the
same sign.

Proof. (i) Choose ε > 0 so that the Taylor expansion

f2n(z) = z0 + M(λ)(z − z0) + O((z − z0)2)

is valid in |z − z0| < ε. Both z0 and f2nk(λi) belong to R so we can define
sgn(f2nk(λi) − z0). Since f2nk(λi) → z0 we can find k0 so that for k > k0,
|f2nk(λi)− z0| < ε and

f2nk+2n(λi)− z0 = M(λ)(f2nk(λi)− z0) + O(ε2).

If M(λ) > 0 then sgn(f2nk+2n(λi)− z0) = sgn(f2nk(λi)− z0); thus, for large k
the sign of f2nk(λi)− z0 is constant.

Analogously, if M(λ) < 0 then

sgn(f2nk+2n(λi)− z0) = − sgn(f2nk(λi)− z0).

(ii) Again expand f4n(z) in a Taylor series about z0 for |z − z0| < ε:

f4n(z) = f4n(z0) + M(λ)(z − z0) + O((z − z0)2)

= z0 + M(λ)(z − z0) + O((z − z0)2).
Here M(λ) > 0 so that f4n(z) is on the same side of z0 as z for large k and

sgn(f4n(f4nk(λi))− z0) = sgn(f4nk(λi)− z0).

Now expand f2n(z) in a Taylor series about −z0 for |z + z0| < ε:

f2n(z) = f2n(−z0) + m(λ)(z + z0) + O((z + z0)2) =

z0 + m(λ)(z + z0) + O((z + z0)2).
Since f4nk(−λi) → −z0 we get

f2n(f4nk(−λi)) = z0 + m(λ)(f4nk(−λi) + z0) + O((f4nk(−λi) + z0)2),

or rewriting,

f2n+4nk(−λi))− z0 = −m(λ)(f4nk(λi)− z0) + O((f4nk(−λi) + z0)2).

So if m(λ) > 0 then sgn(f2n+4nk(−λi)) − z0) = − sgn(f4nk(λi) − z0), while if
m(λ) < 0 then sgn(f2n+4nk(−λi))− z0) = sgn(f4nk(λi)− z0). ¤

At each periodic parabolic point there are domains that play the role of the
attractive basin. The Fatou Flower Theorem describes these domains and shows
that they contain petal shaped regions. Further, for each petal at a periodic point of
a parabolic cycle of period p there is a foliation of curves invariant under fp

λ0
which

are tangent to the stable direction inside the petal and tangent to the unstable
directions outside of it.

In the following we describe the petals at the parabolic boundary points on the
imaginary axis.

Corollary 8.4. i) Suppose λ0 ∈ ∂Ω2n ∩ =. If M(λ0) = 1 then there
is exactly one petal at each periodic point in the parabolic cycle whereas
if M(λ0) = −1 then there are two petals at each periodic point in the
parabolic cycle.

ii) Suppose λ0 ∈ ∂Ω′2n ∩ =. If m(λ0) = 1 then there are two petals at each
periodic point in the parabolic cycle, whereas if m(λ0) = −1 then there is
only one petal at each periodic point in the parabolic cycle.
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Proof. With the notation of proposition 8.3, for λ ∈ = ∩ Ω, Ω = Ω2n or
Ω = Ω′2n, f2n

λ maps I = (z0 − ε, z0 + ε) ⊂ R into itself. The combinatorial picture
of the orbits of the asymptotic values of fλ persists as λ → λ0 ∈ Ω.
(i) If λ0 ∈ ∂Ω2n then f2nk

λ0
(λ0i) ∈ I and approaches z0 either from one or both

sides. By Proposition 8.3, if M(λ0) < 0 then f2nk
λ0

(λ0i) − z0 alternately changes
sign and the orbit approaches z0 from both sides. This means there are two stable
directions and fλ0 has two petals. If M(λ0) > 0 then f2nk

λ0
(λ0i) − z0 always has

the same sign, so there is only one stable direction. Note that since there are two
cycles the other asymptotic value −λ0i must tend to the other periodic cycle. Thus
at z0 there is exactly one petal. The same is true for −z0.
(ii) Now assume λ0 ∈ ∂Ω′2n. Then f4nk(λ0i) → z0 and f4nk+2n(−λ0i) → z0. If
m(λ0) > 0 then f4nk+2n(−λ0i)− z0 and f4nk(λ0i)− z0 have opposite signs so that
fλ0 has two stable directions at z0 and consequently two petals. On the other hand,
if m(λ0) < 0 then f4nk+2n(−λ0i) − z0 and f4nk(λ0i) − z0 have the same sign so
that fλ0 has exactly one stable direction at z0 and consequently only one petal. ¤

8.3. Periodic points: Derivative with respect to the parameter. The
functions fk

λ (z) are meromorphic in both z and λ for all positive integers k as are

the periodic points. Thus we can consider the derivatives dfk
λ

dλ .
In the hyperbolic components Ω′2n intersecting the imaginary axis we have the

following relation between the derivatives of f4n and f2n.

Lemma 8.5. Let λ ∈ Ω′2n and let z0(λ), . . . z4n−1(λ) be the corresponding at-
tractive periodic cycle. Then

df4n
λ

dλ
(zi(λ)) = (−1 + m(λ))

df2n
λ

dλ
(zi(λ))

where addition of subscripts is modulo 4n.

Proof. For any z set zk = fk
λ (z); note that these are not necessarily the

periodic points here. Then

(4)
df4n

λ

dλ
(z) = tan z4n−1 + λ sec2 z4n−1 tan z4n−2 + . . .

+λ4n−1
4n−1∏

k=1

sec2 zk tan z

If we now assume the zk are in the attractive periodic cycle, by its symmetry we
have tan z2n+k(λ) = − tan zk(λ) and sec2 z2n+k(λ) = sec2 zk(λ) for k = 0, . . . , 2n−
1. Set z = z0 and use the symmetry relations in equation (4) to obtain

df4n

dλ
(z0(λ)) = (−1 + m(λ))

df2n

dλ
(z0(λ))

Choosing z = zi(λ) for any other periodic point gives the general formula. ¤
Recalling proposition 8.2 and remark 3 and applying continuity we deduce the

following relation at the parabolic boundary points of Ω
′
2n.

Corollary 8.6. Assume λ ∈ =∪∂Ω′2n let z0(λ), . . . , z4n−1(λ) be the parabolic
cycle. Then for any point in the cycle:

i) If n is even, df4n

dλ (zi)(λ) = 0
ii) If n is odd, df4n

dλ (zi)(λ) 6= 0 if and only if df2n

dλ (zi(λ)) 6= 0
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8.4. Period doubling bifurcation. We need the following definitions:
If λ0 is a parabolic boundary point of a hyperbolic component Ω and if ∂Ω can

be locally parameterized by |1 + a(λ− λ0)r| = 1 for some rational 0 < r < 1 then
λ0 is called a cusp of Ω.

If λ0 is a parabolic boundary point of a hyperbolic component Ωp with attract-
ing cycle(s) of period p and if there is a component Ωq with attracting cycle(s) of
period q such that ∂Ωp ∩ ∂Ωq = {λ0}, then if p|q Ωq is called a bud of Ωp and if q|p
then Ωq is called a root of Ωp.

Recall that in a standard period doubling bifurcation each attractive cycle
bifurcates to an attractive cycle of double the period. Here we will also encounter a
non-standard period doubling bifurcation where a single attractive cycle bifurcates
to two distinct attractive cycles of the same period.

Theorem 8.7 (Period Doubling bifurcations). Assume λ0 ∈ = is a para-
bolic boundary point of a hyperbolic component Ω intersecting = and let z0, . . . , z2n−1,
−z0, . . . ,−z2n−1 be the parabolic periodic points. Assume also that the multiplier
of the cycle(s) at the parabolic cycle is monotonic on =.

i) Either Ω = Ω2n, and n is odd. Then M(λ) = −1 and there are two
petals at each periodic point in the parabolic cycles. In this case there is a
standard period doubling bifurcation: there is a hyperbolic component Ω4n

with root at λ0 with two attractive cycles of period 4n.
ii) Or Ω = Ω′2n and n is even. Then the half multiplier m(λ) = 1 and there

are two petals at each periodic point in the parabolic cycle. In this case
there is a non-standard bifurcation; that is, there is a hyperbolic component
Ω4n with root at λ0 with two attractive cycles of period 4n. Then there is
a unique component Ω4n tangent to Ω′2n at λ0 with two attractive cycles
of period 4n.

This situation is reflected on the positive imaginary axis.

Proof. We first show that the bifurcations exist. It follows respectively from
Proposition 8.1 and Remark 3 that the multiplier M(λ0) = −1 in the case i) and
the half multipier m(λ0) = 1 in the case ii). By Corollary 8.4 in both cases i) and ii)
there are two petals at each periodic point in the parabolic cycle(s). In case i) where
there are two cycles of period 2n and n is odd, we may assume we have labelled
the cycles so that the cycle z0, . . . , z2n−1 attracts λ0i. If fk

λ0
(λ0i) belongs to one

petal P ′ at z0, then fk+2n
λ0

(λ0i) belongs to the other petal P ′′ at z0 and fk+4n
λ0

(λ0i)
belongs to P ′ again. The analogous statement is true for the other cycle and −λ0i.

In case ii) where there is one cycle of period 4n and n is even, the cycle attracts
both ±λi. If fk

λ0
(λ0i) belongs to one petal P ′ at z0, then fk+2n

λ0
(−λ0i) belongs

to the other petal P ′′ at z0; moreover, fk+4n
λ0

(λ0i) belongs to P ′ and fk+6n
λ0

(−λ0i)
belongs to P ′′.

Suppose λ ∈ = ∩ Ω2n with n odd or λ ∈ = ∩ Ω′2n with n even and let
λ → λ0. Then either fλ has two distinct attractive cycles, z0(λ), . . . , z2n−1(λ),
and −z0(λ), . . . ,−z2n−1(λ) each of period 2n or it has a single attractive cycle
z0(λ), . . . , z2n−1(λ), −z0(λ), . . . ,−z2n−1(λ) of period 4n.

Let V be a small neighborhood of z0(λ) such that f2n
λ (z) or f4n

λ (z) restricted
to V is holomorphically conjugate to its linear part, m(λ)z. Then, by the definition
of V , f2n

λ (z) or f4n
λ is a contraction on V mapping its closure inside itself. For

λ = λ0 we have two attracting petals P ′ and P ′′ attached to z0(λ0); in either case,
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the map f4n
λ is a contraction on the boundary of each petal P ′ except for the point

z0; that is, ∂f4n
λ (P ′) \ {z0(λ0)} is contained inside P ′ and similarly for P ′′.

Denote the intersection of V with R by I(λ). For λ ∈ = and close to λ0 as
above, the map f4n

λ is a contraction on I(λ). Set I(λ0) = (P ′ ∪{z0(λ0)}∪P ′′)∩R.
This is an interval on which f4n

λ0
is a contraction. Perturbing λ beyond λ0, perturbs

the endpoints of I(λ0). On the resulting interval I(λ), f4n
λ is again a contraction;

that is, f4n
λ (I(λ)) ⊂ I(λ).

Since we have assumed the multiplier is strictly monotonic in a neighborhood
of λ0 on =, z0(λ) becomes a repelling fixed point outside the hyperbolic component.
Since there are only two asymptotic values, there are at most two cycles. To see
whether there are one or two, we must look at the orbits of the asymptotic values.
In case i), z0(λ) is now a repelling periodic point of period 2n. The interval I(λ)
contains the iterates fk+2nj

λ (λi) for some even k and all j ≥ 0, but no iterates of
−λi. We deduce that the 4n attractive points in the intervals f j

λ(I(λ)), j = 0, . . . , 2n
all belong to the same cycle. The same is true for −z0(λ) and −I(λ); the 4n new
attractive points in the intervals f j

λ(−I(λ)), j = 0, . . . , 2n all belong to the same
cycle and there are two cycles of period 4n.

In case ii), z0(λ) is now a repelling periodic point of period 4n. Let L and R
be the parts of the interval I(λ) to the right and left of z0(λ) respectively. Then
L contains the iterates fk+4nj

λ (λi) and R contains fk+6nj
λ (−λi) (or vice versa). It

follows that the 4n attractive periodic points in the intervals f j
λ(L), j = 0, . . . , 4n

belong to one cycle and the 4n attractive periodic points in the intervals f j
λ(R),

j = 0, . . . , 4n belong to another cycle. Thus again there are two cycles of period
4n. We conclude the bifurcation is standard or not as λ0 is on the boundary of Ω2n

or Ω′2n.

We now show that the component Ω4n is tangent to Ω′2n at λ0. (See [4]).
Expand f4n

λ0
(z) in a Taylor series about z0:

(5) f4n
λ0

(z) = z0 + a1(z − z0) + a2(z − z0)2 + a3(z − z0)3 + . . .

where a1 = M(λ0) = m(λ0)2 = 1. The index of the first non-zero term is equal
to one plus the total number of petals associated to a point in the cycle; thus,
a2 = 0, a3 6= 0. There is a local change of coordinates (λ, z) in a neighborhood of
(λ0, z0) such that

(6) f4n
λ (z) = z0(λ)+a1(λ)(z− z0(λ))+a2(λ)(z− z0(λ))2 +a3(λ)(z− z0(λ))3 + . . .

where a1(λ) 6= 0, a2(λ) = 0, a3(λ) 6= 0 We can expand a1(λ) to get

(7) a1(λ) = a1(λ0) + â1(λ0)(λ− λ0) + â2(λ0)(λ− λ0)2 + â3(λ0)(λ− λ0)3 + ....

where a1(λ0) = 1. From the assumption that the multiplier is monotone at λ0 the
first non-zero term dma1(λ)

dλm (λ0) = m!âm(λ0) 6= 0 occurs for m odd.
Set F (z, λ) = f4n

λ (z) − z. We want to consider solutions of F (z, λ) = 0 in a
neighborhood of (λ0, z0). Put Z = z − z0,Λ = λ− λ0 and write

(8) 0 = F (Z, Λ) =
∞∑

j=0,k=0

Aj,kZjΛk
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Then:

A0,0 = F (z0, λ0) = 0,(9)

A0,1 =
∂F

∂λ
(z0, λ0) = 0,(10)

A1,0 =
∂F

∂z
(z0, λ0) = 0(11)

A2,0 =
∂2F

∂z2
(z0, λ0) = 0(12)

A3,0 =
∂3F

∂z3
(z0, λ0) = 6a3(λ0) 6= 0(13)

A1,j =
∂j+1F

∂λ∂z
(z0, λ0) = âj(λ0) = 0, j = 1, . . . , m− 1(14)

A1,m =
∂m+1F

∂λ∂z
(z0, λ0) = âm(λ0) 6= 0(15)

We claim that âj(λ0) = 0 for j = 1, . . . , m− 1 implies A0,j+1 = 0.
To prove the claim note first that a1(λ) = M(λ) so that âi(λ) = 1

i!
diM(λ)

dλi Recall
lemma 8.5

∂f4n

∂λ
(z0) = (−1 + m(λ0))

∂f2n

∂λ
(z0) = 0.

Write m = m(λ),M = M(λ) and φ = f2n(λ). It is easy to compute that

∂iF

∂λi
= (−1 + m)

diφ

dλi
+

dm

dλ

di−1φ

dλ
+ . . . +

(
i− 2

r

)
drm

dλr

di−rφ

dλi−r
+ . . . +

dmi−1

dλ
φ

where
(

i− 2
r

)
is “i− 2 choose r”.

Since M = m2 we have for i odd

diM

dλi
= 2(m

djm

dλ
+ . . . +

(
i
r

)
drm

dλr

di−rm

dλi−r
+ . . . +

(
i

i−1
2

)
d

i−1
2 m

dλ
i−1
2

d
i+1
2

dλ
i+1
2

)

and for i even

diM

dλi
= 2(m

djm

dλ
+ . . . +

(
i
r

)
drm

dλr

di−rm

dλi−r
+ . . . +

1
2

(
i
i
2

)
d

i
2 m

dλ
i
2

2

)

Since m(λ0) = 1, if djM(λ)
dλj (λ0) = 0 for j = 1, . . . , m − 1 we see, by induction

on j, that, for all j, djm(λ)
dλj (λ0) = 0. Thus we have A0,j = 0 for j = 2, . . . , m as

claimed. Thus
0 = A3,0Z

3 + . . . + A1,mZΛm + . . .

We want to solve for Z in terms of Λ near 0. One solution is Z = 0; thus the term∑∞
2 A0,jΛj = 0. The other solutions are the roots of

(16) Z = c1Λm/2 + c2Λ + . . .

where

(17) c1 =
(
−A1,m

A3,0

)m/2
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We plug (17) into (16) to see that the roots

(18) Z = z − z0 ≈
(
−A1,m

A3,0

)1/2

(λ− λ0)m/2

are the solutions of the equation

(19) f4n
λ (z0(λ)) = z0(λ).

We compute the multiplier

∂f4n
λ

∂z
(z0(λ)) = 1 +

∂F

∂Z
= 1 + 3A3,0Z

2 + A1,mΛ + . . .

If we substitute (18) in this equation we see that

∂f4n
λ

∂z
(z(λ)) = 1 +

∂F

∂Z
= 1− 2A1,1(λ− λ0)m + . . . .

Thus λ0 is on the boundary of a domain Ω̂ where the multiplier of the other solutions
of (19) has absolute value less than 1. Therefore, Ω̂ = Ω4n is a hyperbolic component
tangent to Ω′2n at the parabolic point λ0. ¤

Theorem 8.8. For each k ≥ 1 the parameter −pki is the virtual center of a
hyperbolic component pair (Ω′2,−k, Ω2,−k).

1) Let λ0 ∈ ∂Ω′2,−k ∩ = be the parabolic boundary point. Then Ω′2,−k has a
cusp at λ0.

2) Suppose λ1 ∈ ∂Ω2,−k ∩ = is the parabolic boundary point. Then there is
a standard period doubling bifurcation i.e. there is a pair of hyperbolic
components (Ω4, Ω′4) intersecting = with root at λ1

Thus
(Ω′2,−k, Ω2,−k) C (Ω4, Ω′4).

and this situation is reflected on the positive imaginary axis.

Proof. At the end of section 4 we saw that for each pole pk, the parameter
pki is the virtual center of a pair (Ω′2,k,Ω2,k) intersecting =. By Proposition 5.3
each component of this pair intersects = in an interval. We fix k ≥ 1.
Part 1. Let z0(λ), . . . , z3(λ) be the cycle of period 4 which is attractive for λ ∈
Ω′2,−k. It follows from Proposition 8.1 that M(λ0) = 1. By Remark 3 the half
multipier m(λ0) = −1, thus by Corollary 8.4 there is one petal at each periodic
point in the parabolic cycle. Again we expand

(20) f4
λ0

(z) = z0 + a1(z − z0) + a2(z − z0)2 + a3(z − z0)3 + . . .

where a1 = M(λ0) = m(λ0)2 = 1. Now a2 6= 0. Again there is a local change of
coordinates (λ, z) in a neighborhood of (λ0, z0) such that

(21) f4n
λ (z) = z0(λ)+a1(λ)(z−z0(λ))+a2(λ)(z−z0(λ))2 +a3(λ)(z−z0(λ))3 + . . .

where a1(λ) 6= 0, a2(λ) 6= 0
Label the cycle such that z0(λ0) ∈ R, z1(λ0) = fλ0(z0) ∈ =. Then

∂f2
λ

∂λ
(z0, λ0) = tan(z1) + λ0 sec2 z1 tan z0 + λ2

0 sec2 z1 sec2 z0 =

=
z0

λ0
+

[
1 +

z2
0

λ2
0

]
z1 − 1.
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The real parts of the first and second terms are zero so their sum cannot be equal
to -1. Consequently ∂f2

λ

∂λ (z0, λ0) 6= 0. Since

∂f4
λ

∂λ
(z0) = (−1 + m(λ))

∂f2
λ

∂λ
(z0)

it follows that ∂f4
λ

∂λ (z0) 6= 0.
Again, set F (z, λ) = f4

λ(z)− z, put Z = z − z0,Λ = λ− λ0 and write

(22) 0 = F (Z, Λ) =
∞∑

j=0,k=0

Aj,kZjΛk.

We want to consider solutions of F (z, λ) = 0 in a neighborhood of (λ0, z0). Now
we have

A0,0 = F (z0, λ0) = 0,(23)

A1,0 =
∂F

∂z
(z0, λ0) = 0(24)

A2,0 =
∂2F

∂z2
(z0, λ0) = 2a2(λ0) 6= 0(25)

A0,1 =
∂F

∂λ
(z0, λ0) 6= 0.(26)

Thus (22) has the form

0 = A2,0Z
2 + A0,1Λ + A1,1ZΛ + . . .

We want to solve for Z in terms of Λ near 0. Then

(27) Z = c1Λ1/2 + c2Λ + . . .

where

(28) c1 =
(
−A0,1

A2,0

)1/2

This implies that

∂f4

∂z
(z0(λ)) = 1 +

∂F

∂Z
= 1 + 2A2,0

(
−A0,1

A2,0

) 1
2

(λ− λ0)
1
2 + . . . .

Thus the boundary of Ω2,−k near λ0 has the same form as

|1 + 2A2,0

(
−A0,1

A2,0

) 1
2

(λ− λ0)
1
2 + . . . | = 1.

This means that ∂Ω2,−k has a cusp at λ0.

Part 2. We prove that there is a standard period doubling bifurcation at the
parabolic boundary point λ1 ∈ Ω2,−k ∩ =. For λ ∈ Ω2,−k fλ has two attractive
cycles of period 2. We claim that the multiplier of these cycles is stricly monotonic
on the imaginary axis at λ1. Otherwise there is another hyperbolic component Ω
with parabolic boundary point λ1 such that Ω intersects the imaginary axis and has
two attractive cycles of period 2. By Proposition 5.3, Ω has a unique virtual center
which is on the imaginary axis. Thus Ω must be some Ω2,−j for j 6= k. It must thus
contain the full interval (λ1,−pk+1i). This interval contains the point −kπi; at this
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point however, the image of the asymptotic values is the fixed point 0 and so it
cannot belong to a hyperbolic component. Consequently the multiplier is monotonic
at λ1 and by Theorem 8.7 there is a standard period doubling bifurcation. ¤

Finally we show the existence of a non-standard bifurcation.

Theorem 8.9. Suppose q1 is the rightmost solution of g2(x) = pk in (pk, pk+1).
Then λ1 = −q1i is the center of an ordered pair (Ω4, Ω′4). Let λ∗ = −q∗i be the
parabolic boundary point of Ω′4 on =. Then there is a non-standard bifurcation at
λ∗; that is, there is a pair of hyperbolic components (Ω8,Ω′8) intersecting = such
that the parabolic boundary point of Ω8 is λ∗ and

(Ω′2,−k, Ω2,−k) M . . . C (Ω4,Ω′4) C (Ω8, Ω′8)

The ellipsis above indicates the possibility of other component pairs (Ω4, Ω′4), oc-
curring there but none of higher order.

Proof. By lemma 6.1 there are at most finitely many turning points of g2(x)
so there is a unique q1 such that g2(q1) = pk and g2(x) < pk for all q1 < x < pk+1.
Since limx→p−k+1

g2(x) = −pk+1 and g2(x) is continuous, there is a first q2 such that
q1 < q2 < pk+1, g2(q2) = pk−1 and pk > g2(x) > pk−1 for all q1 < x < q2.

It follows now that there is a full branch of g4(x) in the interval (q1, q2) such
that limx→q+ g4(x) = −q1 and limx→q−2

g4(x) = q2. Now there is a leftmost q11

such that g4(q11) = −pk and −pk+1 < g4(x) < −pk for all q1 < x < q11 with
limx→q+

1
g4(x) = −q1 and limx→q−11

g4(x) = −pk. Consider g6(x) on (q1, q11)); it
has no singularities on this interval and limx→q+

1
g6(x) = −pk and limx→q−11

g6(x) =
−q11. We deduce there is a point r, q1 < r < q11 such that g4(r) = g6(r).

Now consider the pairs (Ω4, Ω′4)q1 and (Ω4, Ω′4)q11 centered respectively at q1

and q11. By construction, there are no other pairs with these periods between them.
Let λ∗ = −q∗i be the parabolic boundary point of the Ω′4 centered at q1 and suppose
the multiplier of the parabolic cycle is not monotonic in q at q∗. Then there must
be another component Ω′4 with parabolic boundary point λ∗, but a different center,
in which the same cycle is attracting. The center of this component must therefore
be q11. This means there are only hyperbolic or parabolic points in (q1, q11). The
point r, however, is neither hyperbolic nor parabolic since the asymptotic value is
preperiodic. We therefore deduce that the multiplier must be monotonic at λ∗ and
the theorem follows directly from theorem 8.7. ¤

The same proof works to show that there is an non-standard bifurcation from
each of the pairs enumerated in theorem 7.2.

8.5. Final Remarks. Computer experiments indicate that each full branch
of the maps g2n defined in section 6.1 has a unique turning point.

Question Is it true that each full branch of g2n has a unique turning point?

If the answer to this question is yes, then the statements and proofs of our
theorems simplify. In particular, the number of full branches can be counted pre-
cisely. This gives a cleaner statement for theorem 7.2. The proof of theorem 8.9
also simplifies because we need not worry about taking the rightmost or leftmost
point where g2n is a prepole. In fact, one could carry out induction in this proof to
prove that there is an infinite cascade of non-standard period doubling bifurcations
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on the imaginary axis; that is,

For each k ≥ 1 the parameter −pki is the virtual center of a hyperbolic com-
ponent pair (Ω′2,−k, Ω2,−k) and there is an infinite sequence of pairs of hyperbolic
components (Ω2m , Ω′2m) such that for each m > 1, Ω′2m has a common boundary
point with Ω2m+1 and

(Ω′2,−k,Ω2,−k) C (Ω4,Ω′4) C (Ω8, Ω′8) C (Ω16,Ω′16) C . . . C (Ω2m ,Ω′2m)

C (Ω2m+1 , Ω′2m+1) C . . . (Ω′2,−(k+1),Ω2,−(k+1))
In addition, the parabolic endpoints of Ω′2,−k and Ω′2,−k−1 are cusps. This situation
is reflected on the positive imaginary axis.
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